
Data-aware Processes:
Modeling, Mining, and Verification

Part 3: Verification

Diego Calvanese

Research Centre for Knowledge and Data (KRDB)
Free University of Bozen-Bolzano, Italy

..

KRDB
1

3rd International Winter School on Big Data (BigDat 2017)
13–17/2/2017 – Bari, Italy

Formal verification DCDS Conclusions

Outline

1 Formal verification

2 Verification for Data-Centric Dynamic Systems

3 Conclusions

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (1/36)

Formal verification DCDS Conclusions

Outline

1 Formal verification

2 Verification for Data-Centric Dynamic Systems

3 Conclusions

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (2/36)

Formal verification DCDS Conclusions

Why formal verification?

Errors in computerized systems can be costly.

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Intel offers to

replace faulty chips.

Estimated loss: 475m $

Esploded 37secs after launch.

Cause: uncaught overflow ex-

ception.

Software “glitch” found in anti-

lock braking system.

185,000 cars recalled.

Why verify?
“Testing can only show the presence of errors,
not their absence.” [Edgar Dijkstra]

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (3/36)

Formal verification DCDS Conclusions

Verification via model checking

Process control-flow

(Un)desired property

Finite-state
transition

system

Propositional
temporal
formula

Φ|=

Verification via
model checking

[2007 Turing Award: Clarke, Emerson, Sifakis]

Model checking technology requires the transition system to be finite.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (4/36)

Formal verification DCDS Conclusions

Business process analysis

In BPM, process model analysis is considered the second most influential
topic in the last decade (after process modeling languages) [Aalst 2012].

However:

Data has been abstracted away.

Emphasis has been on the control-flow dimension:
; sophisticated techniques for absence of deadlocks, boundedness,
soundness, or domain-dependent properties expressed in LTL or CTL.

Basic assumption: control-flow is captured by a (possibly infinite-state)
propositional labeled transition system,

labels represent the process tasks/activities

concurrency is represented by interleaving

transition system usually not represented explicitly, but is implicitly
“folded” into a Petri net

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (5/36)

Formal verification DCDS Conclusions

Verification of Petri nets

Verification of Petri nets:

Undecidable in general [Esparza 1997, 1998].

Decidable for safe/bounded nets (transition graph is finite-state).

No satisfactory solution for specification and analysis of data-aware processes:

Colored Petri nets not suited to represent a DB:

Data are variables associated to tokens.
Data are manipulated by procedural attachments to the transition in the net
; Cannot be analyzed!

BPMN (OMG standard) and BPEL (OASIS standard) suffer from similar
problems:

They leave connection between data and process unspecified (e.g., do not
capture atomic task behaviour).
Hence, require to attach a program to every BPMN atomic task or BPEL
service.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (6/36)

Formal verification DCDS Conclusions

Impact of data on verification

The presence of data complicates verification significantly:

States must be modeled relationally rather than propositionally.

The resulting transition system is typically infinite state.

Query languages for analysis need to combine two dimensions:

a temporal dimension to query the process execution flow, and
a first-order dimension to query the data present in the relational structures.

; We need first-order variants of temporal logics.

Model checking data-aware processes becomes immediately undecidable!

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (7/36)

Formal verification DCDS Conclusions

Formal verification of data-aware processes

Process + Data

(Un)desired property

Infinite-state
relational

transition system

First-order
temporal
formula

Φ|=

Standard model checking technology fails!

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (8/36)

Formal verification DCDS Conclusions

Why first-order temporal logics

To inspect data: FO queries

To capture system dynamics: temporal modalities

To track the evolution of objects: FO quantification across states

Example:

It is always the case that every order is eventually either cancelled or paid.

G(∀x.Order(x)→ F(State(x, cancelled) ∨ State(x, paid)))

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (9/36)

Formal verification DCDS Conclusions

Finding the right balance

How can we mediate between:

the form of data-aware processes, and

the expressiveness of the temporal property language

such that

1 we are able to capture notable, real-world scenarios, but

2 verification stays decidable, and possibly efficient.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (10/36)

Formal verification DCDS Conclusions

Dimensions of the verification problem space

We can consider variations of the verification problem that differ along various
dimensions:

1 Static information model

2 Dynamic component

3 Interaction between static and dynamic component

4 Interaction with environment

5 Verification task / language

The richness of the problem space has brought about a great variety of
approaches and results, and it is difficult to compare them and get a
comprehensive picture.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (11/36)

