
Virtual Knowledge Graphs for Data Integration

Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Department of Computing Science
Umeå University, Sweden

6th International Winter School on Big Data (BigDat 2020)

13–17 January 2020 – Ancona, Italy

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Typical view of Big Data

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (1/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

But data has a lot of structure

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (2/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Challenges in the Big Data era

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (3/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Variety, not volume, is driving Big Data initiatives
MIT Sloan Management Review (28 March 2016)

69%

25%

6%

Relative Importance

Variety
Volume
Velocity

http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (4/109)

 http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

How much time is spent searching for the right data?

Important problem: searching for data and establishing its quality

Example: in oil&gas, engineers spend 30–70% of their time on this
(Crompton, 2008)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (5/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Challenge: Accessing heterogeneous data

Statoil (now Equinor) Exploration

Geologists at Statoil, prior to making decisions
on drilling new wellbores, need to gather
relevant information about previous drillings.

Slegge relational database:
• Terabytes of relational data
• 1,545 tables and 1727 views
• each with dozens of attributes
• consulted by 900 geologists

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (6/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Problem: Translating information needs

Information need expressed by geologists

In my geographical area of interest, return all pressure data tagged with key
stratigraphy information with understandable quality control attributes, and
suitable for further filtering.

To obtain the answer, this needs to be translated into SQL
• main table for wellbores has 38 columns (with cryptic names)
• to obtain pressure data requires a 4-table join with two additional filters
• to obtain stratigraphic information requires a join with 5 more tables

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (7/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Problem: Translating information needs

We would obtain the following SQL query:

SELECT WELLBORE.IDENTIFIER, PTY_PRESSURE.PTY_PRESSURE_S,
STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER, STRATIGRAPHIC_ZONE.STRAT_UNIT_IDENTIFIER

FROM WELLBORE,
PTY_PRESSURE,
ACTIVITY FP_DEPTH_DATA
LEFT JOIN (PTY_LOCATION_1D FP_DEPTH_PT1_LOC
INNER JOIN PICKED_STRATIGRAPHIC_ZONES ZS
ON ZS.STRAT_ZONE_ENTRY_MD <= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_EXIT_MD >= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_DEPTH_UOM = FP_DEPTH_PT1_LOC.DATA_VALUE_1_OU

INNER JOIN STRATIGRAPHIC_ZONE
ON ZS.WELLBORE = STRATIGRAPHIC_ZONE.WELLBORE AND
ZS.STRAT_COLUMN_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER AND
ZS.STRAT_INTERP_VERSION = STRATIGRAPHIC_ZONE.STRAT_INTERP_VERSION AND
ZS.STRAT_ZONE_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_ZONE_IDENTIFIER)

ON FP_DEPTH_DATA.FACILITY_S = ZS.WELLBORE AND
FP_DEPTH_DATA.ACTIVITY_S = FP_DEPTH_PT1_LOC.ACTIVITY_S,

ACTIVITY_CLASS FORM_PRESSURE_CLASS
WHERE WELLBORE.WELLBORE_S = FP_DEPTH_DATA.FACILITY_S AND

FP_DEPTH_DATA.ACTIVITY_S = PTY_PRESSURE.ACTIVITY_S AND
FP_DEPTH_DATA.KIND_S = FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S AND
WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND
FORM_PRESSURE_CLASS.NAME = ’formation pressure depth data’

This can be very time consuming, and requires
knowledge of the domain of interest,

a deep understanding of the database structure,
and general IT expertise.

This is also very costly!

Equinor loses 50.000.000e per year
only due to this problem!!

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (8/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Problem: Translating information needs

We would obtain the following SQL query:

SELECT WELLBORE.IDENTIFIER, PTY_PRESSURE.PTY_PRESSURE_S,
STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER, STRATIGRAPHIC_ZONE.STRAT_UNIT_IDENTIFIER

FROM WELLBORE,
PTY_PRESSURE,
ACTIVITY FP_DEPTH_DATA
LEFT JOIN (PTY_LOCATION_1D FP_DEPTH_PT1_LOC
INNER JOIN PICKED_STRATIGRAPHIC_ZONES ZS
ON ZS.STRAT_ZONE_ENTRY_MD <= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_EXIT_MD >= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_DEPTH_UOM = FP_DEPTH_PT1_LOC.DATA_VALUE_1_OU

INNER JOIN STRATIGRAPHIC_ZONE
ON ZS.WELLBORE = STRATIGRAPHIC_ZONE.WELLBORE AND
ZS.STRAT_COLUMN_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER AND
ZS.STRAT_INTERP_VERSION = STRATIGRAPHIC_ZONE.STRAT_INTERP_VERSION AND
ZS.STRAT_ZONE_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_ZONE_IDENTIFIER)

ON FP_DEPTH_DATA.FACILITY_S = ZS.WELLBORE AND
FP_DEPTH_DATA.ACTIVITY_S = FP_DEPTH_PT1_LOC.ACTIVITY_S,

ACTIVITY_CLASS FORM_PRESSURE_CLASS
WHERE WELLBORE.WELLBORE_S = FP_DEPTH_DATA.FACILITY_S AND

FP_DEPTH_DATA.ACTIVITY_S = PTY_PRESSURE.ACTIVITY_S AND
FP_DEPTH_DATA.KIND_S = FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S AND
WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND
FORM_PRESSURE_CLASS.NAME = ’formation pressure depth data’

This can be very time consuming, and requires
knowledge of the domain of interest,

a deep understanding of the database structure,
and general IT expertise.

This is also very costly!

Equinor loses 50.000.000e per year
only due to this problem!!

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (8/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Idea: Exploit semantics of data

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Spring 2015 issue of AI Magazine is devoted to Semantics for Big Data.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (9/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (10/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (10/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Solution: Virtual Knowedge Graphs (VKGs)

. . .

. . .

. . .

. . .

Query

Result Ontology O
conceptual view of data,
convenient vocabulary

MappingM
how to populate the

ontology from the data

Data Sources S
autonomous and
heterogeneous

Using an ontology makes it simpler for users to formulate their information needs, which are then
automatically translated into a query over the data sources.
This approach is also known as ontology-based data access (OBDA).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (10/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Challenges in VKGs for data access

In VKGs, the ontology exposes through the mapping a view of the underlying data in terms of a graph
that stays virtual (i.e., is not materialized).

Such a setting poses significant challenges:

• How to instantiate the abstract framework?

• How to execute queries over the ontology by accessing data in the sources?

• How to address the expressivity – efficiency tradeoff?

• How to optimize performance with big data and large ontologies?

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (11/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Incomplete information

We are in a setting of incomplete information!!!

Incompleteness is introduced:
• by data sources, in general assumed to be incomplete;
• by domain constraints encoded in the ontology.

Ontology

Data
Sources

. . .

. . .

. . .

. . .

QueryResult

Plus:
Ontologies are logical theories, and
hence perfectly suited to deal with
incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

Ontology

Minus:

Query answering amounts to logical
inference, and hence is significantly
more challenging.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (12/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

VKG framework – Which languages to use?

The choice of the right languages needs to take into account
the tradeoff between expressive power and efficiency of query
answering.

Note: We are in a setting where data plays a prominent role,
so efficiency with respect to the data is the key factor.

. . .

. . .

. . .

. . .

Query

Result

? ?

?

The W3C has standardized languages that are suitable for VKGs:

1 Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)

2 Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]

3 MappingM: expressed in R2RML [W3C Rec. 2012]

4 Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (13/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (14/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (14/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Resource Description Framework (RDF)

• RDF is a language standardized by the W3C for representing information
[W3C Rec. 2004] (v1.0) and [W3C Rec. 2014] (v1.1).

• RDF is a graph-based data model, where information is represented as (labeled) nodes
connected by (labeled) edges.

• Nodes have three different forms:
• literal: denotes a constant value, with an associated datatype;
• IRI (for internationalized resource identifier): denotes a resource (i.e., an object), for which the IRI acts

as an identifier;
• blank node: represents an anonymous object.

• And IRI might also denote a property, connecting an object to a literal, or connecting two
objects.

See also https://www.w3.org/TR/rdf11-concepts/ for details.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (14/109)

https://www.w3.org/TR/rdf11-concepts/

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<http://unibz.inf.di/data#person/2>

<http://xmlns.com//foaf/0.1/name>

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (15/109)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<:person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (15/109)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<data#person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (15/109)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF – Examples

Class membership:

Fact Prof(uni2/person/1)
RDF triple <uni2/person/1> rdf:type :Prof

Note: This is typically abbreviated as

RDF triple <uni2/person/1> a :Prof

Attribute of an individual:
Fact lastName(uni2/person/1, ”Lane”)
RDF triple <uni2/person/1> :lastName "Lane"

Property of an individual:

Fact givesLecture(uni2/person/1, uni2/course/2)
RDF triple <uni2/person/1> :givesLecture <uni2/course/2>

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (16/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF graph – Example
<uni2/person/1> rdf:type :Prof

<uni2/person/1> foaf:lastName "Lane"

<uni2/person/1> :givesLecture <uni2/course/1>

...

We can represent such a set of facts graphically:

<uni2/person/1>

"Lane"

:lastName

:Prof

rdf:type

<uni2/course/1>

:givesLecture

<uni2/course/2>

:givesLecture

<uni2/person/3>

"Céline"

:firstName

"Mendez"

:lastName

rdf:type

:givesLab

"Databases"

:title

"KR"

:title

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (17/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF datatypes

• Datatypes are used with RDF literals to represent values such as strings, numbers, and dates.

