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The DL-Lite family

A family of DLs optimized according to the tradeoff between expressive
power and complexity of query answering, with emphasis on data.

Carefully designed to have nice computational properties for answering
UCQs (i.e., computing certain answers):

The same data complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally expressive
ontology languages enjoying these nice computational properties.

Captures conceptual modeling formalism.

The DL-Lite family provides new foundations for Ontology-Based Data Access.
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Basic features of DL-LiteA

DL-LiteA is an expressive member of the DL-Lite family.

Takes into account the distinction between objects and values:

Objects are elements of an abstract interpretation domain.
Values are elements of concrete data types, such as integers, strings, ecc.
Values are connected to objects through attributes (rather than roles).

Captures most of UML class diagrams and Extended ER diagrams.

Enjoys nice computational properties, both w.r.t. the traditional reasoning
tasks, and w.r.t. query answering (see later).
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The OWL 2 QL Profile

OWL 2 defines three profiles: OWL 2 QL, OWL 2 EL, OWL 2 RL [Motik et al.,

2009]

Each profile corresponds to a syntactic fragment (i.e., a sub-language) of
OWL 2 DL that is targeted towards a specific use.

The restrictions in each profile guarantee better computational properties
than those of OWL 2 DL.

The OWL 2 QL profile is derived from the DLs of the DL-Lite family:

“[It] includes most of the main features of conceptual models such as UML
class diagrams and ER diagrams.”

“[It] is aimed at applications that use very large volumes of instance data,
and where query answering is the most important reasoning task. In
OWL 2 QL, conjunctive query answering can be implemented using
conventional relational database systems.”

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (7/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Syntax and semantics of DL-Lite Part 3: Ontology Based Data Access

Outline of Part 3

1 The DL-Lite family of tractable Description Logics
Basic features of DL-Lite
Syntax and semantics of DL-Lite
Members of the DL-Lite family
Properties of DL-Lite

2 Reasoning in DL-Lite

3 Linking ontologies to relational data

4 Conclusions and further work

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (8/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Syntax and semantics of DL-Lite Part 3: Ontology Based Data Access

Syntax of the DL-LiteA description language

Role expressions (object properties in OWL 2 QL)

atomic role: P
basic role: Q ::= P | P−
arbitrary role: R ::= Q | ¬Q (to express disjointness)

Concept expressions (classes in OWL 2 QL):

atomic concept: A
basic concept: B ::= A | ∃Q | δ(U)
arbitrary concept: C ::= >C | B | ¬B (to express disjointness)

Attribute expressions (data properties in OWL 2 QL):

atomic attribute: U
arbitrary attribute: V : = U | ¬U (to express disjointness)

Value-domain expressions (datatypes in OWL 2 QL):

attribute range: ρ(U)
RDF datatypes: Ti

top domain: >D
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Semantics of DL-LiteA – Objects vs. values

Objects Values

Interpretation domain ∆I Domain of objects ∆ I
O Domain of values ∆ I

V

Alphabet Γ of constants Object constants ΓO Value constants ΓV

cI ∈ ∆ I
O dI = val(d) given a priori

Unary predicates Concept C RDF datatype Ti

CI ⊆ ∆ I
O T Ii ⊆ ∆ I

V given a priori

Binary predicates Role R Attribute V

RI ⊆ ∆ I
O ×∆ I

O V I ⊆ ∆ I
O ×∆ I

V
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Semantics of the DL-LiteA constructs

Construct Syntax Example Semantics

atomic role P child P I ⊆ ∆ I
O ×∆ I

O

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆ I

O ×∆ I
O ) \QI

atomic concept A Doctor AI ⊆ ∆ I
O

existential restriction ∃Q ∃child− {o | ∃o′. (o, o′) ∈ QI}
concept negation ¬B ¬∃child ∆I \BI
attribute domain δ(U) δ(salary) {o | ∃v. (o, v) ∈ UI}
top concept >C >IC = ∆ I

O

atomic attribute U salary UI ⊆ ∆ I
O ×∆ I

V

attribute negation ¬U ¬salary (∆ I
O ×∆ I

V ) \ UI

top domain >D >ID = ∆ I
V

datatype Ti xsd:int T Ii ⊆ ∆ I
V (predefined)

attribute range ρ(U) ρ(salary) {v | ∃o. (o, v) ∈ UI}
object constant c john cI ∈ ∆ I