Formal verification DCDS Conclusions

Dim. 1: Static information model

Propositional symbols ; Finite state system

Fixed number of values from an unbounded domain

Full-fledged database:

relational database
tree-structured data, XML
graph-structured data

Moreover:

Presence or absence of constraints, and how they are considered

Data under incomplete information

ontology (with intensional part usually assumed to be fixed)
full-fledged ontology-based data access system

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (12/36)

Formal verification DCDS Conclusions

Dim. 2: Dynamic component

Implicit representation of time vs. implicit progression mechanism vs.
explicit process

When an explicit process is present:

how is the process dynamics represented?
procedural vs. declarative approaches (e.g., finite state machines vs.
rule-based)

Deterministic vs. non-deterministic behaviour

Linear time vs. branching time model

Finite vs. infinite traces

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (13/36)

Formal verification DCDS Conclusions

Dim. 3: Interaction between structure and dynamics

Data is only accessed, but not modified

No new values are inserted

Full-fledged combination of the temporal and structural dimensions

Restrictions play an important role:

restricted forms of querying the data
restricted quantification across time

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (14/36)

Formal verification DCDS Conclusions

Dim. 4: Interaction with environment

Bounded vs. unbounded input

Synchronous vs. asynchronous communication

message passing, possibly with queues
one-way or two-way service calls

Which components are assumed fixed, and which may vary over time:

fixed database vs. varying database vs. varying portion of data

Multiple devices/agents interacting with each other

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (15/36)

Formal verification DCDS Conclusions

Dim. 5: Verification task / language

Type of verification:

Verification of specific temporal properties, e.g., reachability, absence of
deadlock, boundedness, (weak) soundness, . . .

Verification of arbitrary formulas specified in some temporal logic

Checking of properties with queries across the temporal dimension (in the
style of temporal DBs)

Different forms of verification / analysis:

dominance, simulation, containment, equivalence
synthesis from a given specification
composition of available components

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (16/36)

Formal verification DCDS Conclusions

Outline

1 Formal verification

2 Verification for Data-Centric Dynamic Systems

3 Conclusions

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (17/36)

Formal verification DCDS Conclusions

Semantics of DCDSs via transition systems

Semantics of a DCDS S is given in terms of a transition system ΥS :

each state of ΥS has an associated DB over a common schema;

the initial state is associated to the initial DB of the DCDS.

s0

s1

s3

s4

s6

s7

Note: ΥS is in general infinite state:

infinite branching, due to the results of service calls,

infinite runs, since infinitely many DBs may occur along a run;

the DBs associated to the states are of unbounded size.
Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (18/36)

Formal verification DCDS Conclusions

Verification for DCDSs

We are interested in the verification of temporal properties over ΥS .

Idea to overcome infiniteness:

1 Devise a finite-state transition system ΘS that is a faithful abstraction
of ΥS independent of the formula to verify.

2 Reduce the verification problem ΥS |= Φ to the verification of ΘS |= Φ.

Problem: Verification of DCDSs is undecidable even for propositional
reachability properties.
; We need to pose restrictions on DCDSs.

We could draw inspiration from chase termination for tuple-generating
dependencies in data exchange, and specifically from weak-acyclicity.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (19/36)

Formal verification DCDS Conclusions

Restrictions on DCDSs

Run-bounded DCDS

Runs cannot accumulate more than a fixed number of different values.

Transition system is still infinite-state due to infinite branching.

This is a semantic condition, whose checking is undecidable.
; Sufficient syntactic condition: Weak-acyclicity.

Run-boundedness is very restrictive for DCDSs with nondeterministic
services.

State-bounded DCDS

States cannot contain more than a fixed number of different values.

Relaxation of run-boundedness.

Infinite runs are possible.

This is a semantic condition, whose checking is undecidable.
; Sufficient syntactic condition: e.g., GR-acyclicity.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (20/36)

Formal verification DCDS Conclusions

Weak-acyclicity [Fagin et al. 2005]

I0 = {P (a)}

α :

{
P (x) R(x),
R(x) P (s(x))

P (a)

R(a)

s(a) 7→ b

P (b)

s(a) 7→ b

R(b)

s(a) 7→ b
s(b) 7→ c

P (c)

s(a) 7→ b
s(b) 7→ c

R(c)

. . .