• Each datatype is itself denoted by an IRI. E.g., the XML Schema built-in datatypes have IRIs of
the form http://www.w3.org/2001/XMLSchema#xxx

• Each datatype associates to elements in a lexical space (i.e., unicode strings) elements from a
value space.
Example:
• datatype: xsd:boolean
• lexical space: { “true”, “false”, “1”, “0” }
• value space: {true, false}

• To explicitly associate a datatype to a literal, we use the notation literalˆˆdatatype.
Example: 12.5ˆˆxsd:double, 1ˆˆxsd:integer

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (18/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

XML Schema built-in datatypes (recommended)
Datatype Value space (informative)

Core types xsd:string Character strings
xsd:boolean true, false
xsd:decimal Arbitrary-precision decimal numbers
xsd:integer Arbitrary-size integer numbers

IEEE floating-point xsd:float 32-bit floating point numbers incl. ±Inf, ±0, NaN
numbers xsd:double 64-bit floating point numbers incl. ±Inf, ±0, NaN
Time and date xsd:date Dates (yyyy-mm-dd) with or without timezone

xsd:time Times (hh:mm:ss.sss. . .) with or without timezone
xsd:datetime Date and time with or without timezone

Limited-range xsd:byte 8 bit integers (-128, . . . , +127)
integer numbers xsd:short 16 bit integers

xsd:int 32 bit integers
xsd:long 64 bit integers
xsd:unsignedByte 8 bit non-negative integers (0, . . . , 255)
xsd:unsignedShort 16 bit non-negative integers
. . .

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (19/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Additional RDF features

RDF has additional features that we do not cover here:

• blank nodes

• named graphs

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (20/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (21/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (21/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (21/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

∀x. Actor(x)→ Staff(x)
∀x. SeriesActor(x)→ Actor(x)
∀x. MovieActor(x)→ Actor(x)
∀x. SeriesActor(x)→ ¬MovieActor(x)

∀x. Staff(x)→ ∃y. ssn(x, y)
∀y.∃x. ssn(x, y)→ xsd:int(y)
∀x, y, y′. ssn(x, y) ∧ ssn(x, y′)→ y = y′

∀x.∃y. playsIn(x, y)→ MovieActor(y)
∀y.∃x. playsIn(x, y)→ Movie(x)
∀x. MovieActor(x)→ ∃y. playsIn(x, y)
∀x. Movie(x)→ ∃y. playsIn(y, x)
∀x, y. playsIn(x, y)→ actsIn(x, y)
· · ·

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (21/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Actor ⊑ Staff
SeriesActor ⊑ Actor
MovieActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor

Staff ⊑ ∃ssn
∃ssn− ⊑ xsd:int

(funct ssn)

∃playsIn ⊑ MovieActor
∃playsIn− ⊑ Movie

MovieActor ⊑ ∃playsIn
Movie ⊑ ∃playsIn−

playsIn ⊑ actsIn
· · ·

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (21/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

The OWL 2 QL ontology language

• OWL 2 QL is one of the three standard profiles of OWL 2. [W3C Rec. 2012]

• Derived from the DL-LiteR description logic [Baader et al. 2003] of the DL-Lite-family:
• Groups the domain into classes of objects with common properties.
• Binary relations between objects are called object properties.
• Binary relations from objects to values are called data properties.

• Is considered a lightweight ontology language:
• controlled expressive power
• efficient inference

• Optimized for accessing large amounts of data
• Queries over the ontology can be rewritten into SQL queries over the underlying relational database

(First-order rewritability).
• Consistency of ontology and data can also be checked by executing SQL queries.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (22/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

OWL 2 QL ontologies

• An OWL 2 QL ontology ⟨T ,A⟩ consists of:
• a so-called TBox (for terminological box) T , modeling the schema level information (i.e., axioms), and
• a so-called ABox (for assertional box) A, modeling the extensional level information (i.e., facts).

• In the VKG setting, the ABox is (usually) implicitly defined through the database(s) and the
mappings.

• Therefore, in the following, we use the term “ontology” to refer to the TBox only.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (23/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

RDF Schema (RDFS)
Class hierarchy: rdfs:subClassOf (C1 ⊑ C2)

Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Property hierarchy: rdfs:subPropertyOf (P1 ⊑ P2)
Example: :playsIn rdfs:subPropertyOf :actsIn .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> :actsIn <movie/3> .

Domain of properties: rdfs:domain (∃P ⊑ C1)
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range (∃P− ⊑ C2)
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (24/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Other constructs of OWL 2 QL (1/2)

Inverse properties: owl:inverseOf (P1 ⊑ P−2 and P2 ⊑ P−1)
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Mandatory participation: owl:someValuesFrom in the superclass expression (C1 ⊑ ∃P.C2)
Example:

:SeriesActor rdfs:subClassOf

[rdf:type owl:Restriction ;

owl:onProperty :actsIn ;

owl:someValuesFrom :Series] .

Inference: <person/5> rdf:type :SeriesActor .
=⇒

<person/5> rdfs:type

[rdfs:type owl:Restriction ;

owl:onProperty :actsIn ;

owl:someValuesFrom :Series] .

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (25/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Other constructs of OWL 2 QL (2/2)

Class disjointness: owl:disjointWith (C1 ⊑ ¬C2)
Example: :Actor owl:disjointWith :Movie .
Inference:

<uni1/person/2> rdf:type :Actor .

<uni1/person/2> rdf:type :Movie .

=⇒ Inconsistent RDF graph

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (26/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Semantics of an OWL 2 QL ontology

The formal semantics of OWL 2 QL is given in terms of first-order interpretations.

An interpretation I = (∆I, ·I) consists of:

• a nonempty set ∆I, called the interpretation domain (of I), and
• an interpretation function ·I, which maps

• each class nane A to a subset AI of ∆I
• each property name P to a subset PI of ∆I × ∆I

• The interpretation function is then extended to cover the OWL 2 QL constructs:
(P−)I = {(y, x) | (x, y) ∈ PI} ∃PI = {x | there is some y such that (x, y) ∈ PI}

The semantics of an ontology is given by specifying when I satisfies an assertion α, denoted I |= α:

I |= C1 ⊑ C2 if CI1 ⊆ CI2 ; I |= R1 ⊑ R2 if RI1 ⊆ RI2 ;

I satisfies an ABox fact, if the fact holds in I.

An interpretation that satisfies all assertions of the ontology, is called a model of the ontology.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (27/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms
[Berardi et al. 2005; Bergamaschi and Sartori 1992; Borgida 1995; Borgida and Brachman 2003; C., Lenzerini,
et al. 1999; Lenzerini and Nobili 1990; Queralt et al. 2012].

SeriesActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor
∃actsIn ⊑ Actor
∃actsIn− ⊑ Play

MovieActor ⊑ ∃playsIn
playsIn ⊑ actsIn

· · ·

subclass
disjointness
domain
range
mandatory participation
sub-association

An OWL 2 QL ontology can be
visualized naturally as a UML class
diagram or as an ER schema.

Actor
name: String

SeriesActor MovieActor

Play
title: String

MovieplaysIn

1..⋆▶

actsIn
▶

{disjoint}

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (28/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Capturing UML class diagrams/ER schemas in OWL 2 QL

Modeling construct DL-Lite FOL formalization

ISA on classes A1 ⊑ A2 ∀x(A1(x)→ A2(x))

. . . and on relations R1 ⊑ R2 ∀x, y(R1(x, y)→ R2(x, y))

Disjointness of classes A1 ⊑ ¬A2 ∀x(A1(x)→ ¬A2(x))

. . . and of relations R1 ⊑ ¬R2 ∀x, y(R1(x, y)→ ¬R2(x, y))

Domain of relations ∃P ⊑ A1 ∀x(∃y(P(x, y))→ A1(x))

Range of relations ∃P− ⊑ A2 ∀x(∃y(P(y, x))→ A2(x))

Mandatory participation
(min card = 1)

A1 ⊑ ∃P
A2 ⊑ ∃P−

∀x(A1(x)→ ∃y(P(x, y)))
∀x(A2(x)→ ∃y(P(y, x)))

OWL 2 QL/ DL-LiteR cannot capture:
• covering constraints – This would require disjunction.
• identity between individuals – This would owl:sameAs.
• functionality of roles – This would require number restrictions.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (29/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (30/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering – Which query language to use

Querying under incomplete information

Query answering is not simply query evaluation, but a form of logical
inference, and requires reasoning.

Two borderline cases for choosing the language for querying ontologies:

1 Use the ontology language as query language.
• Ontology languages are tailored for capturing intensional relationships.
• They are quite poor as query languages.

2 Use Full SQL (or equivalently, first-order logic).
• Problem: in a setting with incomplete information, query answering is undecidable (FOL validity).

Conjunctive queries – Are concretely represented in SPARQL

A good tradeoff is to use conjunctive queries (CQs) or unions of CQs (UCQs), corresponding to
SQL/relational algebra (union) select-project-join queries.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (30/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.

SELECT ?p ?t

WHERE { ?p rdf:type :Professor .

?p :givesLecture ?c .

?c rdf:type :Course .

?c :title ?t

}

?p

:Professor

?c

:Course

?t

rdf:type

:givesLecture

rdf:type

:title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)
• · · ·

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (31/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

SPARQL Basic Graph Patterns (BGPs)

Basic Graph Patterns are the simplest form of SPARQL query, asking for a pattern in the RDF graph.

Example: BGP

SELECT ?p ?ln ?c ?t

WHERE {

?p :lastName ?ln .

?p :givesLecture ?c .

?c :title ?t .

}

When evaluated over the RDF graph

<uni2/person/1>

"Lane"

:lastName

:Prof

rdf:type

<uni2/course/1>

:givesLecture

<uni2/course/2>

:givesLecture

<uni2/person/3>

"Céline"

:firstName

"Mendez"

:lastName

rdf:type

:givesLab

"Databases"

:title

"KR"

:title

. . . the query returns:
p ln c t

<uni2/person/1> "Lane" <uni2/course/1> "Databases"

<uni2/person/1> "Lane" <uni2/course/2> "KR"

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (32/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Projecting out variables in a SPARQL query

A query may also return only a subset of the variables used in the BGP.

