
Encoding Requests to Web Service
Compositions as Constraints

Alexander Lazovik1,2, Marco Aiello1, and Rosella Gennari2

1 DIT, Trento U., via Sommarive 14, 38050 Trento, IT,
{lazovik,aiellom}@dit.unitn.it

2 ITC-irst, via Sommarive 18, 38050 Trento, IT, gennari@itc.it

Abstract. Interacting with a web service enabled marketplace in order
to achieve a complex task involves sequencing a set of individual service
operations, gathering information from the services, and making choices.
We propose to encode the problem of issuing requests to a composition
of web services as a constraint-based problem.

1 Introduction

Services are autonomous computational entities which live on a network and
interact by asynchronous message passing. Services publish standard interfaces
to enable their discovery, binding and invocation. The most prominent exam-
ple is given by the XML-based standards known as web services, and the most
interesting open challenge therein is the service composition problem, i.e., aggre-
gating services for achieving complex tasks. Here we concentrate on the problem
of enabling a user to express complex requests/goals against a pre-compiled com-
position of services in the form of a business process/domain (in this paper we
use these words interchangebly). What we have is a description of a business
domain (e.g., an electronic marketplace) and the user’s request (e.g., the cheap-
est travel offer), which is satisfied by invoking the appropriate domain services.
We propose to model the domain and request via constraints. Solving such con-
straints means finding an executable plan to satisfy the user’s request in the
business domain. Section 2 introduces the example which runs throughout the
paper; definitions of the business domain and request language are in Section 3;
the constraint encoding is in Section 4; Section 5 concludes the paper — its
extended version is [1], e.g., with the encoding algorithms and related work.

2 Organizing a trip

Let us consider a travel marketplace and the organization of a trip. A generic trip
organization can be modeled by a complex business process encompassing several
actions and states. Moving from one state to another may involve the discovery
of information, the choice of which action to take and even nondeterministic
actions – i.e., their outcome states, hence their effects may be different and not



determined until execution. In [2], we showed a business process for organizing
a trip with 36 states (http://www.opentravel.org); here we consider a subset
of that process. When deciding on a trip, the user may want to book first the
hotel of the final destination and then a carrier to reach the hotel location.
The figure represents this business process snippet as a state transition system.

?>=<89:;s1

a1:reserveRoom

��

a2:failure
��

?>=<89:;s2

a3:reserveFlight

33
a2:reserveTrain

++ ?>=<89:;s3

The first action is the hotel reservation (a1 leaving state
s1). This may result in the room reservation (state s2)
or in a failure (back to s1); “which is which” is unknown
until execution. Finally, there are two ways to reach s3,
the state in which a carrier for the hotel is booked: i.e.,
by either flying or taking a train. This means choosing
either the reserveTrain action or the reserveFlight
one. Given this, a user may also want to have a hotel
reserved, prefer flying to taking a train and optionally
wish to spend no more than 100 euros.

3 Web service interactions

Interacting with a web service enabled marketplace to achieve a complex request
involves sequencing a set of individual service operations, gathering information
from the services and making choices. The complex request of the user is similar
to a planning goal, while the business process describing the possible behav-
iors of the marketplace is similar to a planning domain. Here we propose to
model the business domain and the user’s request via constraints. The business
domain is a state-transition system with one characterizing peculiarity: nonde-
terministic actions. Formally, the domain is a tuple of states, actions, variables,
failure states, and a transition function; we refer to [2] for the definition. Here
we only note that the transition function maps a state and an action into a
set of states and an individual state. The rationale is that of all the states an
action reaches, one is the action’s normal outcome, while the others are the ac-
tion’s failure states. The request language definition is derived from [2]: basic
requests are vital p, atomic p, vital-maint p, atomic-maint p, with p a propo-
sition. A request g is a basic request or of the form achieve-all g, optional g
before-then g, prefer-to g. Having an initial state and the user’s request g, a
plan is given by sequences of actions (of the business domain) that leave from
the initial state and satisfy the user’s request. In Section 4, we obtain a plan by
encoding domains and requests as numeric constraints.