O

value constant d ’john’ val(d) ∈ ∆ I
V (predefined)
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DL-LiteA assertions

TBox assertions can have the following forms:

Inclusion assertions (also called positive inclusions):

B1 v B2 concept inclusion

Q1 v Q2 role inclusion

ρ(U) v Ti value-domain inclusion

U1 v U2 attribute inclusion

Disjointness assertions (also called negative inclusions):

B1 v ¬B2 concept disjointness

Q1 v ¬Q2 role disjointness U1 v ¬U2 attribute disjointness

Functionality assertions:

(funct Q) role functionality (funct U) attribute functionality

Identification assertions: (id B I1, . . . , In)
where each Ij is a role, an inverse role, or an attribute

ABox assertions: A(c), P (c, c′), U(c, d),
where c, c′ are object constants and d is a value constant
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Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

conc. incl. B1 v B2 Father v ∃child BI1 ⊆ BI2
role incl. Q1 v Q2 father v anc QI1 ⊆ QI2
v.dom. incl. ρ(U) v Ti ρ(age) v xsd:int ρ(U)I ⊆ T Ii
attr. incl. U1 v U2 offPhone v phone UI1 ⊆ UI2
conc. disj. B1 v ¬B2 Person v ¬Course BI1 ⊆ (¬B2)I

role disj. Q1 v ¬Q2 sibling v ¬cousin QI1 ⊆ (¬Q2)I

attr. disj. U1 v ¬U2 offPhn v ¬homePhn UI1 ⊆ (¬U2)I

role funct. (funct Q) (funct father) ∀o, o1, o2.(o, o1) ∈ QI ∧
(o, o2) ∈ QI → o1 = o2

att. funct. (funct U) (funct ssn) ∀o, v, v′.(o, v) ∈ UI ∧
(o, v′) ∈ UI → v = v′

id const. (id B I1, . . . , In) (id Person name, dob) I1, . . . , In identify
instances of B

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI
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DL-LiteA – Example

Staff
name: String
ssn: Integer

Actor

SeriesActor MovieActor

Movie
mName: String

1..?

respFor
H

1..?

worksFor
H

1..?

1..?

playsInM
N

1..?

{disjoint}

Actor v Staff
SeriesActor v Actor
MovieActor v Actor
SeriesActor v ¬MovieActor

Staff v δ(ssn)
δ(ssn) v Staff
ρ(ssn) v xsd:int

(funct ssn)
(id Staff ssn)

∃worksFor v Staff
∃worksFor− v Movie

Staff v ∃worksFor
Movie v ∃worksFor−

(funct playsInM)
(funct playsInM−)

playsInM v worksFor
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).
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Restriction on TBox assertions in DL-LiteA ontologies

We will see that, to ensure the good computational properties that we aim at,
we have to impose a restriction on the use of functionality and role/attribute
inclusions.

Restriction on DL-LiteA TBoxes

No functional or identifying role or attribute can be specialized
by using it in the right-hand side of a role or attribute inclusion assertion.

Formally:

If (funct P ), (funct P−), (id B . . . , P, . . .), or (id B . . . , P−, . . .) is in T ,
then Q v P and Q v P− are not in T .

If (funct U) or (id B . . . , U, . . .) is in T , then U ′ v U is not in T .
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DL-LiteF and DL-LiteR

We consider also two sub-languages of DL-LiteA (that trivially obey the
previous restriction):

DL-LiteF : Allows for functionality assertions, but does not allow for role
inclusion assertions.

DL-LiteR: Allows for role inclusion assertions, but does not allow for
functionality assertions.
This is the DL that corresponds to the OWL 2 QL profile.

Note: We simply use DL-Lite to refer to any of the logics of the DL-Lite family.
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Mandatory participation to relations A1 v ∃P A2 v ∃P−

Domain and range of relations ∃P v A1 ∃P− v A2

Functionality of relations (funct P ) (funct P−)

ISA between relations Q1 v Q2

Disjointness between relations Q1 v ¬Q2

Domain and range of attributes δ(U) v A ρ(U) v Ti
Mandatory and functional attributes A v δ(U) (funct U)

Identification constraints (id A P, . . . , P ′−, . . . , U, . . .)
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Properties of DL-Lite

The TBox may contain cyclic dependencies (which typically increase the
computational complexity of reasoning).

