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Abstract. Modal and modal-like formalisms such as temporal or de-
scription logics go beyond propositional logic by introducing operators
that allow for a guarded form of quantification over states or paths of
transition systems. Thus, they are more expressive than propositional
logic, yet computationally better behaved than first-order logic. We pro-
pose constraint-based methods to model and solve modal satisfiability
problems. We model the satisfiability of basic modal formulas via ap-
propriate sets of finite constraint satisfaction problems, and then resolve
these via constraint solvers. The domains of the constraint satisfaction
problems contain other values than just the Boolean 0 or 1; for these val-
ues, we create specialised constraints that help us steer the decision pro-
cedure and so keep the modal search tree as small as possible. We show
experimentally that this constraint modelling gives us a better control
over the decision procedure than existing SAT-based models.

1 Introduction

In many areas of artificial intelligence and computer science, trees, graphs, tran-
sition systems, and other types of relational structures provide the natural math-
ematical means to model evolving systems or to encode information about such
systems. One may have to deal with such structures for a variety of reasons,
e.g., to evaluate queries, to check requirements, or to make implicit informa-
tion explicit. Modal and modal-like logics such as temporal logic and description
logic [6] provide a convenient and computationally well-behaved formalism in
which such reasoning may be represented [12].

Driven by the increased computational usage and usefulness of modal and
modal-like logics, the past decade has seen a wide range of initiatives aimed
at developing, refining, and optimising algorithms for solving the satisfiability
problem of basic modal logic. This has resulted in a series of implementations.
Some of these implement special purpose algorithms for modal logic, while others
exploit existing tools or provers for either first-order logic or propositional logic
through some encoding. In this paper we follow the second approach: we put
forward a proposal to model and solve the modal satisfiability problem as a set
of constraint satisfaction problems.

Specifically, we stratify a modal satisfiability problem, which is PSPACE-
complete, into layers of “simpler” constraint satisfaction problems, which are



NP-complete. On top of this, we add a refinement that exploits the restricted
syntactic nature of modal problems, and that enables us to make efficient use
of existing constraint solvers to decide modal satisfiability. Using the constraint
logic programming system ECLiPSe [27], we inherit for free all the solvers for fi-
nite constraint satisfaction problems (e.g., generalised arc-consistency plus back-
tracking) and primitive constraints (e.g., at most one) already implemented in
ECLiPSe; hence we can run them“as is”on top of our modelling to decide modal
satisfiability. While we cannot yet fully compete with today’s highly optimised
modal provers, our experimental evaluations suggest that the approach is very
promising in general, and even excellent in some cases.

The main contributions of our work derive from our modelling of modal sat-
isfiability problems: modal formulas are translated into layers of finite constraint
problems that have domains with possibly further values than the Boolean 0 or
1 (see Section 4), together with appropriate constraints to reason about these
values (see Section 5). As amply shown and discussed in Sections 5 and 6 below,
our modelling has a number of benefits over existing encodings of modal formu-
las into sets of propositions. For instance, the extended domains together with
appropriate constraints give us a better control over the modal search procedure:
they allow us to set strategies on the variables to split on in the constraint solver
in a compact manner. In particular, by means of appropriate constraints and
heuristics for our model, we can obtain partial Boolean assignments instead of
total assignments; see Subsection 5.2.

The rest of the paper is organized as follows. After having provided back-
ground material concerning the motivation of the work reported here and work
related to ours in Section 2, we lay the propositional groundwork in Section 3. We
turn to modal matters in Section 4. The main contributions of this paper start
in Section 5, which presents our constraint model. Then in Section 6, we report
on an experimental assessment on a benchmark test set used in the TANCS ’98
comparison of provers for modal logic. We conclude in Section 7.

2 Background

In this section we address two aspects of our work. First, we provide some mo-
tivations for studying the satisfiability problem for modal and modal-like logic.
And second, we relate our approach to existing work in the literature.

Motivations. We have a broad view of what modal logic is. On this view, modal
logic encompasses such formalisms as temporal logic, description logic, feature
logic, dynamic logic. . . While originating from philosophy, for the past three
decades the main innovations in the area of modal logic have come from com-
puter science and artificial intelligence. The modern, computationally motivated
view of modal logic is one that takes modal logics to be expressive, yet com-
putationally well-behaved fragments of first-order or second-order logic. Other
computer science influences on modal logic include the introduction of many new
formalisms, new algorithms for deciding reasoning tasks, and, overall, a strong



focus on the interplay between expressive power and computational complexity.
We now give examples of modern computational uses of modal-like logics.

We start with a brief look at the use of modal-like logics in the area of
formal specification and verification; see [18] for a comprehensive introduction.
Requirements such as“the system is always dead-lock free”or“the system even-

tually waits for a signal”can be compactly expressed in the basic modal logic by
augmenting propositional logic with two operators: 2 for the guarded universal
quantifier over states (commonly read as always, meaning “in all the reachable
states”), and 3 for its existential counterpart (commonly read as eventually,
meaning “in some reachable state”). Formalising “the system is dead-lock free”
with the proposition s free and “the system waits for a signal” with s wait , the
above two requirements correspond to the modal formulas 2s free and 3s wait ,
respectively.

So-called multi-modal logics are popular in the agent-based community (e.g.,
see [24]); here, each agent is endowed with beliefs and knowledge, and with
goals that it needs to meet. The beliefs and knowledge can be expressed by
means of multi-modal operators: 2

b
A for “agent A believes” and 3

b
B for “agent

B disbelieves”; 2
k
B for “agent B knows” and 3

k
A for “agent A ignores”. More

complex modal formulas involving until operators or path quantifiers are used
to reason about agents’ plans, in particular to express and verify specifications
on plans (see, e.g., [5]) or extended goals (see, e.g., [23]).