Example: BGP with projection

SELECT ?ln ?t

WHERE {

?p :lastName ?ln .

?p :givesLecture ?c .

?c :title ?t .

}

When evaluated over the RDF graph

<uni2/person/1>

"Lane"

:lastName

:Prof

rdf:type

<uni2/course/1>

:givesLecture

<uni2/course/2>

:givesLecture

<uni2/person/3>

"Céline"

:firstName

"Mendez"

:lastName

rdf:type

:givesLab

"Databases"

:title

"KR"

:title

. . . the query returns:
ln t

"Lane" "Databases"

"Lane" "KR"

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (33/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Union of Basic Graph Patterns

Example: BGPs with UNION

SELECT ?p ?ln ?c

WHERE {

{ ?p :lastName ?ln . ?p :givesLecture ?c . }

UNION

{ ?p :lastName ?ln . ?p :givesLab ?c . }

}

When evaluated over

<uni2/person/1>

"Lane"

:lastName

:Prof

rdf:type

<uni2/course/1>

:givesLecture

<uni2/course/2>

:givesLecture

<uni2/person/3>

"Céline"

:firstName

"Mendez"

:lastName

rdf:type

:givesLab

"Databases"

:title

"KR"

:title

. . . the query returns:

p ln c

<uni2/person/1> "Lane" <uni2/course/1>

<uni2/person/1> "Lane" <uni2/course/2>

<uni2/person/3> "Mendez" <uni2/course/1>

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (34/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

BGPs vs. conjunctive queries

We can write queries using a more compact and abstract syntax, borrowed from database theory.

Example: BGP

SELECT ?p ?ln ?c ?t

WHERE {

?p :lastName ?ln .

?p :givesLecture ?c .

?c :title ?t .

}

vs. conjunctive query

q(p, ln, c, t) ← lastName(p, ln),
givesLecture(p, c),
title(c, t)

A conjunctive query q has the form q(⃗x)← p1 (⃗y1), . . . , p(⃗yk) where

• q(⃗x) is called the head of q,
• p1 (⃗y1), . . . , p(⃗yk) is a conjunction of atoms called the body of q,
• all variables x⃗ in the head are among y⃗1, . . . , y⃗k, and
• the variables in y⃗1, . . . , y⃗k that are not among x⃗ are existentially quantified.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (35/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

BGPs vs. conjunctive queries (cont.)

Example: BGP with projection

SELECT ?ln ?t

WHERE {

?p :lastName ?ln .

?p :givesLecture ?c .

?c :title ?t .

}

vs. conjunctive query

q(ln, t) ← lastName(p, ln),
givesLecture(p, c),
title(c, t)

But there is a difference in semantics when we have an ontology:
• In a SPARQL query, all variables, including those that are projected out, must match nodes of the

RDF graph.
• In a conjunctive query, the existentially quantified variables can also match nodes that are

existentially implied by the axioms of the ontology.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (36/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

SPARQL UNION vs. unions of CQs

Example: BGP with UNION

SELECT ?p ?ln ?c

WHERE {

{ ?p :lastName ?ln .

?p :givesLecture ?c .

}

UNION

{ ?p :lastName ?ln .

?p :givesLab ?c .

}

}

vs. union of CQs (UCQ)

q(p, ln, c) ← lastName(p, ln),
givesLecture(p, c)

q(p, ln, c) ← lastName(p, ln),
givesLab(p, c)

A UCQ is written as a set of CQs, all with the same head.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (37/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Extending BGPs with OPTIONAL
We might want to add information when available, but not reject a solution when some part of the
query does not match.

Example: BGP with OPTIONAL

SELECT ?p ?fn ?ln

WHERE {

?p :lastName ?ln .

OPTIONAL {

?p :firstName ?fn .

}

}

When evaluated over the RDF graph

<uni2/person/1>

"Lane"

:lastName

:Prof

rdf:type

<uni2/course/1>

:givesLecture

<uni2/course/2>

:givesLecture

<uni2/person/3>

"Céline"

:firstName

"Mendez"

:lastName

rdf:type

:givesLab

"Databases"

:title

"KR"

:title

. . . the query returns:
p fn ln

<uml2/person/1> "Lane"

<uml2/person/3> "Céline" "Mendez"

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (38/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

SPARQL algebra

We have seen the following features of the SPARQL algebra:
• Basic Graph Patterns
• UNION

• OPTIONAL

The overall algebra has additional features:
• more complex FILTER conditions
• GROUP BY, to express aggregations and support aggregation operators
• MINUS, to remove possible solutions
• FILTER NOT EXISTS, to test for the absence of a pattern

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (39/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (40/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Use of mappings

In VKGs, the mappingM encodes how the data D in the sources should be used to create the
virtual knowledge graph.

Virtual knowledge graphV =M(D)
• V is defined in terms ofM and D.
• Queries are answered with respect to O andV.
• The data ofV is not materialized (it is virtual!).
• Instead, the information in O andM is used to

translate queries over O into queries formulated
over the sources.

• Advantage, compared to materialization: the graph
is always up to date w.r.t. the data sources.

Ontology

Virtual Knowledge Graph

Data
Sources

. . .

. . .

. . .

. . .

Query Result

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (40/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Mismatch between data layer and ontology

Impedance mismatch
• Relational databases store values.
• Ontologies represent both objects and values.

We need to construct the ontology objects from the database values.

Proposed solution

The specification of how to construct the ontology objects that populate the virtual data layer from
the database values is embedded in the mapping between the data sources and the ontology.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (41/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Mapping language

The mapping consists of a set of statements of the form

SQL Query ⇝ Class and Property Membership Assertions

To address the impedance mismatch

In the right-hand side of the mapping, we make use of iri-templates, which
transform database values into object identifiers (IRIs).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (42/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Mapping language – Example

Ontology O:
Actor

name: String

SeriesActor MovieActor

Play
title: String

MovieplaysIn

1..⋆▶

actsIn
▶

{disjoint}

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"

⇝ Movie(iri(”pl-”, mcode)),
title(iri(”pl-”, mcode), mtitle)

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "movie"

⇝ playsIn(iri(”act-”, acode), iri(”pl-”, mcode)), . . .
Database D:

MOVIE

mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR

pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the virtual knowledge graphM(D):
Movie(pl-5118), title(pl-5118, “The Matrix”)
Movie(pl-2281), title(pl-2281, “Blade Runner”)
playsIn(act-438, pl-5118), playsIn(act-572, pl-5118), playsIn(act-271, pl-2281), . . .

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (43/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Concrete mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:
• They assume that the ontology is populated in terms of RDF triples.
• Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML
• Most popular RDB to RDF mapping language
• W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

• R2RML mappings are themselves expressed as RDF graphs and written in Turtle syntax.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (44/109)

http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://sparqlify.org/wiki/Sparqlification_mapping_language
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework
Representing Data in RDF and RDFS
Ontology Language – OWL 2 QL
Query Language – SPARQL
Mapping Language – R2RML
VKG Formalization and Query Answering

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (45/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

VKGs: Formalization
Ontology

Data
Sources

. . .

. . .

. . .

. . .

Query

Result

To formalize VKGs, we distinguish between the intensional and the
extensional level information.

A VKG specification is a triple P = ⟨O,M,S⟩, where:
• O is an ontology (expressed in OWL 2 QL),
• S is a (possibly federated) relational database schema for the data sources, possibly with

integrity constraints,
• M is a set of (R2RML) mapping assertions between O and S.

A VKG instance is a pair ⟨P,D⟩, where
• P = ⟨O,M,S⟩ is a VKG specification, and
• D is a (possibly federated) relational database compliant with S.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (45/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Semantics of VKGs

Ontology

Virtual Knowledge Graph

Data
Sources

. . .

. . .

. . .

. . .

Query Result Remember: The mappingM generates from the data D in the
sources a virtual knowledge graphV =M(D).

A first-order interpretation I of the ontology predicates is a model of
a VKG instance ⟨P,D⟩, where P = ⟨O,M,S⟩, if
• it satisfies all axioms in O, and
• contains all facts inM(D), i.e., retrieved throughM from D.

Note:
• In general, ⟨P,D⟩ has infinitely many models, and some of these might be infinite.
• However, for query answering, we do not need to compute such models.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (46/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering in VKGs – Certain answers

In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the
data sources through the mapping.

Consider our formalization of VKGs and a VKG instance J = ⟨P,D⟩.

Certain answers

Given a VKG instance J and a query q over J , the certain answers to q are
those answers that hold in all models of J .

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (47/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

First-order rewritability

To make computing certain answers viable in practice, the VKG setting relies on reducing it to
evaluating SQL (i.e., first-order logic) queries over the data.

Consider a VKG specification P = ⟨O,M,S⟩.

First-order rewritability

A query r(⃗x) is a first-order rewriting of a query q(⃗x) with respect to P if, for every source DB D:
certain answers to q(⃗x) over ⟨P,D⟩ = answers to r(⃗x) over D.

For OWL 2 QL ontologies and R2RML mappings,
(core) SPARQL queries are first-order rewritable.