I0 = {P (a)}

α :

 P (x) P (x),
P (x) R(s(x))
R(x) Q(s(x))

P (a)

s(a) 7→ b

P (a), R(b)

s(a) 7→ b
s(b) 7→ c

P (a), R(b), Q(c)

(We consider s to be a deterministic service.)

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (21/36)

Formal verification DCDS Conclusions

Weak-acyclicity [Fagin et al. 2005]

I0 = {P (a)}

α :

{
P (x) R(x),
R(x) P (s(x))

P R

*

I0 = {P (a)}

α :

 P (x) P (x),
P (x) R(s(x))
R(x) Q(s(x))

P

R

Q

*
*

(We consider s to be a deterministic service.)

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (21/36)

Formal verification DCDS Conclusions

GR-acyclicity [Bagheri Hariri et al. 2013]

Example

Consider a DCDS with process {true 7→ α()}, a non-deterministic service s, and

α() :

P (x) P (x)
P (x) Q(s(x))
Q(x) Q(x)

We approximate the DCDS data-flow through a dependency graph.

P,1 Q,1*

The system is not state-bounded, due to:

a generate cycle that continuously feeds a path issuing service calls;

a recall cycle that accumulates the obtained results;

(+ the fact that both cycles are simultaneously active).

GR-acycliclity detects exactly these undesired situations.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (22/36)

Formal verification DCDS Conclusions

Verification formalisms for DCDSs

Boundedness is not sufficient for decidability.
We introduce two extensions of the modal µ-calculus µL / LTL with restricted
forms of first order quantification.

History-Preserving quantification: µLA / LTL-FOA

FO quantification ranges over current active domain only.

Examples:
LTL-FOA : ∀x.live(x) ∧ Customer(x)→ F Gold(x)

µLA : ∀x.live(x) ∧ Customer(x)→ µZ.Gold(x) ∨ [−]Z

Persistence-Preserving quantification: µLP / LTL-FOP

FO quantification ranges over persisting individuals only.

Examples:
LTL-FOP : ∀x.live(x) ∧ Gold(x)→ G Gold(x)

µLP : ∀x.live(x) ∧ Gold(x)→ νZ.Gold(x) ∧ live(x) ∧ [−]Z

LTL

µL

µLFO/LTL-FO

µLA/LTL-FOA

µLP /LTL-FOP

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (23/36)

Formal verification DCDS Conclusions

Towards decidability

We need to tame the two sources of infinity in
DCDSs:

infinite branching, due to external input;

infinite runs, i.e., runs visiting infinitely
many DBs.

P(a) P(a)

P(b)

. . .

. . .

. . .

. . .

To prove decidability of model checking for a specific restriction and a specific
verification formalism:

We use bisimulation as a tool.

We show that restricted DCDSs have a finite-state bisimilar transition
system.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (24/36)

Formal verification DCDS Conclusions

Bisimulation between transition systems

States sA and sB of transition systems A and B are bisimilar if:
1 sA and sB are isomorphic;
2 If there exists a state sA1 of A such that sA ⇒A sA1 , then there exists a

state sB1 of B such that sB ⇒B s
B
1 , and sA1 and sB1 are bisimilar;

3 The other direction!

A and B are bisimilar, if their initial states are bisimilar.

A B

sA sB

sA1 sB1

sB2sA2

µL invariance property of bisimulation:

Bisimilar transition systems satisfy the same set of µL properties.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (25/36)

Formal verification DCDS Conclusions

Adapting the notion of bisimulation

History Preserving
Bisimulation Invariant Languages

Persistence Preserving
Bisimulation Invariant Languages

Bisimulation Invariant Languages

L

CTL

µL

LP

µLP

LA

µLA

µLFO
P

ro
p

o
sitio

n
a

l
T

em
p

o
ra

l
L

o
g

ics
F

irst
O

rd
er

T
em

p
o

ra
l

L
o

g
ics

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (26/36)

Formal verification DCDS Conclusions

Decidability of µL extensions for run-bounded systems

Theorem

Verification of µLA over run-bounded DCDSs is decidable and can be reduced
to model checking of propositional µ-calculus over a finite transition system.

Idea: use isomorphic types instead of
actual values.

Remember: runs are bounded!

...

...

...

...

. . .