Description logics are a family of modal-like logics that are used to repre-
sent knowledge in a highly structured manner [3], using (mostly) unary and
binary relations on a domain of objects. Knowledge is organized in terminolog-
ical information (capturing definitions and structural aspects of the relations)
and assertional information (capturing facts about objects in the domain being
modelled). For instance, an object satisfies 3RA if it is R-related to some object
satisfying A. In the area of description logic, a wide range of algorithms has been
developed for a wide variety of reasoning tasks.

While there are many more areas where modal-like logics are currently being
used, including semi-structured data [19], game theory [13], or mobile systems [7],
due to space limitations we have to omit further details. What all of these com-
putational applications of modal-like logics have in common is that they use
relational structures of one kind or another to model a problem or domain of
interest, and that a modal-like logic is used to reason about these structures.
Moreover, for many of the above applications, modal satisfiability checking is the
appropriate reasoning task: given a modal formula, is there a model on which
this formula can be satisfied? In this paper we propose a new, constraint-based
method for checking modal satisfiability.

Related work. The past decade has seen a wide range of initiatives aimed at
developing, refining, and optimising algorithms for solving the satisfiability prob-
lem of basic modal logic. Some of these implement special purpose algorithms for
modal logic, such as DLP [22], FaCT [15], RACER [11], ∗SAT [25], while others exploit
existing tools or provers for either first-order logic (MSPASS [20]) or propositional
logic (KSAT [10], KBDD [21]) through some encoding. In this paper we follow the



second approach: we propose to model and solve modal satisfiability problems
as constraint problems.

The starting-points of our work are [10] and [2]. In [10], modal formulas are
modelled and solved as sets of propositions (i.e., Boolean formulas) stratified into
layers; the propositions are processed starting from the top layer in a depth-first
left-most manner.

But we add a refinement that builds on ideas due to [2]. In [2] a refinement
of an existing encoding of modal formulas into first-order formulas was intro-
duced. This refinement enables one to re-use existing first-order theorem provers
for deciding modal satisfiability, and, at the same time, to ‘inform’ the prover
about the restricted syntactic nature of first-order translations of modal formu-
las, which resulted in a significant improvement in performance. We build on
this intuition: we improve on the modelling of modal formulas in [10] so as to be
able to make efficient use of existing constraint solvers to decide modal satisfia-
bility. Specifically, modal formulas are translated into layers of finite constraint
satisfaction problems that have domains with possibly further values than the
Boolean 0 or 1, together with appropriate constraints to reason about these
values. The well-known DPLL algorithm can also return partial Boolean assign-
ments for propositions. But, in this respect, there are two key add-ons of our
modelling. First, the use of extended domains and constraints allow us more
control over the partial assignments to be returned by the adopted constraint
solver than unit propagation allows for in DPLL. And second, we can run any
constraint solver on top of our modelling to obtain partial assignments, i.e., it is
by modelling that we obtain partial assignments, and not by modifying existing
constraint solvers nor by choosing a specific solver to do so such as DPLL.

3 Propositions as Finite Constraint Problems

Constraint satisfaction problems. We begin with constraint satisfaction
terminology. Consider a set X := {x1, . . . , xn} of n variables, and assume that
X is ordered by ≺; a scheme of X is a sequence s : x1, . . . , xm of variables in X ,
where xj−1 ≺ xj for each j = 2, . . . ,m. Associate one set Di with each variable
xi ∈ X ; then Di is the domain of xi; let D be the set of all such domain and
variable pairs 〈Di, xi〉. Given a scheme s := x1, . . . , xm, a relation C(s) on the
Cartesian product

∏m

j=1
Dj is a constraint on s; let C be a set of constraint and

scheme pairs 〈C(s), s〉 on X . Then 〈X,D,C〉 is a constraint satisfaction problem
(CSP). A CSP is finite if allDi in D are so. A tuple d ∈ D1×· · ·×Dn is consistent
or satisfies a constraint C(s) if the projection of d on s, denoted by Πs(d), is
in C(s); if d satisfies all the constraints of the CSP P , then P is a consistent
or satisfiable CSP. The projection of a constraint C(t) over a subscheme s of t
is denoted by Πs(C(t)). Finally, a total assignment for a CSP 〈X,D,C〉 is a
function µ : X 7→

⋃n
i=1

Di that maps each xi ∈ X to a value in the domain Di

of xi; µ satisfies the CSP if the tuple (µ(x1), . . . , µ(xn)) does so.

Propositions. When a Boolean-valued assignment µ satisfies a propositional
formula φ, we write µ |= φ. We write CNF (φ) for the result of ordering the



propositional variables in φ and transforming φ into a conjunctive normal form:
i.e., a conjunction of disjunctions of literals without repeated occurrences; a
clause of ψ is a conjunct of CNF (ψ).

From propositions to CSPs. It is not difficult to transform a propositional
formula into a CSP so that this is satisfiable iff the formula is: first the formula is
transformed to its CNF; then each resulting clause is considered as a constraint.
E.g., the CNF formula

(¬x ∨ y ∨ z) ∧ (x ∨ ¬y) (1)

is the CSP with variables x, y and z, domains equal to {0, 1}, and two constraints:
C(x, y, z) for ¬x∨ y ∨ z, that forbids the assignment {x 7→ 1, y 7→ 0, z 7→ 0}; and
the constraint C(x, y) for x ∨ ¬y to rule out the assignment {x 7→ 0, y 7→ 1}.
In [28] the encoding in (1) is used to prove that a version of forward checking
performs more inferences than the basic DP procedure for deciding propositional
satisfiability.

However, a constraint solver returns a total assignment given the modelling
of formulas as CSPs above, while we aim at partial Boolean assignments. For
example, a partial assignment of only two variables suffices to satisfy the formula
in (1), such as {x 7→ 1, z 7→ 1}. How do we get such without modifying the
underlying constraint solver? One way is to encode the propositional formula
into a CSP with values other than 0 and 1. The additional values are then used
to mark variables that the solver does not need to satisfy (yet). Let us give a
precise definition of this new encoding. We assume an implicit total order on the
variables in the considered propositions; so, we identify formulas that only differ
in the order of occurrence of their atoms, such as y ∨ x and x ∨ y.