In other words, in VKGs, we can compute the certain answers to a SPARQL query by
evaluating over the sources its rewriting, which is an SQL query.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (48/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering via query reformulation – Conceptual framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (49/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (50/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Implementations of VKG systems

• Mastro [C., De Giacomo, Lembo, Lenzerini, Poggi, Rodriguez-Muro, Rosati, et al. 2011] 4, Sapienza
Università di Roma & OBDA systems SRL, Italy

• Morph [Priyatna et al. 2014] 5, Technical University of Madrid, Spain

• Ontop [C., Cogrel, et al. 2017]6, Free University of Bolzano, Italy

• Stardog7, Stardog Union, US

• Ultrawrap [Sequeda and Miranker 2013] 8, Capsenta, US

• Oracle Spatial and Graph RDF Semantic Graph 9

4http://www.obdasystems.com/it/mastro
5https://github.com/oeg-upm/morph-rdb
6http://ontop.inf.unibz.it
7http://www.stardog.com
8https://capsenta.com/ultrawrap
9http://www.oracle.com/technetwork/database/options/spatialandgraph

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (50/109)

http://www.obdasystems.com/it/mastro
https://github.com/oeg-upm/morph-rdb
http://ontop.inf.unibz.it
http://www.stardog.com
https://capsenta.com/ultrawrap
http://www.oracle.com/technetwork/database/options/spatialandgraph

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

• Ontop is a VKG platform
• It supports all major database engines (e.g., Oracle, DB2, MS SQL Server, PostgreSQL,

MySQL).
• Open source under Apache 2 License

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (51/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Ontopic SrL

• First spin-off of the Free University of Bozen-Bolzano.

• Incorporated in April 2019.

• Product: Ontopic suite based on the Ontop engine.

• Services around Ontop and the Ontopic suite.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (52/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Use cases

• Oil & Gas: Statoil [Kharlamov, Hovland, et al. 2017]

• Turbine Diagnoses: Siemens [Kharlamov, Mailis, et al. 2017]

• Cultural heritage: EPNet project [C., Liuzzo, et al. 2016]

• Maritime security: EMSec project [Brüggemann et al. 2016]

• Manufacturing: case study [Petersen et al. 2017]

• Health care: electronic health records [Rahimi et al. 2014]

• Public debt: Italian Ministry of Economy and Finance [Antonioli et al. 2014]

• Smart cities: IBM Ireland [Lopez et al. 2015]

• Open data publishing: NOI Bolzano

• Development of data integration solutions: SIRIS Academic SL Barcelona

. . . a survey on systems and use cases [Xiao, Ding, et al. 2019]

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (53/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Statoil (now Equinor) [Kharlamov, Hovland, et al. 2017]

• Statoil (now Equinor) is Norway’s largest (oil and gas) company. Statoil has been a use case
partner in the EU project Optique.

• Exploration domain: analyse existing relevant data in order to find exploitable accumulations of
oil or gas.

• Improve the efficiency of the information gathering routine for geologists.
• Efficient, creative data collection from multiple large volume data sources.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (54/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Siemens Energy Services [Kharlamov, Mailis, et al. 2017]

• Use case partner in the EU project Optique.

• Siemens produces huge appliances
(e.g., gas turbines) and installs them in plants.

• Siemens service centers:
• over 50 service centers world-wide
• each center is responsible for several thousands of appliances
• offer constant monitoring and diagnostics services

• Monitoring and diagnostics tasks
• reactive and preventive diagnostics: offline, after an issue is detected
• predictive analyses: real-time, to avoid issues while appliance is functioning

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (55/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

EPNet project [C., Liuzzo, et al. 2016]

• Ontology-based data integration for humanities and archaeologists

• ERC advanced grant EPNet “Production and distribution of food during the Roman Empire:
Economics and Political Dynamics”.

• Linking three datasets:
1 the EPNet relational repository
2 the Epigraphic Database Heidelberg
3 the Pleiades dataset

• Demo: http://romanopendata.eu/

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (56/109)

http://romanopendata.eu/

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

EMSec project [Brüggemann et al. 2016]

• German BMBF project EMSec, collaborated with Airbus.
• Provide real-time services for maritime security.
• Geo-spatial support by Ontop-spatial (developed as a fork of Ontop).
• SPARQL federation to access different kinds of data sources:

• SPARQL endpoints of Ontop over in situ data
• open SPARQL endpoints: Geonames, DBPedia

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (57/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Melodies project

• EU FP7 Melodies project: working with Open Data, 16 partners.
• Geospatial extension Ontop-spatial used for accessing geospatial data.
• Use cases: urban development, land management, disaster management

Visualization of violated protected areas in
land management.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (58/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

NOI Tourism Graph

• NOI is a South-Tyrolean company managing a Techpark in Bolzano and providing services to
companies and research institutions.

• Ongoing project between Ontopic and NOI.

• Goal: publish tourism related data at the South-Tyrol OpenDataHub as a Knowledge Graph, and
make it easily accessible (e.g., from Amazon Alexa).

• The publication of tourism related data serves as a pilot project, to be extended to other forms of
open data.

• Demo: https://sparql.opendatahub.testingmachine.eu/

• Queries:
https://github.com/noi-techpark/odh-vkg/tree/development/sparql_queries

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (59/109)

https://sparql.opendatahub.testingmachine.eu/
https://github.com/noi-techpark/odh-vkg/tree/development/sparql_queries

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (60/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering via query reformulation – Conceptual framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (60/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering via query reformulation – Optimizations needed

The above conceptual framework is realized as follows.

Computing certain answers to a SPARQL query q over a VKG instance ⟨P,D⟩, with P = ⟨O,S,M⟩:

1 Compute the perfect rewriting of q w.r.t. O.

2 Unfold the perfect rewriting w.r.t. the mappingM.

3 Optimize the unfolded query, using database constraints.

4 Evaluate the resulting SQL query over D.

Steps 1 – 3 are collectively called query reformulation.

We analyze now more in detail these steps.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (61/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (62/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Rewriting step

The rewriting Step 1 deals with the knowledge encoded by the axioms of the ontology:
• hierarchies of classes and of properties;
• objects that are existentially implied by such axioms: existential reasoning.

We illustrate the need for dealing with these two aspects with two examples.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (62/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Dealing with hierarchies

Suppose that every graduate student is a student, i.e.,

GraduateStudent ⊑ Student

and john is a graduate student: GraduateStudent(john).

What is the answer to the following query, asking for all students?

q(x) ← Student(x)

In SPARQL: SELECT ?x WHERE { ?x a Student . }

The answer should be john, since being a graduate student, he is also a student.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (63/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Dealing with existential reasoning

Suppose that every student is supervised by some professor, i.e.,

Student ⊑ ∃isSupervisedBy.Professor

and john is a student: Student(john).

What is the answer to the following query, asking for all individuals supervised by some professor?

q(x) ← isSupervisedBy(x, y), Professor(y)

In SPARQL: SELECT ?x WHERE { ?x isSupervisedBy [a Professor] . }

The answer should be john, even though we don’t know who is John’s supervisor (under existential
reasoning).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (64/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

The query rewriting algorithm

The query rewriting algorithm takes into account hierarchies and existential reasoning, by
“compiling” the axioms of the ontology into the query.

Example

Consider the ontology axioms: Student ⊑ ∃isSupervisedBy.Professor
GraduateStudent ⊑ Student

Using these axioms, the rewriting algorithm rewrites the query

q(x) ← isSupervisedBy(x, y), Professor(y)

into a union of conjunctive queries (or a SPARQL union query):
q(x) ← isSupervisedBy(x, y), Professor(y)
q(x) ← Student(x)
q(x) ← GraduateStudent(x)

Therefore, over the data GraduateStudent(john), the rewritten query returns john as an answer.

Note: In Ontop, existential reasoning needs to be switched on explicitly, since it affects performance.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (65/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which gives the right answers
to all CQs, i.e., cert(q,K) = ans(q,IK)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (66/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which gives the right answers
to all CQs, i.e., cert(q,K) = ans(q,IK)

Core
individuals
from A

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (66/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which gives the right answers
to all CQs, i.e., cert(q,K) = ans(q,IK)

Anonymous part
trees rooted at individuals,
using unnamed objects

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (66/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which gives the right answers
to all CQs, i.e., cert(q,K) = ans(q,IK)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (66/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite KB K = (T ,A) has a canonical model IK , which gives the right answers
to all CQs, i.e., cert(q,K) = ans(q,IK)

x
R

y
⇡(x)

⇡(y)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (66/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

The PerfectRef algorithm for query rewriting

We do not describe here the tree-witness rewriting algorithm, which is rather involved.

Instead, we describe PerfectRef , a simple query rewriting algorithm that maintains a set of queries
and applies over them two types of transformations:
• rewriting steps that involve inclusion assertions of the ontology, and
• unification of query atoms.

These transformations are applied repeatedly until saturation, i.e., until the set of queries does not
change anymore.

Given as input a (core) SPARQL query q, PerfectRef computes its perfect rewriting, which is still a
SPARQL query (involving UNION).

Note: Disjointness assertions play a role in ontology satisfiability, but can be ignored during query
rewriting. (This is called separability.)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (67/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting step: Basic idea
Intuition: an inclusion assertion corresponds to a logic programming rule.

Basic rewriting step:

When an atom in the query unifies with the head of the rule, generate a new query by substituting the
atom with the body of the rule.

We say that the inclusion assertion applies to the atom.

Example

The inclusion assertion Professor ⊑ Teacher
corresponds to the logic programming rule Teacher(z) ← Professor(z).

Consider the query q(x) ← Teacher(x).

By applying the inclusion assertion to the atom Teacher(x), we generate:
q(x) ← Professor(x).

This query is added to the input query, and contributes to the perfect rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (68/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting (cont’d)

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion ∃teaches− ⊑ Course
as a logic programming rule: Course(z2) ← teaches(z1, z2).

The inclusion applies to Course(y), and we add to the rewriting the query

q(x) ← teaches(x, y), teaches(z1, y).

Example

Consider now the query q(x) ← teaches(x, y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z).

The inclusion applies to teaches(x, y), and we add to the rewriting the query

q(x) ← Professor(x).
Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (69/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting – Constants

Example

Conversely, for the query q(x) ← teaches(x, databases)

and the same inclusion assertion as before Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z)

teaches(x, databases) does not unify with teaches(z, f (z)), since the skolem term f (z) in the head of
the rule does not unify with the constant databases.
Remember: We adopt the unique name assumption.

We say that the inclusion does not apply to the atom teaches(x, databases).