Example: A v ∃P , ∃P− v A

In the syntax, we have not included u on the right hand-side of inclusion
assertions, but it can trivially be added, since

B v C1 u C2 is equivalent to
B v C1

B v C2

A domain assertion on role P has the form: ∃P v A1

A range assertion on role P has the form: ∃P− v A2

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (20/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Properties of DL-Lite Part 3: Ontology Based Data Access

Finite model property

DL-LiteF (and DL-LiteA) does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat u ¬∃succ− (funct succ−)

ABox A: Zero(0)

O = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning w.r.t. finite
models only.

Notice that instead DL-LiteR does enjoy the finite model property.
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Remarks

In the following, we ignore the distinction between objects and values, since it is
not relevant for reasoning. Hence we do not use value domains and attributes.

Notation:

When the distinction between DL-LiteR, DL-LiteF , or DL-LiteA is not
important, we use just DL-Lite.

Q denotes a basic role, i.e., Q −→ P | P−.

R denotes a general role, i.e., R −→ Q | ¬Q.

C denotes a general concept, i.e., C −→ A | ¬A | ∃Q | ¬∃Q,
where A is an atomic concept.
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Reasoning services

One can show that in DL-Lite all TBox reasoning services can be reduced to
ontology satisfiability.

Hence, in the following, we concentrate on:

Ontology satisfiability: Verify whether an ontology O is satisfiable, i.e.,
whether O admits at least one model.

Query answering: Given a query q over an ontology O, find all tuples ~c of
constants such that O |= q(~c).
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Query answering vs. ontology satisfiability

In the case in which an ontology is unsatisfiable, according to the “ex falso
quod libet” principle, reasoning is trivialized.

In particular, query answering is meaningless, since every tuple is in the
answer to every query.

We are not interested in encoding meaningless query answering into the
perfect reformulation of the input query. Therefore, before query
answering, we will always check ontology satisfiability to single out
meaningful cases.

Thus, we proceed as follows:

1 We show how to do query answering over satisfiable ontologies.

2 We show how we can exploit the query answering algorithm also to check
ontology satisfiability.
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Query answering over satisfiable ontologies

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute cert(q,O) as
follows:

1 Using T , rewrite q into a UCQ rq,T (the perfect rewriting of q w.r.t. T ).

2 Evaluate rq,T over A (simply viewed as data), to return cert(q,O).

Correctness of this procedure shows FOL-rewritability of query answering in
DL-Lite.
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Positive vs. negative inclusions

We call positive inclusions (PIs) assertions of the form

A1 v A2

A1 v ∃Q2

∃Q1 v A2

∃Q1 v ∃Q2
Q1 v Q2

We call negative inclusions (NIs) assertions of the form

A1 v ¬A2

A1 v ¬∃Q2

∃Q1 v ¬A2

∃Q1 v ¬∃Q2
Q1 v ¬Q2
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Query rewriting

Consider the query q(x) ← Professor(x)

Intuition: Use the PIs as basic rewriting rules:

AssistantProf v Professor
as a logic rule: Professor(z) ← AssistantProf(z)

Basic rewriting step:

when an atom in the query unifies with the head of the rule,

substitute the atom with the body of the rule.

We say that the PI inclusion applies to the atom.

In the example, the PI AssistantProf v Professor applies to the atom
Professor(x). Towards the computation of the perfect rewriting, we add to the
input query above, the query

q(x) ← AssistantProf(x)
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Query rewriting (cont’d)

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI ∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

The PI applies to the atom Course(y), and we add to the perfect rewriting the
query

q(x) ← teaches(x, y), teaches(z1, y)

Consider now the query q(x) ← teaches(x, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI applies to the atom teaches(x, y), and we add to the perfect rewriting
the query

q(x) ← Professor(x)
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Query rewriting – Constants

Conversely, for the query q(x) ← teaches(x, fl)

and the same PI as before Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

teaches(x, fl) does not unify with teaches(z, f(z)), since the skolem term
f(z) in the head of the rule does not unify with the constant fl.
Remember: We adopt the unique name assumption.

In this case, we say that the PI does not apply to the atom teaches(x, fl).