Definition 1. Given a propositional formula ψ, CSP(ψ) is the CSP associated
with ψ defined as follows:

1. construct ψ′ := CNF (ψ) and let X be the ordered set of propositional vari-
ables occurring in ψ′;

2. create a domain Di := {0, 1, u} for each xi in X ;
3. for each clause θ in ψ′, there is a constraint Cθ on the scheme s := x1, . . . , xm

of all the variables of θ; a tuple d := (d1, . . . , dm) in
∏m

j=1
Dj satisfies Cθ iff

there is a non-empty subscheme s′ := xi1 , . . . , xin
of s such that dik

∈ {0, 1}
for all k = 1 . . . n and d′ := Πs′(d) satisfies Πs′(Cθ).

In Definition 1, we do not give any details on how constraints are represented
and implemented; this is done on purpose, since these are not necessary for our
theoretical results concerning the modal satisfiability solver. Nevertheless, some
modelling choices and implementation details are discussed in Section 5 below.

Our modelling of propositional formulas as in Definition 1 allows us to make
any complete solver for finite CSPs return a partial Boolean assignment that
satisfies a propositional formula ψ iff ψ is satisfiable. To prove this, we need
some notational shorthands. Given CSP(ψ) on X as in Definition 1 above, let



µ be a total assignment for CSP(ψ), and X |Bool the subset of all xi ∈ X for
which µ(xi) ∈ {0, 1}. Then the restriction of µ to X |Bool is denoted by µ|Bool :
i.e., µ|Bool : X |Bool 7→ {0, 1} and µ|Bool(xi) = µ(xi) for each xi ∈ X |Bool .

Theorem 1. Consider a propositional formula ψ and let X be its ordered set of
variables.

1. a total assignment µ for CSP(ψ) satisfies CSP(ψ) iff µ|Bool satisfies ψ;
2. ψ is satisfiable iff a complete constraint solver for finite CSPs returns a total

assignment µ for CSP(ψ) such that µ|Bool satisfies ψ.

Proof. First notice that a proposition and its CNF are equivalent; in particular,
a Boolean assignment satisfies the one iff it satisfies the other. Then item 1
follows from this, Definition 1 and a property of CNF formulas: a partial Boolean
assignment µ satisfies CNF (ψ) iff, for each clause φ of CNF (ψ), µ assigns 1 to
at least one positive literal in φ, or 0 to at least one negative literal in φ. Item
2 follows from the former. •

Note 1. It is sufficient that each domain Di of CSP(ψ) contains the Boolean
values 0 and 1 for the above result to hold. Thus, one could have values other
than u (and 0 and 1) in the CSP modelling to mark some variables with different
“levels of importance” for deciding the satisfiability of a propositional formula.
However, our choice as in Definition 1 will suffice for the purposes in this paper.

4 Modal Formulas as Layers of Constraint Problems

In this section we recall the basics of modal logic and provide a link between
solving modal satisfiability and CSPs.

4.1 Modal Formulas as Layers of Propositions

We refer to [6] for extensive details on modal logic. To simplify matters, we will
focus on the basic mono-modal logic K, even though our results can easily be
generalized to a multi-modal version.

Modal formulas. K-formulas are defined as follows. Let P be a finite set of
propositional variables. Then K-formulas over P are produced by the rule

φ ::= p | ¬φ | φ ∧ φ | 2φ

where p ∈ P . The formula 3p abbreviates ¬2¬p, and the other Boolean con-
nectives are explained in terms of ¬,∧ as usual. For instance, all of p, q, p ∨ q,
2(p∨2q) ∧32p are K-formulas over {p, q}. A formula of the form 2φ is called
a box formula.

Note 2. Here and in the remainder, we always assume that P is implicitly or-
dered to avoid modal formulas only differing in the order of their propositional
variables; also, standard propositional simplifications such as the removal of dou-
ble occurrences of ¬ are implicitly performed on modal formulas.



Modal layers and propositional approximations. The satisfiability pro-
cedure for K-formulas in this paper (see Subsection 4.2 below) revolves around
two main ideas:

– the stratification of a modal formula into layers of formulas of decreasing
“modal depth”;

– the “approximation” and resolution of such formulas as propositions.

Let us make those ideas more precise, starting with the former. The “modal
depth” of a formula counts its maximum number of nested boxes, that is it
measures “how deeply” we can descend into the formula by peeling off nested
boxes. Formally, the modal depth of φ, denoted by md(φ), is defined as follows:

md(p) := 0 md(2φ) := md(φ) + 1
md(¬φ) := md(φ, i) md(φ1 ∧ φ2) := max {md(φ1),md(φ2)}.

For instance, consider φ = 2p ∨ ¬q which intuitively means that “always p or
q fails.” Then md(q, φ) = 0, md(2p) = md(p) + 1 = 1, hence md(φ) = 1; in
other words, the maximum number of nested boxes we can peel off from φ is
1. Testing if a modal formula is satisfiable involves stratifying it into layers of
subformulas (or Boolean combinations of these) of decreasing modal depth. At
each such layer, modal formulas get “approximated” and solved as propositions.
Formally, given a modal formula φ, the propositional approximation of φ, denoted
by Prop(φ), is the proposition inductively defined as follows:

Prop(p) := p Prop(2φ) := xi[2φ]
Prop(¬φ) := ¬Prop(φ) Prop(φ1 ∧ φ2) := Prop(φ1) ∧ Prop(φ2).

We denote here by xi[2φ] a fresh propositional variable that is associated with
one occurrence of 2φ. Note that in this way different occurrences of 2φ are
distinguished by introducing different new variables. For instance: the modal
formula φ = p ∧ 2q ∨ ¬2q is approximated by the proposition Prop(φ) = p ∧
x1[2q] ∨ ¬x2[2q]. The variables of φ are {p, q, r}, while Prop(φ) is over the
variables {p, x1[2q], x2[2q]}.