Let us reconsider our example of Section 2 and the figure therein: the set of
states S is {s1, s2, s3}, the set of actions A is {bookHotel a1, reserveTrain a2,
reserveFlight a3 }, and the set of variables is {price, hotelBooked, trainBooked,
flightBooked}. The first variable ranges over natural numbers while all the other
variables are Boolean. As for the transition function, bookHotel a1 brings the
system nondeterministically into 〈{s1, s2}, s2〉, which means that s2 is the nor-
mal state, whereas s1 is the failure state. As for the actions’ effects on variables,
we have: the normal bookHotel action a′

1 increases price and sets hotelBooked



to 1 (i.e., true); the failure bookHotel action a′′
1 has no effect on the variables;

the reserveTrain action a2 increases price and sets trainBooked to 1; the
reserveFlight action a3 increases price and sets flightBooked to 1. The re-
quest in Section 2 is now achieve-all (vitalhotelBooked = 1;atomic-maint price <
100;prefer (vital flightBooked = 1tovital trainBooked = 1)).

4 Constraint-based encoding of the business domain

Services offer a set of independently invocable operations. The operations act on
a number of variables whose values may depend on a single service invocation or,
more generally, on a number of invocations on several independent services. Here,
constraints model how the values of a variable spanning across such services may
change. Additionally, the user has requests and preferences in achieving complex
tasks. We model these via additional constraints on the service domain. In par-
ticular there are two types of Boolean variables: controlled variables, denoted
by βi, and non-controlled variables, denoted by ξi. The rationale is that the
constraint system may not choose values for non-controlled variables, and then a
solution to the problem is such regardless of their assignments. We also assume
that, once executed, a nondeterministic action has always its first execution out-
come. The constraints of our encoding have the form [∀ξi :] cv ./ value where:
value is a value from the domain of the variable v; cv is a vector of expressions
of the form

∑
βi[ξi]ai,k (with βi, ξi ∈ {0, 1}), the ξi are non-controlled variables,

ai,k is the effect of the action ai for the outcome k, ./ is in {<,>,≥,≤,=}, and [·]
denotes that the enclosed expression may not occur in the constraint. Formally,
a service constraint problem is a tuple CP = 〈β,N , ξ, C〉, where β is a set of
controlled Boolean variables, N is a set of controlled variables over N, ξ is a set
of non-controlled Boolean variables, C is a set of constraints as above, in which
a non-controlled variable is (i) either universally quantified over, (ii) or a value
is available and substituted for it. A solution to a service constraint problem is
an assignment to controlled variables such that all the problem constraints are
satisfied. The encoding of the service interaction problem is split in the domain
encoding (phase 1 ), and the request encoding (phase 2 ).

Phase 1 (domain encoding): given a business domain and an initial state s,
the domain-encoding returns a set of constraints cv as above. In what follows,
n represents the number of times a cycle is followed, while ai represents not
only the action but also its effects. The following table briefly illustrates such
encoding.

Phase 2 (request encoding): the user’s request is added and encoded as follows.
vital v ./ v0: if the request is vital with respect to v constrained by ./ on v0,
the v encoding in the constraint vector c (denoted by cv)is considered and it is
added to the cv ./ v0 constraint set. Also all the ξv variables associated with cv

are set to ξ0
v , that is, the normal execution must be followed.

atomic v ./ v0: as above, but all nondeterministic executions are considered,
thus all non-controlled variables ξ get universally quantified over.



Business domain Constraint encoding

/.-,()*+s1 No action /.-,()*+s1 ∅

/.-,()*+s1

a
��/.-,()*+s2

Single action /.-,()*+s1

a
��/.-,()*+s2

βa

/.-,()*+s1

a
vv

a
((/.-,()*+s2 /.-,()*+s3

Nondeterministic
action

/.-,()*+s1

a′

vv
a′′

((/.-,()*+s2 /.-,()*+s3

β(ξ1a
′ + ξ2a

′′)
ξ1 + ξ2 = 1

/.-,()*+s1

a1

vv
a2

((/.-,()*+s2 /.-,()*+s3

Diverging actions /.-,()*+s1

a1

vv
a2

((/.-,()*+s2 /.-,()*+s3

β1a1 + β2a2

β1 + β2 ≤ 1

/.-,()*+s1

vv ((/.-,()*+s2
a1

��

/.-,()*+s3
a2

		/.-,()*+s4

Converging actions /.-,()*+s1

vv ((/.-,()*+s2

a1
		

/.-,()*+s3

a2
��76540123s′

4
76540123s′′

4

∅

/.-,()*+s3
a4

		