Example

The same holds for the following query, where y is distinguished, since unifying f (z) with y would
correspond to returning a skolem term as answer to the query:

q(x, y) ← teaches(x, y).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (70/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished variables holds when the
atom contains join variables that would have to be unified with skolem terms.

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z).

The inclusion assertion above does not apply to the atom teaches(x, y).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (71/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting – Reduce step

Example

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic rule: teaches(z, f (z)) ← Professor(z).

This inclusion assertion does not apply to teaches(x, y) or teaches(z, y), since y is in join, and we
would again introduce the skolem term in the rewritten query.

Example

However, we can transform the above query by unifying the atoms teaches(x, y) and teaches(z, y).
This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y).

Now, we can apply the inclusion above, and add to the rewriting the query

q(x) ← Professor(x).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (72/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting – Summary
To compute the perfect rewriting of a query q, start from q, iteratively get a CQ q′ to be processed,
and do one of the following:

• Apply to some atom of q′ an inclusion assertion in the ontology O as follows:

A1 ⊑ A2 . . . ,A2(x), . . . ; . . . ,A1(x), . . .
∃P ⊑ A . . . ,A(x), . . . ; . . . ,P(x,), . . .
∃P− ⊑ A . . . ,A(x), . . . ; . . . ,P(, x), . . .

A ⊑ ∃P . . . ,P(x,), . . . ; . . . ,A(x), . . .
A ⊑ ∃P− . . . ,P(, x), . . . ; . . . ,A(x), . . .

∃P1 ⊑ ∃P2 . . . ,P2(x,), . . . ; . . . ,P1(x,), . . .
P1 ⊑ P2 . . . ,P2(x, y), . . . ; . . . ,P1(x, y), . . .
P1 ⊑ P−2 . . . ,P2(x, y), . . . ; . . . ,P1(y, x), . . .
· · ·(’ ’ denotes a variable that appears only once)

• Choose two atoms of q′ that unify, and apply the unifier to q′.
After each rewriting/unification step, the obtained query is added to the queries still to be processed.
Note: Unifying atoms can make rules applicable that were not so before, and is required for
completeness of the method [C., De Giacomo, Lembo, Lenzerini, and Rosati 2007].
The UCQ resulting from this process is the perfect rewriting qr of q w.r.t. the ontology O.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (73/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query rewriting algorithm

Algorithm PerfectRef(Q,TP)
Input: union of conjunctive queries Q, set TP of DL-Lite inclusion assertions
Output: union of conjunctive queries PR
PR := Q;
repeat

PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each inclusion assertion I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:
• Termination follows from having only finitely many different rewritings.
• Disjointness assertions and functionalities do not play any role in the rewriting of the query.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (74/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering in DL-Lite – Example
Ontology: Corresponding rules:

Professor ⊑ Teacher
Teacher ⊑ ∃teaches

∃teaches− ⊑ Course

Teacher(x)← Professor(x)
∃y(teaches(x, y))← Teacher(x)

Course(x)← teaches(y, x)

Query: q(x)← teaches(x, y),Course(y)

Perfect rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(, y)
q(x)← teaches(x,)
q(x)← Teacher(x)
q(x)← Professor(x)

ABox: teaches(jim, databases) Professor(jim)
teaches(julia, security) Professor(nicole)

Evaluating the perfect rewriting over the ABox (seen as a DB) produces as answer
{jim, julia, nicole}.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (75/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query answering in DL-Lite – An interesting example

TBox: Person ⊑ ∃hasFather
∃hasFather− ⊑ Person

ABox: Person(john)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2,)
⇊ Apply Person ⊑ ∃hasFather to the atom hasFather(y2,)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
⇊ Apply ∃hasFather− ⊑ Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(, y2)
⇊ Unify atoms hasFather(y1, y2) and hasFather(, y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
⇊
· · ·

q(x)← Person(x), hasFather(x,)
⇊ Apply Person ⊑ ∃hasFather to the atom hasFather(x,)

q(x)← Person(x)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (76/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (77/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query unfolding

We consider now Step 2 of reformulation, i.e., the unfolding w.r.t. the mappingM.

In principle, we have two approaches to exploit the mapping:
• bottom-up approach: simpler, but typically less efficient
• top-down approach: more sophisticated, but also more efficient

Both approaches require to first split the set of atoms in the target queries of the mapping assertions
into the constituent atoms.

Note: In the following, to make notation more compact, we represent terms of the form

iri(”xxx”, v1, . . . , vn) as xxx(v1, . . . , vn).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (77/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Splitting of mappings

A mapping assertion Φ⇝ Ψ, where the target query Ψ is constituted by the atoms X1,. . . ,Xk, can be
split into k mapping assertions:

Φ⇝ X1 · · · Φ⇝ Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT pcode, acode, aname FROM ACTOR ⇝ Play(pl(pcode)),
Actor(act(acode)),
name(act(acode), aname),
actsIn(act(acode), pl(pcode))

is split into
m1

1: SELECT pcode, acode, aname FROM ACTOR ⇝ Play(pl(pcode))
m2

1: SELECT pcode, acode, aname FROM ACTOR ⇝ Actor(act(acode))
m3

1: SELECT pcode, acode, aname FROM ACTOR ⇝ name(act(acode), aname)
m4

1: SELECT pcode, acode, aname FROM ACTOR ⇝ actsIn(act(acode), pl(pcode))

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (78/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Bottom-up approach to deal with mappings: Materialization

Consists in a straightforward application of the mappings to the data:

1 Propagate the data from D throughM, materializing the RDF graphV =M(D) (the constants
in such an RDF graph are values and object terms obtained from the database values).

2 Apply toV and to the ontology O, the satisfiability and query answering algorithms developed for
DL-Lite.

This approach has several drawbacks:
• The technique is no more AC0 in the size of the data, since the RDF graphV to materialize is in

general polynomial in the size of the data.
• V may be very large, and thus it may be infeasible to actually materialize it.
• Freshness ofV with respect to the underlying data source(s) may be an issue, and one would

need to propagate source updates (cf. Data Warehousing).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (79/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Top-down approach to deal with mappings: Unfolding

The top-down approach is realized by computing from the (rewritten) query qr a new query qunf, by
unfolding qr using (the split version of) the mappingsM.

Consider the mapping assertions Φi ⇝ Ψi.

• Essentially, each atom in qr that unifies with an atom in some Ψi is substituted with the
corresponding query Φi over the database.

• The unfolded query qunf is such that for each database D we have that:

qunf(D) = Evalcwa(qr,M(D)).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (80/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Unfolding

To unfold a query qr with respect to a setM of mapping assertions:

1 For each non-split mapping assertion Φi (⃗x)⇝ Ψi (⃗t, y⃗):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi (⃗x)← Φi (⃗x).

2 For each split version Φi (⃗x)⇝ Xj
i (⃗t, y⃗) of a mapping assertion, introduce a clause

Xj
i (⃗t, y⃗)← Auxi (⃗x).

3 Obtain from qr in all possible ways queries qaux defined over the view symbols Auxi as follows:
1 Find a most general unifier ϑ that unifies each atom X(⃗z) in the body of qr with the head of a clause

X(⃗t, y⃗)← Auxi (⃗x).
2 Substitute each atom X(⃗z) with ϑ(Auxi (⃗x)), i.e., with the body the unified clause to which the unifier ϑ is

applied.

4 The unfolded query qunf is the union of all queries qaux, together with the view definitions for the
predicates Auxi appearing in qaux.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (81/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Unfolding – Example

Actor
name: String

SeriesActor MovieActor

Play
title: String

MovieplaysIn

1..⋆▶

actsIn
▶

{disjoint}

m1: SELECT pcode, acode, aname
FROM ACTOR

⇝ Play(pl(pcode)),
Actor(act(acode)),
name(act(acode), aname),
actsIn(act(acode), pl(pcode))

m2: SELECT mcode, acode, mtitle
FROM MOVIE M, ACTOR A

WHERE M.mcode = A.pcode

AND M.type = "m"

⇝ Movie(pl(mcode)),
playsIn(act(acode),

pl(mcode)),
title(pl(mcode), mtitle)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Play(pl(pcode)) ← Aux1(pcode, ,)
Actor(act(acode)) ← Aux1(, acode,)

name(act(acode), aname) ← Aux1(, acode, aname)
actsIn(act(acode),pl(pcode)) ← Aux1(pcode, acode,)

Movie(pl(mcode)) ← Aux2(mcode, ,)
playsIn(act(acode),pl(mcode)) ← Aux2(mcode, acode,)

title(pl(mcode),mtitle) ← Aux2(mcode, ,mtitle)
Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (82/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Unfolding – Example (cont’d)
Query over the ontology: Actors with their name who act in a movie whose title is "The Matrix":
q(a, n)← Actor(a), name(a, n), actsIn(a, p),Movie(p), title(p, "The Matrix")

Actor(act(acode)) ← Aux1(, acode,)
name(act(acode), aname) ← Aux1(, acode, aname)

actsIn(act(acode),pl(pcode)) ← Aux1(pcode, acode,)
Movie(pl(mcode)) ← Aux2(mcode, ,)

title(pl(mcode),mtitle) ← Aux2(mcode, ,mtitle)
A unifier ϑ between the atoms in q and the clause heads is:
ϑ(a) = act(acode)
ϑ(p) = pl(pcode)

ϑ(n) = aname
ϑ(mcode) = pcode ϑ(mtitle) = "The Matrix"

After applying ϑ to q, we obtain:
q(act(acode), aname)← Actor(act(acode)), name(act(acode), aname),

actsIn(act(acode),pl(pcode)), Movie(pl(pcode)),
title(pl(pcode), "The Matrix")

Substituting the atoms with the bodies of the clauses (after having applied the unifier), we obtain:
q(act(acode), aname)← Aux1(, acode,), Aux1(, acode, aname),

Aux1(pcode, acode,), Aux2(pcode, ,),
Aux2(pcode, , "The Matrix")

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (83/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Exponential blowup in the unfolding
When there are multiple mapping assertions for each atom, the unfolded query may be exponential in
the original one.