Now that the ideas of modal depth and approximation of modal formulas as
propositions are made precise, we can put them to work in the K-satisfiability
procedure below.

4.2 K-satisfiability and the General k sat Schema

In Figure 1 below, we formalise K-satisfiability and present the general algorithm
schema k sat , on which KSAT [10] is based, for deciding the satisfiability of K-
formulas.

K-satisfiability. At this point we have to make a choice between a more “stan-
dard” characterisation of the semantics of K-formulas or another that is closer
to the semantics of the solving algorithm. Here we choose for the latter which
allows us to arrive more quickly and concisely at the matters of this paper.



k sat(φ) // succeeds if φ is satisfiable

µ := sat(Prop(ψ)) // create a choice point
Θ :=

∧
{θ : if x[2θ] 7→ 1 is in µ}

for each x[2λ] 7→ 0 in µ do
k sat (Θ ∧ ¬λ) // backtrack if this fails

sat(φ) // if φ is propositionally satisfiable, then return a Boolean

// assignment; return alternatives on backtracking

Fig. 1. The k sat algorithm schema.

Definition 2. The K-formula φ is K-satisfiable iff there is a Boolean assignment
µ that satisfies Prop(φ), and for every 2λ with µ(x[2λ]) = 0, the K-formula

¬λ ∧
∧

{θ : µ(x[2θ]) = 1}

is K-satisfiable.

Algorithm schema. In the k sat schema, the sat procedure determines the
satisfiability of the propositional approximation of φ by returning a Boolean
assignment µ as in Definition 2. Alternative satisfying assignments are generated
upon backtracking. If there is no alternative assignment, then this call to k sat
fails and backtracking takes place, except on the input formula where “formula is
unsatisfiable” is reported. In this manner, the modal search space gets stratified
into modal formulas of decreasing modal depth and explored in a depth-first
manner. A variable of the form x[2λ] to which µ assigns 0 means that we must
“remove the box”and check λ against all the formulas θ that come with variables
of the form x[2θ] to which µ assigns 1; precisely one proposition is so created
and tested satisfiable.

Theorem 2. In the k sat algorithm schema in Figure 1, if sat is a complete
solver for Boolean formulas, then k sat is a decision procedure for K-satisfiability.

Proof. The characterisation of K-satisfiability in Definition 2 is responsible for
the correctness and completeness of k sat ; this terminates since the modal depth
and the number of propositional variables of a modal formula are bounded. •

4.3 The KCSP Algorithm

We now devise a modal decision procedure based on the k sat schema, but with
a constraint solver as the underlying propositional solver sat . We first provide
the reader with an example, and then formalise the procedure.



Example 1. Consider the following modal formula

φ = ¬2(p ∨ ⊥) ∧ (2r ∨ 2p),

which intuitively means “it is never that p fails or that false holds, and it is
always r or it is always p”. Approximating φ as the proposition Prop(φ), the
following CSP is obtained:

(a) three variables: x[2(p ∨ ⊥)]; x[2r]; x[2p];
(b) three domains, all equal to {0, 1, u};
(c) two constraints: the one for 2(p∨⊥) that forces the assignment 0 to x[2p∨⊥];

the other for (2r ∨ 2p) that requires 1 to be assigned to x[2r] or x[2p].

Assigning the value u to a variable means not committing to any decision con-
cerning its Boolean values, 0 and 1. The above CSP is given to the constraint
solver, and this may return the assignment

µ = {x[2(p ∨ ⊥)] 7→ 0, x[2r] 7→ u, x[2p] 7→ 1}.

Then, for all the variables x[2 . . .] to which µ assigns 1 (in this case only x[2p]),
the formulas within the scope of 2 are joined in a conjunction Φ, in this case

Φ := p. (UT)

Then all the box variables to which µ assigns 0 are considered, in this case only
x[2(p∨⊥)]; thus p∨⊥ gets negated, simplified (translated in CNF when needed)
and the result is the formula

Θ := ¬p. (ET)

The conjunction Φ ∧ Θ is given to the sat solver; in this case, the clause that is
passed on is p ∧ ¬p. This is translated into a new CSP and its inconsistency is
determined. On subsequent backtracking, we may obtain µ′ instead of the above
assignment µ:

µ′ = {x[2(p ∨ ⊥)] 7→ 0, x[2r] 7→ 1, x[2p] 7→ u}.

The new (UT) Φ := r is created; the satisfiability of ¬p ∧ r is determined, and
thus that of φ. •

Notice the key points about (UT) and (ET): we only consider the box vari-
ables x[2 . . .] to which a Boolean value, 0 or 1, is assigned. The box variables to
which u is assigned are disregarded, safely so because of Theorem 1. As we will
see below (Section 5), the availability of values other than 0 and 1 has a number
of advantages.

As the above example illustrates, we first approximate φ as a proposition
and then translate this into a CSP. Recall from Definition 1 how the CSP of a
proposition φ is obtained: CSP(φ) is the CSP with domains containing another
value than the Boolean 0 and 1.



Definition 3. The KCSP algorithm is defined as follows. In the k sat schema
we instantiate the sat function with a complete solver for finite CSPs and we
preprocess φ into CSP(Prop(φ)) before passing it on to the constraint solver.

Theorems 1 and 2 yield the following result concerning KCSP as in Definition 3.

Corollary 1. KCSP is a decision procedure for K-satisfiability. •

In particular, notice again that modelling Prop(φ) as a CSP with an additional
non-Boolean value allows us to instantiate sat to any constraint solver in KCSP

and still obtain partial Boolean assignments.

5 Constraint-Based Modelling

In this section we discuss the constraints into which we translate a modal for-
mula. We begin with a base modelling, and proceed to an improved modelling
that possesses some desirable properties.

5.1 A Base Modelling

The input to KCSP is a formula in conjunctive normal form (CNF). Hence we
translate a formula into a CSP clause-wise, each clause contributing one con-
straint (see Definition 3 above).