A-bisimilar

non A-bisimilar

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (27/36)

Formal verification DCDS Conclusions

History preserving bisimulation
{

P (x) P (x) ∧Q(f(x), g(x))
Q(a, a) ∧ P (x) R(x),

I0 = {P (a), Q(a, a)}

P(a) Q(a,a)

f(a)7→b g(a)7→b

P(a) R(a) Q(b,b)

f(a)7→a g(a) 7→a

P(a) R(a) Q(a,a)

f(a)7→c g(a) 7→c

P(a) R(a) Q(c,c)

f(a)7→b g(a)7→b

P(a) Q(b,b)

f(a)7→c g(a) 7→c

P(a) Q(c,c)

. . .

P(a) Q(a,a)

f(a) 7→b g(a) 7→a

P(a) R(a) Q(b,a)

f(a) 7→a g(a) 7→b

P(a) R(a) Q(a,b)

f(a)7→a g(a)7→a

P(a) R(a) Q(a,a)

f(a) 7→b g(a) 7→b

P(a) R(a) Q(b,b)

f(a) 7→b g(a) 7→c

P(a) R(a) Q(b,c)

f(a) 7→a g(a)7→b

P(a) Q(a,b)

f(a) 7→b g(a)7→a

P(a) Q(b,a)

f(a)7→b g(a) 7→b

P(a) Q(b,b)

f(a)7→b g(a) 7→c

P(a) Q(b,c)

The two transition systems are his-
tory preserving bisimilar.
Hence, they satisfy the same set of
µLA properties.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (28/36)

Formal verification DCDS Conclusions

Decidability of µL extensions for state-bounded systems

Theorem

Verification of µLP over state-bounded DCDSs is decidable and can be reduced
to model checking of propositional µ-calculus over a finite transition system.

Steps:

1 Prune infinite branching (isomorphic types).
2 Finite abstraction along the runs:

µLP looses track of previous values that do not
exist anymore.
New values can be replaced with old, non-persisting
ones.
This eventually leads to recycle the old values
without generating new ones.

......

......

......

......

...

...

...

. . .

P-bisimilar

non P-bisimilar

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (29/36)

Formal verification DCDS Conclusions

What about LTL-FO?

For verification of LTL-FO over DCDSs, analogous decidability results hold:

Theorem

Verification of LTL-FOA over run-bounded DCDSs, and
LTL-FOP over state-bounded DCDSs

are decidable and can be reduced to model checking of propositional LTL over a
finite transition system.

Moreover:

Theorem

Verification of LTL-FOA over state-bounded DCDSs is undecidable.

Intuition: LTL-FOA can arbitrarily quantify over the infinitely many values
encountered during a single run, and start comparing them.

Proof is based on a reduction from satisfiability of LTL with freeze quantifiers
over infinite data words.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (30/36)

Formal verification DCDS Conclusions

And verification of µLA over state-bounded DCDSs?

Well-known

Propositional LTL can be expressed in µL, i.e., the propositional µ-calculus.

Folklore “theorem” (see, e.g., [Okamoto 2010])

This correspondence carries over to the FO-variants, i.e., LTL-FO can be
expressed in µLFO.

Note: This, together with the undecidability of LTL-FOA verification over
state-bounded DCDSs, would imply that also:

Verification of µLA over state-bounded DCDSs is undecidable.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (31/36)

Formal verification DCDS Conclusions

Verification of µLFO over state-bounded DCDSs

Instead, the following positive result holds:

Theorem

Verification of µLFO (and hence µLA) over state-bounded DCDSs is decidable.

Relies on the fact that DCDSs generate transition systems that are generic:
Intuitively, if a state s has a successor state s′ with fresh values ~v, then it
has also all successor states that are obtained from s′ by varying in all
possible ways the fresh values ~v.
This is a consequence of the fact that the progression mechanism is
defined by means of a logical specification.

Lemma

For generic TSs (with infinite domain), persistence-preserving bisimilarity
and bisimilarity (and hence history-preserving bisimilarity) coincide.

For TSs of state-bounded DCDSs, we can devise finite state abstractions
that are faithful for µLFO formulas (although such abstractions may
depend on the formula).

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (32/36)

Formal verification DCDS Conclusions

Genericity

We consider isomorphisms ∼h between interpretations, where h is a bijection
between the interpretation domains that preserves relations and constants.

Generic transition system

A TS Υ with domain ∆ is generic if for all states s1, s2 and every bijection
h : ∆ 7→ ∆, if I(s1) ∼h I(s2) and there exists s′1 s.t. s1 → s′1, then there exists
s′2 s.t. s2 → s′2 and I(s′1) ∼h I(s′2).