Consider a query: q(y)← A1(y),A2(y), . . . ,An(y)

and the mappings: m1
i : Φ1

i (x)⇝ Ai(iri(x))
m2

i : Φ2
i (x)⇝ Ai(iri(x))

(for i ∈ {1, . . . , n})

We add the view definitions: Auxj
i(x)← Φj

i(x)
and introduce the clauses: Ai(iri(x))← Auxj

i(x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = iri(x), but each atom Ai(y) in the query unifies with the head of
two clauses.

Hence, we obtain one unfolded query

q(iri(x))← Auxj1
1 (x),Auxj2

2 (x), . . . ,Auxjn
n (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (84/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Implementation of top-down approach to query answering
To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the corresponding SQL query over

the source:
+ joins are performed on the DB attributes, hence can be done efficiently, e.g., by exploiting indexes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes the union of all SQL
queries corresponding to the view predicates, and constructs also the IRIs based on the IRI
templates:

+ avoids exponential blow-up of the resulting query, since the union (of the queries coming from multiple
mappings) is done before the joins;

– joins are performed on IRIs, i.e., on terms built using string concatenation, hence are highly inefficient;
– generates doubly nested queries, which per se the database has difficulty in optimizing.

Which method is better, depends on various parameters, and there is no definitive answer.
In general, one needs a mixed approach that applies different strategies to different parts of the query.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (85/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (86/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Contributions of rewriting and unfolding

• We are interested in computing certain answers to SPARQL queries over a VKG instance ⟨P,D⟩,
with P = ⟨O,M,S⟩.

• In practice, by computing the rewriting qr of q w.r.t. O and its unfolding w.r.t.M, the resulting
query qunf might become very large, and costly to execute over D.

Let us consider the contributions of rewriting and unfolding to the query answers:
• In principle, evaluating the unfolding qunf (of qr w.r.t.M) over D, gives the same result as

evaluating qr over the RDF graph G =M(D) extracted through the mappingM from the data D.
• Instead, the impact of the rewriting on the query answers consists of two components:

1 the rewriting w.r.t. class and property hierarchies, i.e., C ⊑ A, P1 ⊑ P2;
2 the rewriting taking into account existential reasoning, i.e., C1 ⊑ ∃R, C1 ⊑ ∃R.C2.

Note: Component 1 corresponds to computing the saturation Gsat of G w.r.t. class and property
hierarchies, while component 2 can be handled only through rewriting.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (86/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Tree-witness rewriting and saturated mapping

We want to avoid materializing G and Gsat, but also computing the query rewriting w.r.t. class and
property hierarchies.

Therefore we proceed as follows:

1 We rewrite q only w.r.t. the inclusion assertions that cause existential reasoning (i.e., C1 ⊑ ∃R
and C1 ⊑ ∃R.C2).
; tree-witness rewriting qtw

2 We use instead class and property hierarchies (i.e., C ⊑ A, P1 ⊑ P2) to enrich the mappingM.
; saturated mappingMsat

3 We unfold the tree-witness rewriting qtw w.r.t. the saturated mappingMsat.

It is possible to show that the resulting query is equivalent to the perfect rewriting qr (as obtained,
e.g., through ordinary rewriting w.r.t. O and unfolding w.r.t.M).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (87/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Saturated mapping

Intuitively, the saturated mappingMsat is obtained as the composition ofM and the ontology O.

For each mapping assertion and each TBox assertion we add a mapping assertion
inM in O toMsat

Φ(x)⇝ A1(iri(x)) A1 ⊑ A2 Φ(x)⇝ A2(iri(x))

Φ(x, y)⇝ P(iri1(x), iri2(y)) ∃P ⊑ A1 Φ(x, y)⇝ A1(iri1(x))

Φ(x, y)⇝ P(iri1(x), iri2(y)) ∃P− ⊑ A2 Φ(x, y)⇝ A2(iri2(y))

Φ(x, y)⇝ P1(iri1(x), iri2(y)) P1 ⊑ P2 Φ(x, y)⇝ P2(iri1(x), iri2(y))

Due to saturation,Msat will contain at most |O| · |M| many mappings.

Note: The saturated mapping has also been called T-mapping in the literature.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (88/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Saturated mapping – Exercise

Ontology O

Student ⊑ Person
PostDoc ⊑ Faculty

Professor ⊑ Faculty
∃teaches ⊑ Faculty

Faculty ⊑ Person

User-defined mapping assertionsM

student(scode, fn, ln) ⇝ Student(iri1(scode)) (1)
academic(acode, fn, ln, pos), pos = 9 ⇝ PostDoc(iri2(acode)) (2)
academic(acode, fn, ln, pos), pos = 2 ⇝ Professor(iri2(acode)) (3)
teaching(course, acode) ⇝ teaches(iri2(acode), iri3(course)) (4)
academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)

By saturating the mapping, we obtainMsat, containing additional mapping assertions for the classes Faculty and Person.

student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos), pos = 9 ⇝ Faculty(iri2(acode)) (7)
academic(acode, fn, ln, pos), pos = 9 ⇝ Person(iri2(acode)) (8)
academic(acode, fn, ln, pos), pos = 2 ⇝ Faculty(iri2(acode)) (9)
academic(acode, fn, ln, pos), pos = 2 ⇝ Person(iri2(acode)) (10)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)
teaching(course, acode) ⇝ Faculty(iri2(acode)) (12)
teaching(course, acode) ⇝ Person(iri2(acode)) (13)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (89/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Properties of saturated mappings

H-complete RDF graph

An RDF graph G is H-complete w.r.t. an ontology O, if, for every RDF triple (s, p, o), we have:

⟨O,G⟩ |= (s, p, o) iff (s, p, o) ∈ G

The saturation Gsat of G w.r.t. O is the smallest RDF graph that contains G and is H-complete w.r.t. O.

Intuitively, Gsat is obtained from G by applying the class and property inclusions of O, but without
introducing new nodes.

Relationship between the saturated mappingMsat and the saturation ofM(D)
• We have thatMsat(D) = (M(D))sat (hence, it is an H-complete RDF graph).
• Msat does not depend on the SPARQL query q, hence it can be pre-computed.
• It can be optimized (by exploiting query containment).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (90/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Mapping optimization – Exercise
Saturated mapping assertionsMsat

· · ·

academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)
student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos), pos = 9 ⇝ Faculty(iri2(acode)) (7)
academic(acode, fn, ln, pos), pos = 9 ⇝ Person(iri2(acode)) (8)
academic(acode, fn, ln, pos), pos = 2 ⇝ Faculty(iri2(acode)) (9)
academic(acode, fn, ln, pos), pos = 2 ⇝ Person(iri2(acode)) (10)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)
teaching(course, acode) ⇝ Faculty(iri2(acode)) (12)
teaching(course, acode) ⇝ Person(iri2(acode)) (13)

Consider also a foreign key over the database relations

FK: ∃y1.teaching(y1, x)→ ∃y2y3y4.academic(x, y2, y3, y4)

We can optimize the mapping using query containment and the FK. This removes mapping assertions 7, 8, 9, 10, 12, and 13.

· · ·

academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)
student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (91/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Query reformulation as implemented by the Ontop system

q
(SPARQL)

O

Tree-witness
rewriting

Unfolding based on
saturated mappings

Msat

Optimization

Primary and
foreign keys

qopt

(SQL)

qtw

(SPARQL)

qunf

(SQL)

Step Input Output

1. Tree-witness rewriting q and O qtw

2. Unfolding qtw andMsat qunf

3. Optimization qunf, primary and foreign keys qopt

Let us now consider the optimization step.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (92/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (93/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

SQL query optimization

Objective : produce SQL queries that are . . .
• similar to manually written ones
• adapted to existing query planners

Structural optimization
• From join-of-unions to union-of-joins
• IRI decomposition to improve

performance of joins

Semantic optimization
• Redundant join elimination
• Redundant union elimination
• Using functional constraints

Integrity constraints
• Primary and foreign keys, uniqueness constraints
• Sometimes implicit
• Vital for query reformulation!

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (93/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Reformulation example – 1. Unfolding

Saturated mapping

academic(acode, fn, ln, pos), pos ∈ [1..8]

⇝ Teacher(iri2(acode))

teaching(course, acode) ⇝ Teacher(iri2(acode))

student(scode, fn, ln) ⇝ firstName(iri1(scode), fn)

academic(acode, fn, ln, pos) ⇝ firstName(iri2(acode), fn)

student(scode, fn, ln) ⇝ lastName(iri1(scode), ln)

academic(acode, fn, ln, pos) ⇝ lastName(iri2(acode), ln)

Query (we assume that the ontology is empty, hence qr = q)

q(x, y, z) ← Teacher(x), firstName(x, y), lastName(x, z)

We apply query unfolding, and then normalization to
make the join conditions explicit.

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z), x = x1, x = x2

q1unf(iri2(acode)) ← academic(acode, fn, ln, pos),
pos ∈ [1..8]

q1unf(iri2(acode)) ← teaching(course, acode)

q2unf(iri1(scode), fn) ← student(scode, fn, ln)

q2unf(iri2(acode), fn) ← academic(acode, fn, ln, pos)

q3unf(iri1(scode), ln) ← student(scode, fn, ln)

q3unf(iri2(acode), ln) ← academic(acode, fn, ln, pos)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (94/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

• While flattening, we can avoid to generate those
queries that contain in their body an equality
between two terms with incompatible IRI
templates.

• This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 1/2

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1),
p1 ∈ [1..8]

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

(One sub-query not shown)

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (95/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

• While flattening, we can avoid to generate those
queries that contain in their body an equality
between two terms with incompatible IRI
templates.