Aspect 1: clauses as constraints. For modelling a clause as a constraint, we
distinguish four disjoint sets of variables: propositional variables and variables
representing box formulas, and both subdivided according to polarity. We denote
these sets P+, P−, B+, B−, respectively. This means a clause can be written as

∨
{ p : p ∈ P+} ∨

∨
{ ¬p : p ∈ P−} ∨∨

{ x[2φ] : x[2φ] ∈ B+} ∨
∨
{ ¬x[2φ] : x[2φ] ∈ B−}

This clause is viewed as a constraint on variables in the four sets:

clause constraint(P+,P−,B+,B−).

It holds if at least one variable in the set P+ ∪ B+ is assigned a 1 or one
in P− ∪ B− is assigned a 0 — see Definition 1 above. We explain now this
constraint in terms of the primitive constraint at least one, which is defined on
a set of variables and parametrised by a constant, and which requires the latter
to occur in the variable set. This, or a closely related constraint, is available in
many constraint programming languages. The constraint library of ECLiPSe [27]
contains a predefined constraint with the meaning of at most one, which can be
employed to imitate at least one. We reformulate the clause constraint as the
disjunction

at least one(P+ ∪B+, 1) ∨ at least one(P− ∪ B−, 0).



Aspect 2: disjunctions as conjunctions. Propagating disjunctive constraints
is generally difficult for constraint solvers. Therefore it is preferable to avoid them
when modelling; and in our situation we can do so elegantly. The disjunction is
transformed into a conjunction with the help of a single auxiliary link variable
` ∈ {0, 1}. We obtain

at least one(P+ ∪ B+ ∪ {`}, 1) ∧ at least one(P− ∪ B− ∪ {`}, 0).

The link variable ` selects implicitly which of the two constraints must hold.
For example, observe that ` = 0 selects the constraint on the left. It forces
at least one(P+ ∪B+, 1) and satisfies at least one(P− ∪B−∪{0}, 0). It is useful
to remark the following fact.

Fact 1 A conjunctive constraint built from two conjuncts that share at most one
variable is generalised arc-consistent if its two constituent constraints are. •

In our case the two conjuncts share no variables except `.

5.2 A More Advanced Modelling

In our advanced modelling we add on additional features to the base modelling;
those features are meant to address a number of aspects of the base modelling.

Aspect 3: partial assignments by constraints. While any solution of the
CSP induced by a formula at some layer satisfies the formula at that layer, it is
useful to obtain satisfying, partial Boolean assignments that mark as irrelevant
as many box formulas in this layer as possible. This will cause fewer subformulas
to enter the propositions generated for the subsequent layer. In our model, we
employ the extra value u to mark irrelevance. In such a CSP, consider a clause
constraint c on propositional variables P = P+ ∪ P− and variables representing
box formulas B = B+ ∪ B−. By definition, the variables in B are constrained
only by c. Given this and Theorem 1, we can conclude the following:

Fact 2 Suppose µ is a partial assignment that can be extended to a total assign-
ment satisfying the CSP. Suppose µ is not on the variables P ∪ B.

– The assignment µ ∪ {p 7→ 1} ∪ {x[2φ] 7→ u : x[2φ] ∈ B}, where p ∈ P+,
satisfies c and can be extended to a total assignment satisfying the CSP. An
analogous result holds for p ∈ P−.

– The assignment µ ∪ {x[2ψ] 7→ 1} ∪ {x[2φ] 7→ u : x[2φ] ∈ B − {x[2ψ]}},
where x[2ψ] ∈ B+, satisfies c and can be extended to a total assignment
satisfying the CSP. Again, an analogous result holds for x[2ψ] ∈ B−. •

In other words, if satisfying the propositional part of a clause suffices to satisfy
the whole clause, then all box formulas in it can be marked irrelevant. Otherwise,
all box formulas except one can be marked irrelevant.

Let us transfer this idea into a clause constraint model. First, we rewrite the
base model so as to



– separate the groups of variables (in propositional and box variables),
– and convert the resulting disjunctions into conjunctions, again with the help

of extra linking variables.

Next, we replace the at least one constraint for variables representing box for-
mulas by an exactly one constraint. This simple constraint is commonly available
as well. ECLiPSe offers the more general occurrences constraint, which forces a
certain number of variables in a set to be assigned to a specific value. We obtain

at least one(P+ ∪ {`+P}, 1) ∧ exactly one(B+ ∪ {`+B}, 1) ∧

at least one(P− ∪ {`−P }, 0) ∧ exactly one(B− ∪ {`−B}, 0).

The variable domains are: P+, P− ∈ {0, 1}, B+ ∈ {1, u}, B− ∈ {0, u}. The
essential four linking variables are constrained as in the following formula, or
the equivalent table.

( `+P = 1 ∧ `−P = 0 ) ↔ ( `−B = u ∨ `+B = u )

∧

`+B = 1 ∨ `−B = 0

`+P `−P `+B `−B
1 0 1 u

1 0 u 0
0 1 1 0
0 0 1 0
1 1 1 0

Observe that the 5 tuples in the table correspond to the situations that we wish
to permit — the clause is satisfied by either a positive or a negative box formula
(but not both at the same time) or a positive or a negative propositional variable
(maybe both at the same time).

ECLiPSe accepts the linking constraint in propositional form, and rewrites
it internally into several arithmetic constraints. Alternative methods operate on
the defining table. For our implementation we compiled it into a set of domain
reduction rules, which can be executed efficiently [1]. This proved to be the
fastest way of propagating this constraint among several methods we tested.
We found that this linking constraint, among all constraints, is the one whose
propagation is executed most often, hence propagating it efficiently is relevant.

Aspect 4: a negated-CNF constraint. Except for the initial input formula
to KCSP which is in conjunctive normal form, the input to an intermediate call
to the sat function of KCSP (see the algorithm in Figure 1) has the form Θ ∧¬λ
where both Θ and λ are in CNF. A naive transformation of ¬λ into CNF will
result in an exponential increase in the size of the formula. We deal with this
problem by treating ¬λ as a constraint. Then the following holds.