Note: s1 and s2 can be the same state, hence the existence of a successor state
induces the existence of all successor states isomorphic to it.

DCDS enjoy genericity since:

The progression mechanism is defined by means of a logical specification.

In particular, the semantics of service calls induces the existence of a
successor state for each combination of values returned by the service calls.

It follows that successor states are “indistinguishable” from each other,
modulo isomorphisms on the results of service calls.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (33/36)

Formal verification DCDS Conclusions

Results on decidability of verification for DCDSs

U
n

re
st

ri
ct

ed
D

C
D

S
s

(T
u

ri
n

g
co

m
p

le
te

)

S
ta

te
-b

o
u

n
d

ed
D

C
D

S
s

R
u

n
-b

o
u

n
d

ed
D

C
D

S
s

F
in

it
e-

st
a

te
D

C
D

S
s

GR+-acyclic DCDSs

GR-acyclic DCDSs

Weakly-acyclic DCDSs
for det. services

Finite-range DCDSs

Unrestricted State-bounded Run-bounded Finite-state

LTL-FO / µLFO U U / N ? / N D

LTL-FOA / µLA U U / N D D

LTL-FOP / µLP U D D D

LTL / µL U D D D

D: decidable U: undecidable N: decidable, but no finite abstraction

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (34/36)

Formal verification DCDS Conclusions

Outline

1 Formal verification

2 Verification for Data-Centric Dynamic Systems

3 Conclusions

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (35/36)

Formal verification DCDS Conclusions

Conclusions

There is a huge amount of work carried out in database theory that is
relevant to data-aware process analysis, using a plethora of techniques.

The problem space has several dimensions that partly interact.
; Thorough systematization of the area is still missing.

Many of the works are based on specific restrictions and assumptions that
make them difficult to compare.

Moreover, the positive results appear rather fragile.

Analysis techniques are typically exponential in those data that “change”
; Circumscribing what can be changed is a key point.

The assumptions would need validation also from the practical and
business perspective.
; Requires making frameworks more robust.

Some of the techniques are borrowed from different fields, although
underlying assumptions and objectives might be different.
; Basic assumptions need to be reassessed.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (36/36)

Formal verification DCDS Conclusions

Acknowledgements

Thanks to the many people who contributed interesting ideas, suggestions,
discussions, and collaborated to the presented results.

Giuseppe De Giacomo
Marco Montali

Babak Bagheri Hariri
Riccardo De Masellis

Alin Deutsch
Paolo Felli
Rick Hull

Maurizio Lenzerini
Alessio Lomuscio

Fabio Patrizi
Ario Santoso
Moshe Vardi

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (37/36)

Formal verification DCDS Conclusions

Thank you for your attention!

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (38/36)

References References

References I

[1] Wil M. P. van der Aalst. “A Decade of Business Process Management
Conferences: Personal Reflections on a Developing Discipline”. In: Proc.
of the 10th Int. Conf. on Business Process Management (BPM).
Vol. 7481. Lecture Notes in Computer Science. Springer, 2012, pp. 1–16.

[2] Javier Esparza. “Decidability of Model Checking for Infinite-State
Concurrent Systems”. In: Acta Informatica 34.2 (1997), pp. 85–107.

[3] Javier Esparza. “Decidability and Complexity of Petri Net Problems – An
Introduction”. In: Lectures on Petri Nets I. Lecture Notes in Computer
Science. Springer, 1998, pp. 374–428.

[4] Ronald Fagin et al. “Data Exchange: Semantics and Query Answering”.
In: Theoretical Computer Science 336.1 (2005), pp. 89–124.

[5] Babak Bagheri Hariri et al. “Verification of Relational Data-Centric
Dynamic Systems with External Services”. In: Proc. of the 32nd ACM
SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems
(PODS). 2013.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (39/36)

References References

References II

[6] Keishi Okamoto. “Comparing Expressiveness of First-Order Modal
µ-calculus and First-Order CTL*”. In: RIMS Kokyuroku 1708 (2010),
pp. 1–14.

Diego Calvanese (FUB) Data-aware Processes – Part 3: Verification BigDat 2017 – 16/2/2017 (40/36)

	Formal verification
	Verification for Data-Centric Dynamic Systems
	Conclusions
	Appendix
	References