• This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 2/2

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1)

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2)

(One sub-query not shown)

qlift(iri2(a), y, z) ← teaching(c, a),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (95/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Reformulation example – 3. Semantic optimization

We are left with just two queries, which we can simplify by eliminating equalities

qstruct(iri2(a), y, z) ← academic(a, f1, l1, p1), p1 ∈ [1..8],
academic(a, y, l2, p2),
academic(a, f3, z, p3)

qstruct(iri2(a), y, z) ← teaching(c, a),
academic(a, y, l2, p2),
academic(a, f3, z, p3)

We can then exploit database constraints (e.g., primary keys) for semantic optimization of the query.

Self-join elimination (semantic optimization)

PK: academic(acode, f , l, p) ∧ academic(acode, f ′, l′, p′) → (f = f ′) ∧ (l = l′) ∧ (p = p′)

qopt(iri2(a), y, z) ← academic(a, y, z, p1), p1 ∈ [1..8]

qopt(iri2(a), y, z) ← teaching(c, a), academic(a, y, z, p2)

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (96/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (97/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Support data analytics in VKGs

Supporting data analytics is currently a top priority for us.

Main challenges:
• Semantics: computing aggregation functions correctly, in particular those depending on

cardinalities (SUM, COUNT, AVG) – bag vs. set semantics is an issue.

• Performance: efficient computation of aggregates, ideally by delegating their execution to the
database.

• Expressiveness: support user-defined aggregation functions beyond the ones in SPARQL 1.1.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (97/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

noSQL data sources

Prototype extension of Ontop over databases.

MongoDB
• Most popular noSQL DBMS.
• Stores data as collections of JSON documents.
• Comes with an expressive (low-level) query language: Mongo Aggregate Queries.

Benefits of VGKs over MongoDB:
• Interface: higher-level query language (SPARQL) for the end-user.
• Performance: Ontop delegates query execution to the MongoDB engine
⇒ leverages document-based storage.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (98/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

JSON

Document 23226

{ _id: 23226,
productName: "Olympus OM-D E-M10 Mark II",
offers: [
{ offerId: 258,
price: 747.14,
vendor: {
vendorId: 3785,
name: "Yeppon Italia"

}},
{ offerId: 895,
price: 609.42,
vendor: {
vendorId: 481,
name: "amazon.it"

}},
{ offerId: 922,
price: 759.99,
vendor: {
vendorId: 481,
name: "amazon.it"

}}]}

Document 25887

{ _id: 25887,
productName: "Panasonic Lumix DMC-GX80",
offers: [
{ offerId: 311,
price: 500.32,
vendor: {
vendorId: 481,
name: "amazon.it"

}}]}

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (99/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Ontop over MongoDB: higher-level queries

• Mongo Aggregate Queries: algebra over collections of JSON documents.
• Can be complex to read/manipulate.

Retrieve products offered twice by the same vendor
db.product.aggregate([

{$project: {

"productName": true, "offer1": "$offers", "offer2": "$offers" }},

{$unwind: "$offer1"},

{$unwind: "$offer2"},

{$project: {

"productName": true, "offer1": true, "offer2": true,

"sameVendor": { $and: [

{$ne: ["$offer1.offerId", "$offer2.offerId"]},

{$eq: ["$offer1.vendorId", "$offer2.vendorId"]}]}}},

{$match: {"sameVendor": true}},

{$project: {"productName": true, $offer1.vendorId, $offer1.name}}

])

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (100/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Ontop over MongoDB: higher-level queries

• Mongo Aggregate Queries: algebra over collections of JSON documents.
• Can be complex to read/manipulate. Ontop provides a simpler interface through SPARQL.

Retrieve products offered twice by the same vendor

SELECT ?productName, ?vendorName

WHERE {

?product rdfs:label ?productName .

?offer1 bsbm:product ?product .

?offer1 bsbm:vendor ?vendor .

?offer2 bsbm:product ?product .

?offer2 bsbm:vendor ?vendor .

?vendor rdfs:label ?vendorName .

FILTER (?offer1 != ?offer2)

}

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (100/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Functional dependencies in JSON

Document 23226

{ _id: 23226,
productName: "Olympus OM-D E-M10 Mark II",
offers: [
{ offerId: 258,
price: 747.14,
vendor: {
vendorId: 3785,
name: "Yeppon Italia"

}},
{ offerId: 895,
price: 609.42,
vendor: {
vendorId: 481,
name: "amazon.it"

}},
{ offerId: 922,
price: 759.99,
vendor: {
vendorId: 481,
name: "amazon.it"

}}]}

Document 25887

{ _id: 25887,
productName: "Panasonic Lumix DMC-GX80",
offers: [
{ offerId: 311,
price: 500.32,
vendor: {
vendorId: 481,
name: "amazon.it"

}}]}

Functional dependency:
offers.vendor.vendorId→ offers.vendor.name

; The database is not normalized.

Brings opportunities for query optimization
(taking advantage of ”precomputed joins”).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (101/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Querying JSON data: default solution

• Expose JSON data as a (flat) relational view. ; Ontop can be used out-of-the-box.
• May be less efficient.

product
id productName

23226 Olympus OM-D E-M10 Mark II
25887 Panasonic Lumix DMC-GX80

vendor
id name

481 amazon.it
3785 Yeppon Italia

offer
id price product vendor

258 747.14 23226 3785
311 500.32 25887 481
895 609.42 23226 481
922 759.99 23226 481

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (102/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Querying JSON data: MongoDB and beyond

• Ontop uses Nested Relational Algebra as an internal query representation.
• Optimization: leverages functional dependencies, to avoid joins across JSON documents

(identify that the information needed is contained in each document).
• Implemented for MongoDB.

Under development

Extension to other query languages with an “unnest”-like operator:
• SPARK (explode)
• PostgreSQL (json array elements)
• etc.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (103/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Provenance and explanation

• The base version of Ontop, does not provide any information about how query answers are
constructed.

• In many cases, we are interested in:
• which data from which relation/source has been used to obtain an answer
• which mappings have been activated
• which ontology axioms have contributed to the answer

• We have developed a framework for provenance/explanation in VKGs, building on provenance
semirings in relational databases [C., Lanti, et al. 2019].

• We have developed a prototype extension of Ontop that supports this framework.

• We are currently running experiments, and working on performance improvement.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (104/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Geospatial extension

Spatial data play an important role in many scenarios.
• Example: find all transactions from the same account that are in two different locations with a

distance greater than 1000 km.

Ontop-spatial (http://ontop-spatial.di.uoa.gr/)
• A prototype extension of Ontop for accessing geospatial data.

• Supports GeoSPARQL query language standardized by the Open Geospatial Consortium
(OGC).

• Use cases: urban development, land management, disaster management.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (105/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Temporal extension

Temporal data play an important role in many scenarios.
• Example 1: find all transactions from the same account that are in two different locations with a

distance greater than 1000 km and within 5 min.

• Example 2: find all customers with at least 3 temporal overlapping loans within the last 5 years.

Ontop-temporal [Güzel Kalayci, Brandt, et al. 2019; Güzel Kalayci, Xiao, et al. 2018]

• A prototype extension of Ontop for accessing temporal data.

• Can express complex temporal patterns.

• Use cases: turbine diagnoses, medical records.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (106/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (107/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Conclusions

• VKGs are by now a mature technology to address the data wrangling and data preparation
problems.

• However, it has been well-investigated and applied in real-world scenarios mostly for the case of
relational data sources.

• Also in that setting, performance and scalability w.r.t. larger datasets (volume), larger and more
complex ontologies (variety, veracity), and multiple heterogeneous data sources (variety,
volume) is a challenge.

• Only recently VKGs have been investigated for alternative types of data, such as temporal data,
noSQL and tree structured data, streaming data (velocity), linked open data, and geo-spatial
data.

• Performance and scalability are even more critical for these more complex domains.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (107/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Further research directions
Theoretical investigations:
• Dealing with data provenance and explanation.
• Dealing with data inconsistency and incompleteness – Data quality!
• Ontology-based update.
• More expressive queries, supporting analytical tasks.
• Coping with evolution of data in the presence of ontological constraints.

From a practical point of view, supporting technologies need to be developed to make the VKG
technology easier to adopt:
• Improving the support for multiple, heterogeneous data sources.
• Techniques for (semi-)automatic extraction/learning of ontology axioms and mapping assertions.
• Techniques and tools for efficient management of mappings and ontology axioms, to support

design, maintenance, and evolution.
• User-friendly ontology querying modalities (graphical query languages, natural language

querying).

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (108/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Outline

1 Motivation

2 Virtual Knowledge Graphs for Data Access

3 VKG Framework

4 VKG Systems and Usecases

5 Query Answering over VKGs

6 Recent Developments and Future Plans

7 Conclusions

8 Hands-on Exercises

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (109/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Basics of VKG system modeling and usage

Instructions

We will use part of the material of the Ontop tutorial
https://ontop-vkg.org/tutorial/

Program

1 Basics of VKG system modeling and usage
• Mapping the first data source
• Mapping the second data source

2 Deploying an Ontop SPARQL endpoint
• Using Ontop CLI
• Using Ontop Docker image
• Using Ontop Tomcat bundle

3 Interacting with an Ontop SPARQL endpoint
• Command line tools (curl, http)
• Python and Jupyter Notebook

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (109/109)

https://ontop-vkg.org/tutorial/

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

Thanks

Thank you for your attention!