Fact 3 The constraint ¬λ is satisfiable iff λ (which is a conjunction of clauses)
has at least one unsatisfiable clause. •

We formulate the constraint corresponding to ¬λ consequently as a disjunction
of constraints, each standing for a negated clause. The disjunction is converted



into a conjunction with a set L of linking variables, one for each disjunct. The
`i ∈ L have the domain {0, 1}, where `i = 1 means that the i-th disjunct holds —
that is, the i-th clause in λ is unsatisfied. Instead of imposing at least one(L, 1)
to select one disjunct, however, we require exactly one(L, 1), in line with our goal
of obtaining small partial Boolean assignments. In irrelevant disjuncts/clauses
(`i = 0) we force the box formulas to u. The definition for the constraint corre-
sponding to a negated clause on sets of variables P+, P−, B+, B−, together with
the linking variable `, is

` = 1 ↔ ( ∀b ∈ B+. b = 0 ∧ ∀b ∈ B−. b = 1 )

∧

` = 1 → ( ∀p ∈ P+. p = 0 ∧ ∀p ∈ P−. p = 1 )

∧

` = 0 ↔ ( ∀b ∈ B+. b = u ∧ ∀b ∈ B−. b = u ).

There is no need to constrain the propositional variables in a clause that is not
selected by ` = 1. Therefore, the propositional variables in P+, P− occur here
less often than the variables in B+, B− which represent box formulas.

In KCSP, the propagation of this constraint is implemented as a user-defined
constraint in the constraint library of ECLiPSe, and achieves generalised arc-
consistency.

Aspect 5: a constraint for factoring. In our base model, we have treated
and constrained each occurrence of a box formula as a distinct propositional
variable. For instance, the two occurrences of 2p in the formula 2p∧¬2p would
be treated as two distinct propositional variables in our base model. We consider
here the case that a box formula occurs several times, in several clauses, in any
polarity. We then prevent assigning conflicting values to different occurrences.

Let us collect in B2φ all variables xi[2φ] representing the formula 2φ in the
entire CSP. We state as a constraint on these variables that

∀x1, x2 ∈ B2φ. ¬ ( x1 = 1 ∧ x2 = 0 ∨ x1 = 0 ∧ x2 = 1 ).

To see the effect, suppose there is a pair x1, x2 ∈ B2φ with x1 7→ 0, x2 7→ 1 in
a solution to the CSP without this factoring constraint. This means we obtain
both 2φ 7→ 0 and 2φ 7→ 1 in the assignment returned, which in turn results in an
unsatisfiable proposition being generated. The factoring constraint detects such
failures earlier. Notice that the straightforward modelling idea, namely using one
unique variable for representing a box formula in all clauses, clashes with the
assumption made for the other partial-assignment constraints, i.e. that each box
formula variable is unique.

6 Experimental Assessment

Theoretical studies often do not provide sufficient information about the ef-
fectiveness and behaviour of complex systems such as satisfiability solvers and



their optimisations. Empirical evaluations must then be used. In this section we
provide an experimental comparison of our advanced modelling (Section 5.2)
against the base model (Section 5.1), using a test developed by Heuerding and
Schwendimann [14].

We will find that, no matter what other models and search strategies we
commit to, we always get the best results by using constraints for partial assign-
ments as in Subsection 5.2, Aspect 3. In the remainder of this paper, these are
referred to as the assignment-minimising constraints or simply as the minimis-
ing constraints. As we will see below, these minimising constraints allows us to
better direct the modal search procedure.

We conclude this section by comparing the version of KCSP that features the
advanced modelling (Section 5.2) with KSAT. The constraint solver that we use
as the sat function in KCSP is based on search with chronological backtrack-
ing and constraint propagation. The propagation algorithms are specialised for
their respective constraints and enforce generalised arc-consistency on them, as
discussed in Section 5 above.

6.1 Test Environment

State of the art. In the area of propositional satisfiability checking there is
a large and rapidly expanding body of experimental knowledge; see, e.g., [9].
In contrast, empirical aspects of modal satisfiability checking have only recently
drawn the attention of researchers. We now have a number of test sets, some of
which have been evaluated extensively [4,14,10,17,16]. In addition, we also have
a clear set of guidelines for performing empirical testing in the setting of modal
logic [14,16]. Currently, there are three main test methodologies for modal sat-
isfiability solvers, one based on hand-crafted formulas, the other two based on
randomly generating problems. To understand on what kinds of problems a par-
ticular prover does or does not do well, it helps to work with test formulas whose
meaning can (to some extent) be understood. For this reason we opted to carry
out our tests using the Heuerding and Schwendimann (HS) test set [14], which
was used at the TANCS ’98 comparison of systems for non-classical logics [26].

The HS test set. The HS test set consists
of several classes of formulas for K, and other
modal logics we do not consider here; e.g., some
problem classes for K are based on the pigeon-hole
principle (ph) and a two-colouring problem on
polygons (poly). Each class is generated from a
parametrised logical formula. This formula is either
a K-theorem, that is provable, or only K-satisfiable,
that is non-provable; consequently the generated
class only contains either provable formulas or
non-provable formulas, and is labelled accordingly.
The table at the right lists all such classes for K.

provable non-provable
branch p branch n
d4 p d4 n
dum p dum n
grz p grz n
lin p lin n
path p path n
ph p ph n
poly p poly n
t4 p t4 n



Some of these parametrised formulas are made harder by hiding their structure
or adding extra pieces. The parameters allow for the creation of modal formulas,
in the same class, of differing difficulty. The idea behind the parameter is that
the difficulty of proving formulas in the same class should be exponential in the
parameter. This kind of increase in difficulty will make differences in the speed
of the machines used to run the benchmarks relatively insignificant.

Benchmark methodology. The benchmark methodology is to test formulas
from each class, starting with the easiest instance, until the provability status of
a formula can not be correctly determined within 100 CPU seconds. The result
from this class will then be the parameter of the largest formula that can be
solved within this time limit. The parameter ranges from 1 to 21.