a4

��/.-,()*+s1

a1 ((

/.-,()*+s5

/.-,()*+s2

a2

OO

a3
55 /.-,()*+s4

Loop with a nonde-
terministic action

/.-,()*+s3
a′
4

		

a′′
4

��/.-,()*+s1

a1 ((

/.-,()*+s5

/.-,()*+s2

a2

OO

a3
55 /.-,()*+s4

nξ(a1 + a2 + a′
4)

vital-maint v ./ v0: all the states visited during execution are considered. One
quantifies over the execution steps, repeating the constraints as in the vital case
above for each step.
atomic-maint v ./ v0: as above, but all nondeterministic executions are consid-
ered, so all non-controlled variables ξ get universally quantified over.
achieve-all g1 . . . , gn: all sub-requests g1, . . . , gn are recursively executed; all ba-
sic requests coming from these are thus considered. If during the execution some
choices are made for the same branch point among different sub-requests, then
these choices are forced to be always the same by introducing a controlled vari-
able u. E.g., suppose that uj , j ∈ {1, 2}, denotes the branch chosen for trying
to satisfy the j-th request; uj = 0 expresses that no choices were made; then
u1 6= 0 ∧ u2 6= 0 ⇒ u1 = u2 is added as constraint.
before g1then g2: as above, but one tries to satisfy first g1 then g2 is.
prefer g1to g2: the request variables are instantiated along a certain order. Op-
tional requests are prefer-to request with g2 equal to true.

The travel example encoded. Let us spell out part of the encoding of the example
from Section 2. Its domain and initial state s1 give the constraint β1(ξ1nafail

1 +



ξ2(aok
1 +β2a2+β3a3)) which represents the paths from state s1 to s3 with n being

the number of times the cycle is followed. When requests are encoded, for each
basic request a new set of variables is introduced. The first sub-request to be
parsed is vitalhotelBooked = 1. Only the aok

1 outcome affects the hotelBooked
variable, thus the constraint is β′

1ξ2a
ok
1 = 1 and the non-controlled variables are

assigned to normal executions, i.e., ξ2 = 1, ξ1 = 0. The other vital requests
are treated similarly. The request of preferring flying to taking the train gives
the assignment β′′′

i = 1 and βiv
i = 0 as first, for all i ∈ {1, .., 3}. A solution is

β
(j)
1 = 1, β

(j)
2 = 0, β

(j)
3 = 1, for all j ∈ {1, .., 4}. This corresponds to booking the

hotel (bookHotel) and reserving a flight (reserveFlight), assuming that the
total price is less than 100. However, if the flight price is 200, the above is no
longer a solution; but the preference constraint allows for an assignment which
is a solution, that is, by taking the train (reserveTrain) instead of the plane
(if the total cost is less than 100).

5 Concluding remarks

We propose to model business domains and users’ requests via numeric con-
straints. Pivotal properties of the encoding are its dealing with nondeterministic
actions, its being unbounded, its capability of representing the possible execu-
tions of domain actions; these are relevant features in a web service enabled
marketplaces, and make the encoding a major improvement with respect to [2].
In particular, here we deal with numeric requests without encoding them into
Boolean properties. Moreover, we also handle users’ preference requests. A num-
ber of issues remain open. Most notably, we have not yet assessed the efficiency
of the proposed algorithms with respect to the minimality of the encoding. We
have not considered the framework in the context of interleaving planning and
execution, nor with respect to run-time information gathering. The last is a
crucial issue in a web service scenario. However, we have preliminary results in
extending the presented work in this direction.

Acknowledgments: R. Gennari is supported by the project grant Automated
Reasoning by Constraint Satisfaction from the Province of Trento.

References

1. A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web service com-
positions as constraints. Technical Report DIT-05-40, Univ. of Trento, 2005.
http://www.dit.unitn.it/∼aiellom/publications/DIT-05-40.pdf.

2. A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring the execution
of web service requests. Journal on Digital Libraries, 2005. To appear.