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (110/109)

Motivation VKGs for Data Access VKG Framework VKG Systems and Usecases Query Answering Developments Conclusions Hands-on Exercises

A great thank you to all my collaborators

Elena
Botoeva

Benjamin
Cogrel

Julien
Corman

Linfang
Ding

Elem
Güzel

Sarah
Komla Ebri

Davide
Lanti

Martin
Rezk

Mariano
Rodriguez

Muro
Guohui

Xiao

Giuseppe
De Giacomo

Domenico
Lembo

Maurizio
Lenzerini

Antonella
Poggi

Riccardo
Rosati

Roman
Kontchakov

Vladislav
Ryzhikov

Michael
Zakharyaschev

Univ. Roma
“La Sapienza”

Birkbeck College
London

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (111/109)

References References

References I

[1] Natalia Antonioli, Francesco Castanò, Spartaco Coletta, Stefano Grossi, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Emanuela Virardi, and Patrizia Castracane.
“Ontology-based Data Management for the Italian Public Debt”. In: Proc. of the 8th Int. Conf. on
Formal Ontology in Information Systems (FOIS). Vol. 267. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2014, pp. 372–385.

[2] Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
eds. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[3] Daniela Berardi, Diego C., and Giuseppe De Giacomo. “Reasoning on UML Class Diagrams”.
In: Artificial Intelligence 168.1–2 (2005), pp. 70–118.

[4] Sonia Bergamaschi and Claudio Sartori. “On Taxonomic Reasoning in Conceptual Design”. In:
ACM Trans. on Database Systems 17.3 (1992), pp. 385–422.

[5] Alexander Borgida. “Description Logics in Data Management”. In: IEEE Trans. on Knowledge
and Data Engineering 7.5 (1995), pp. 671–682.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (112/109)

References References

References II

[6] Alexander Borgida and Ronald J. Brachman. “Conceptual Modeling with Description Logics”.
In: The Description Logic Handbook: Theory, Implementation and Applications. Ed. by
Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider.
Cambridge University Press, 2003. Chap. 10, pp. 349–372.

[7] Stefan Brüggemann, Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis.
“Ontology-Based Data Access for Maritime Security”. In: Proc. of the 13th Extended Semantic
Web Conf. (ESWC). Vol. 9678. LNCS. Springer, 2016, pp. 741–757. doi:
10.1007/978-3-319-34129-3_45.

[8] Diego C., Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk,
Mariano Rodriguez-Muro, and Guohui Xiao. “Ontop: Answering SPARQL Queries over
Relational Databases”. In: Semantic Web J. 8.3 (2017), pp. 471–487. doi: 10.3233/SW-160217.

[9] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi,
Mariano Rodriguez-Muro, and Riccardo Rosati. “Ontologies and Databases: The DL-Lite
Approach”. In: Reasoning Web: Semantic Technologies for Informations Systems – 5th Int.
Summer School Tutorial Lectures (RW). Ed. by Sergio Tessaris and Enrico Franconi. Vol. 5689.
Lecture Notes in Computer Science. Springer, 2009, pp. 255–356.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (113/109)

https://doi.org/10.1007/978-3-319-34129-3_45
https://doi.org/10.3233/SW-160217

References References

References III

[10] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi,
Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo. “The
Mastro System for Ontology-Based Data Access”. In: Semantic Web J. 2.1 (2011), pp. 43–53.

[11] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
“Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite
Family”. In: J. of Automated Reasoning 39.3 (2007), pp. 385–429.

[12] Diego C., Davide Lanti, Ana Ozaki, Rafael Peñaloza, and Guohui Xiao. “Enriching
Ontology-based Data Access with Provenance”. In: Proc. of the 28th Int. Joint Conf. on Artificial
Intelligence (IJCAI). Int. Joint Conf. on Artificial Intelligence Org., 2019, pp. 1616–1623. doi:
10.24963/ijcai.2019/224.

[13] Diego C., Maurizio Lenzerini, and Daniele Nardi. “Unifying Class-Based Representation
Formalisms”. In: J. of Artificial Intelligence Research 11 (1999), pp. 199–240.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (114/109)

https://doi.org/10.24963/ijcai.2019/224

References References

References IV

[14] Diego C., Pietro Liuzzo, Alessandro Mosca, Jose Remesal, Martin Rezk, and Guillem Rull.
“Ontology-Based Data Integration in EPNet: Production and Distribution of Food During the
Roman Empire”. In: Engineering Applications of Artificial Intelligence 51 (2016), pp. 212–229.
doi: 10.1016/j.engappai.2016.01.005.

[15] Elem Güzel Kalayci, Sebastian Brandt, Diego C., Vladislav Ryzhikov, Guohui Xiao, and
Michael Zakharyaschev. “Ontology-based Access to Temporal Data with Ontop: A Framework
Proposal”. In: Applied Mathematics and Computer Science 29.1 (2019), pp. 17–30. doi:
10.2478/amcs-2019-0002.

[16] Elem Güzel Kalayci, Guohui Xiao, Vladislav Ryzhikov, Tahir Emre Kalayci, and Diego C.
“Ontop-temporal: A Tool for Ontology-based Query Answering over Temporal Data”. In: Proc. of
the 27th ACM Int. Conf. on Information and Knowledge Management (CIKM). 2018,
pp. 1927–1930. doi: 10.1145/3269206.3269230.

[17] Evgeny Kharlamov, Dag Hovland, Martin G. Skjæveland, Dimitris Bilidas, et al. “Ontology
Based Data Access in Statoil”. In: J. of Web Semantics 44 (2017), pp. 3–36. doi:
10.1016/j.websem.2017.05.005.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (115/109)

https://doi.org/10.1016/j.engappai.2016.01.005
https://doi.org/10.2478/amcs-2019-0002
https://doi.org/10.1145/3269206.3269230
https://doi.org/10.1016/j.websem.2017.05.005

References References

References V

[18] Evgeny Kharlamov, Theofilos Mailis, Gulnar Mehdi, Christian Neuenstadt, et al. “Semantic
Access to Streaming and Static Data at Siemens”. In: J. of Web Semantics 44 (2017),
pp. 54–74. doi: 10.1016/j.websem.2017.02.001.

[19] Roman Kontchakov and Michael Zakharyaschev. “An Introduction to Description Logics and
Query Rewriting”. In: Reasoning Web: Reasoning on the Web in the Big Data Era – 10th Int.
Summer School Tutorial Lectures (RW). Vol. 8714. Lecture Notes in Computer Science.
Springer, 2014, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5.

[20] Maurizio Lenzerini and Paolo Nobili. “On the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata”. In: Information Systems 15.4 (1990), pp. 453–461.

[21] Vanessa Lopez, Martin Stephenson, Spyros Kotoulas, and Pierpaolo Tommasi. “Data Access
Linking and Integration with DALI: Building a Safety Net for an Ocean of City Data”. In: Proc. of
the 14th Int. Semantic Web Conf. (ISWC). Vol. 9367. Lecture Notes in Computer Science.
Springer, 2015, pp. 186–202.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (116/109)

https://doi.org/10.1016/j.websem.2017.02.001
https://doi.org/10.1007/978-3-319-10587-1_5

References References

References VI

[22] Niklas Petersen, Lavdim Halilaj, Irlán Grangel-González, Steffen Lohmann, Christoph Lange,
and Sören Auer. “Realizing an RDF-Based Information Model for a Manufacturing Company –
A Case Study”. In: Proc. of the 16th Int. Semantic Web Conf. (ISWC). Vol. 10588. Lecture
Notes in Computer Science. Springer, 2017, pp. 350–366.

[23] Freddy Priyatna, Oscar Corcho, and Juan F. Sequeda. “Formalisation and Experiences of
R2RML-based SPARQL to SQL Query Translation Using morph”. In: Proc. of the 23rd Int.
World Wide Web Conf. (WWW). 2014, pp. 479–490. doi: 10.1145/2566486.2567981.

[24] Anna Queralt, Alessandro Artale, Diego C., and Ernest Teniente. “OCL-Lite: Finite Reasoning
on UML/OCL Conceptual Schemas”. In: Data and Knowledge Engineering 73 (2012), pp. 1–22.

[25] Alireza Rahimi, Siaw-Teng Liaw, Jane Taggart, Pradeep Ray, and Hairong Yu. “Validating an
Ontology-based Algorithm to Identify Patients with Type 2 Diabetes Mellitus in Electronic Health
Records”. In: Int. J. of Medical Informatics 83.10 (2014), pp. 768–778.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (117/109)

https://doi.org/10.1145/2566486.2567981

References References

References VII

[26] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. “Ontology-Based
Data Access: Ontop of Databases”. In: Proc. of the 12th Int. Semantic Web Conf. (ISWC).
Vol. 8218. Lecture Notes in Computer Science. Springer, 2013, pp. 558–573. doi:
10.1007/978-3-642-41335-3_35.

[27] Juan F. Sequeda and Daniel P. Miranker. “Ultrawrap: SPARQL Execution on Relational Data”.
In: J. of Web Semantics 22 (2013), pp. 19–39.

[28] Guohui Xiao, Diego C., Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati, and Michael Zakharyaschev. “Ontology-Based Data Access: A Survey”. In:
Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI). Int. Joint Conf. on Artificial
Intelligence Org., 2018, pp. 5511–5519. doi: 10.24963/ijcai.2018/777.

[29] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego C. “Virtual Knowledge Graphs: An
Overview of Systems and Use Cases”. In: Data Intelligence 1.3 (2019), pp. 201–223. doi:
10.1162/dint_a_00011.

Diego Calvanese (unibz + umu) Virtual Knowledge Graphs for Data Integration BigDat 2020 – 13-17/1/2020 (118/109)

https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011

	Motivation
	Virtual Knowledge Graphs for Data Access
	VKG Framework
	Representing Data in RDF and RDFS
	Ontology Language – OWL2QL
	Query Language – SPARQL
	Mapping Language – R2RML
	VKG Formalization and Query Answering

	VKG Systems and Usecases
	Query Answering over VKGs
	Query rewriting wrt an OWL2QL ontology
	Query unfolding wrt a mapping
	Mapping saturation
	Optimization of query reformulation

	Recent Developments and Future Plans
	Conclusions
	Hands-on Exercises
	Appendix
	References
	

	References