6.2 Implementation

Let us turn to details of our implementation of the KCSP algorithm. We used the
constraint logic programming system ECLiPSe [27]. The HS formulas are first
negated, reduced in CNF and then translated into the format of KCSP.

We add the following heuristics to KCSP with minimising constraints (in an
attempt) to reduce the depth of the KCSP search tree: the value u is preferred for
box formulas, and among them for positively occurring ones. Furthermore, the
instantiation ordering of box formulas is along the increasing number of nested
boxes in them: e.g., x[2p] is instantiated before x[22p].

6.3 Assessment

In this subsection we provide an assessment of the contributions made by the
various “aspects” provided by our advanced modelling.

Aspect 3: partial assignments by constraints. Do minimising constraints
make a difference in practice? To address this question, here we focus on the
so-called branch formulas in the HS test set. It is worth noticing the relevance of
branch n for automated modal theorem proving: the class of non-provable branch
formulas, branch n, is recognized as the hardest class of “truly modal formulas”
for today’s modal theorem provers, cf. [16]. These are the so-called Halpern and
Moses branching formulas that “have an exponentially large counter-model but
no disjunction [. . . ] and systems that will try to store the entire model at once
will find these formulae even more difficult” [16].

Figure 2 plots the run times of KCSP (with and without minimising con-
straints) on branch formulas. Clearly, minimising constraints do make differ-
ence. The superiority of KCSP with minimising constraints over KCSP with total
assignments is particularly evident in the case of branch formulas. KCSP with
minimising constraints manages to solve 13 instances of branch n and all 21 of
branch p (in less than 2 seconds), and without only 2 instances are solved, for
both flavours.



Why is it so? To understand the reasons for the superiority of KCSP with
minimising constraints, let us first consider what happens with branch p(3),
which KCSP with total assignments is already unable to solve (see Figure 2). In
KCSP with minimising constraints, there are two choices for box formulas at layer
0 (i.e., with the same modal depth as branch p(3)), and none at the subsequent
layers of modal formulas obtained by “peeling off” one box from branch p(3)
(see Subsection 4.1). This results in a modal search tree of exactly two branches.
Instead, with total assignments there are 6 extra box formulas at layer 0, which
implies an extra branching factor of 26 = 64 at the root of the modal search
tree only. All 6 box formulas will always be carried over to subsequent layers,
positively or negatively.
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Fig. 2. KCSP with (�) and without (♦) minimising constraints branch formulas.
(Left): CPU time for branchn (seconds, log scale); (Right): branchp (seconds,
log scale).

More in general, the superiority of KCSP with minimising constraints can be
explained as follows: the tree-like model that the solver (implicitly) attempts to
construct while trying to satisfy a formula is kept as small as possible by the
minimising constraints. In this sense, constraints allows us to direct the modal
search better than, for instance, unit propagation allows for in DPLL. We refer
the reader to Subsection 6.4 below for more on this point.

Notice also that the results of KCSPwith minimising constraints on the branch
class are competitive with the best optimized modal theorem provers ?SAT and
DLP on the this class.

Aspect 4: negated-CNF constraint. In all the HS formula classes, having
disjunctive constraints in place of CNF conversions increases the number of de-
cided formulas, or, at least, does not decrease it. Avoiding CNF conversion by
means of negated-CNF constraints may have a substantial effect, for example
in the case of ph n(4) — an instance of the pigeon-hole problem — which can
now be solved in a few seconds. In contrast, by requiring CNF conversion (even
with minimising constraints), ECLiPSe terminates the execution of KCSP pre-
emptively for lack of memory. Unfortunately, the CNF conversion still necessary



at the top level remains, and even prevents entering KCSP for formulas ph(k)
with k > 4.

Aspect 5: factoring constraint. This constraint avoids simple contradictory
occurrences of a formula in the subsequent layer. We remark that this consider-
ation of multiple occurrences of a subformula does not always provide a strictly
minimal number of box formulas with a Boolean value. Nevertheless, it proved
beneficial for formulas with the same variables hidden and repeated inside boxes.
In fact, it proved useful in all of the following cases: grz, d4, dum p, path p, t4p p.
In the remaining cases the contribution of factoring with constraints is insignif-
icant, except for path n where searching for candidate formulas to be factored
slightly slows down search.

Formula simplifications. As a preprocess to KCSP, the top-level input formula
may be simplified to a logically equivalent formula. We use standard simplifica-
tion rules for propositional formulas, at all layers, in a bottom-up fashion. Also,
in the same manner, the following modal equivalences are used in simplifying a
CNF formula: ¬2> ∧ ψ ↔ ⊥ ∧ ψ and its dual. Simplification in KCSP plays a
relevant role in the case of lin formulas. E.g., consider lin n(3): without simpli-
fications and minimising constraints, KCSP takes longer than 5 minutes to return
an answer; by adding simplifications and minimising constraints, KCSP takes less
than 0.4 seconds; besides, by also adding factoring, KCSP solves the most difficult
formula of lin n in 0.06 seconds, that of lin p in 0.01.

6.4 Results and a Comparison

In this part, we compare the performances of KSATC and KCSP on the HS test-set;
see Table 1 below. Each column in the table lists a formula class and the number
of the most difficult formula decided within 100 CPU seconds by each prover;
we write > when all 21 formulas in the test set are solved within this time slot.
We now explain the systems being compared in Table 1. The rows of the table
are explained as follows.

First row: KSATC. The results for KSATC (KSAT implemented in C++) are taken
from [16]; there, KSATC was run with the HS test set on a 350 MHz Pentium II
with 128 MB of main memory.

Second row: KCSP. We used KCSP with all advanced aspects considered: i.e.,
partial assignments by constraints; negated-CNF constraints; factoring constraints;
and formula simplifications. In the remainder, we refer to this as KCSP. The time
taken by the translator from the HS format into that of KCSP is insignificant,
the worst case among those in the comparison Table 1 taking less than 1 CPU
second; these timings are included in the table entries for KCSP. We ran our ex-
periments on a 1.2 GHz AMD Athlon Processor, with 512 MB RAM, under Red
Hat Linux 8 and ECLiPSe 5.5.



Third row: KCSP/speed. To account partially for the different platforms for
KSATC and KCSP, we scaled the measured times of KCSP by a factor 350/1200, the
ratio of the processor speeds. The results are given in the bottom line KCSP/speed,
and emphasized where different from KCSP.

branch d4 dum grz lin path ph poly t4p
n p n p n p n p n p n p n p n p n p

KSATC 8 8 5 8 > 11 > 17 3 > 8 4 5 5 12 13 18 10

KCSP 13 > 6 9 19 12 > 13 > > 11 4 4 4 16 10 7 10

KCSP/speed 11 > 6 8 17 11 > 10 > > 9 4 4 4 16 9 6 8

Table 1. The top two rows give the most difficult formula of each HS class de-
cided by KSATC and KCSP, respectively, in 100 CPU/s; > means that all formulas
in that class are decided. In the bottom row, KCSP/speed, the figures for KCSP are
obtained after scaling the measured times by the ratio of the processor speeds
of KSATC and KCSP.

Result analysis. Note, first of all, that KSATC is compiled C++ code while KCSP

is interpreted ECLiPSe (i.e., PROLOG); this makes it very interesting to see that
the performance of KCSP is often competitive with that of KSATC. There are some
interesting similarities and differences in performance between KSATC and KCSP.
For some classes, KCSP clearly outperforms KSATC, for some it is the other way
around, and for yet others the differences do not seem to be significant.

For instance, KCSP is superior in the case of lin and branch formulas. In par-
ticular, as pointed out in Subsection 6.3 above, branch n is the hardest “truly
modal test class” for the current modal provers, and KCSP with partial assign-
ments performs very well on this class. Now, KSATC features partial assignments,
just like KCSP does, in that its underlying propositional solver is DPLL. So, why
such differences in performance? The differences are due to our modelling and
the reasons for these can be explained as follows in more general terms:

– extended domains and constraints allows for more control over the partial
assignments to be returned by the adopted constraint solver than unit prop-
agation allows for in DPLL;

– constraints allow us to represent, in a very compact manner, certain re-
quirements such as that of reducing the number of box formulas to which a
Boolean value is assigned.

Consequently, the models that KCSP (implicitly) tries to generate when attempt-
ing to satisfy a formula remain very small. In particular, in the case of branch,
searching for partial assignments with minimising constraints yields other ben-
efits per se: the smaller the number of box formulas to which a Boolean value
is assigned at the current layer, the smaller the number of propositions in the
subsequent layer; in this manner fewer choice points and therefore fewer search
tree branches are created. Thereby adding constraints to limit the number of



box formulas to reason on, while still exploring the truly propositional search
space, seems to be a winning idea on the branch class.

In the cases of grz and t4, instead, KSATC is superior to KCSP. Notice that
KSATC features a number of optimisations for early modal pruning that are absent
in KCSP, and these are likely to be responsible for the better behaviour of KSATC
on these classes.

7 Finale

7.1 Looking Back

We described a constraint-based model for modal satisfiability. Thanks to this
model, we could embed modal reasoning cleanly into pre-existing constraint pro-
gramming systems, and directly make use of these to decide modal satisfiability.
In this paper, we adopted the constraint logic programming system ECLiPSe.

In our base-model for modal satisfiability, we have extended domains for box
formulas and appropriate constraints to reason about them; we also implemented
(Section 5) and experimentally compared (Section 6) KCSP with further mod-
elling constraints and heuristics for modal reasonings. In particular, KCSP with
minimising constraints results to be competitive with the best modal theorem
provers on the hardest “truly modal class” in the Heuerding and Schwendimann
test set, namely branch ; here, the addition of minimising constraints results
in a significant reduction of the size and especially the branching of the “the
tree-model” that our solver implicitly tries to construct for the input formula
(Subsections 6.3 and 6.4).

More in general, an important advantage of our constraint-based modelling
is that encoding optimisations (e.g., for factoring or partial assignments) can be
done very elegantly and in an “economical” manner: that is, it is sufficient to
add appropriate, compact constraints to obtain specific improvements (e.g., fac-
toring or minimising constraints). Besides compactness in the models, extended
domains and constraints allow for more control over the assignments to be re-
turned by constraint solvers than unit propagation allows for in DPLL, as amply
discussed in Subsection 6.4.

7.2 Looking Ahead

We conclude by elaborating on some open questions.

Modelling. Our current modelling of propositional formulas as finite CSPs can
perhaps be enhanced so as to completely avoid CNF conversions. This could be
achieved by (negated) clauses that may contain propositional formulas as well,
not just variables or box formulas. The factoring constraints for controlling 0/1/u
assignments to multiple occurrences of the same box formula are currently not
optimally restrictive. Integrating them better with the assignment-minimising
clause constraints can further reduce the modal spanning factor in certain situ-
ations. Also, we want to consider the literal modelling of propositions [28] and



compare it with the one presented in this paper on modal formulas; in the literal
modelling of φ, for each clause of Prop(φ) there is a variable domain containing
the literals of Prop(φ); binary constraints would then be imposed among those
domains that share a Prop(φ) variable of the form p or x[2φ]. One advantage of
this modelling is that partial Boolean assignments for Prop(φ) would come for
free, i.e., without the need of enlarging the domains with an u value; yet, the
control of the modal search procedure may require novel constraints.

Constraint algorithm. Simple chronological backtracking may not be the op-
timal choice for the problem at hand. Efficiency can be expected to increase by
remembering previously failed sub-propositions (nogood recording, intelligent
backtracking), and also successfully solved sub-problems (lemma caching).

Logic. Many-valued modal logics [8] allow for propositional variables to have
further values than the Boolean 0 and 1. Our approach to modal logics via
constraint satisfaction can be easily and naturally extended to deal with finitely-
valued modal logics.
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