The same holds for the following query, where y is distinguished, since unifying
f(z) with y would correspond to returning a skolem term as answer to the
query:

q(x, y) ← teaches(x, y)
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Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished
variables holds when the atom contains join variables that would have to be
unified with skolem terms.

Consider the query q(x) ← teaches(x, y),Course(y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

The PI above does not apply to the atom teaches(x, y).
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Query rewriting – Reduce step

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the PI Professor v ∃teaches
as a logic rule: teaches(z, f(z)) ← Professor(z)

This PI does not apply to teaches(x, y) or teaches(z, y), since y is in join, and
we would again introduce the skolem term in the rewritten query.

However, we can transform the above query by unifying the atoms teaches(x, y)
and teaches(z, y). This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y)

Now, we can apply the PI above, and add to the rewriting the query

q(x) ← Professor(x)
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Query rewriting – Summary

Reformulate the CQ q into a set of queries:

Apply to q and the computed queries in all possible ways the PIs in T :

A1 v A2 . . . , A2(x), . . . ; . . . , A1(x), . . .
∃P v A . . . , A(x), . . . ; . . . , P (x, ), . . .
∃P− v A . . . , A(x), . . . ; . . . , P ( , x), . . .
A v ∃P . . . , P (x, ), . . . ; . . . , A(x), . . .
A v ∃P− . . . , P ( , x), . . . ; . . . , A(x), . . .
∃P1 v ∃P2 . . . , P2(x, ), . . . ; . . . , P1(x, ), . . .
P1 v P2 . . . , P2(x, y), . . . ; . . . , P1(x, y), . . .
· · ·

(’ ’ denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory
participation to obtain new queries that could contribute to the answer.

Apply in all possible ways unification between atoms in a query.

Unifying atoms can make rules applicable that were not so before, and is
required for completeness of the method.

The UCQ resulting from this process is the perfect rewriting rq,T .
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Query rewriting algorithm

Algorithm PerfectRef(Q, TP )
Input: union of conjunctive queries Q, set of DL-LiteA PIs TP
Output: union of conjunctive queries PR
PR := Q;
repeat
PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each PI I in TP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:

Termination follows from having only finitely many different rewritings.

NIs or functionalities do not play any role in the rewriting of the query.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (35/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Query answering over satisfiable ontologies Part 3: Ontology Based Data Access

Query answering in DL-Lite – Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches( , y)
q(x)← teaches(x, )
q(x)← Professor(x)

ABox: teaches(john, fl)
Professor(mary)

It is easy to see that evaluating the perfect rewriting over the ABox viewed as a
database produces as answer {john, mary}.
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Query answering in DL-Lite – An interesting example

TBox: Person v ∃hasFather
∃hasFather− v Person

ABox: Person(mary)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, )
� Apply Person v ∃hasFather to the atom hasFather(y2, )

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
� Apply ∃hasFather− v Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather( , y2)
� Unify atoms hasFather(y1, y2) and hasFather( , y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
�
· · ·

q(x)← Person(x), hasFather(x, )
� Apply Person v ∃hasFather to the atom hasFather(x, )

q(x)← Person(x)

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (37/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Query answering over satisfiable ontologies Part 3: Ontology Based Data Access

Query answering over satisfiable DL-Lite ontologies

For an ABox A and a query q over A, let Evalcwa(q,A) denote the evaluation
of q over A considered as a database (i.e., considered under the CWA).

Theorem

Let T be a DL-Lite TBox, TP the set of PIs in T , and q a CQ over T .
Then, for each ABox A such that 〈T ,A〉 is satisfiable, we have that

cert(q, 〈T ,A〉) = Evalcwa(PerfectRef(q, TP ),A).

As a consequence, query answering over a satisfiable DL-Lite ontology is
FOL-rewritable.

Notice that we did not use NIs or functionality assertions of T in computing
cert(q, 〈T ,A〉. Indeed, when the ontology is satisfiable, we can ignore NIs
and functionality assertions for query answering.
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Query answering over satisfiable ontologies Part 3: Ontology Based Data Access

Canonical model of a DL-Lite ontology

The proof of the previous result exploits a fundamental property of DL-Lite,
that relies on the following notion.

Def.: Canonical model

Let O = 〈T ,A〉 be a DL-Lite ontology. A model IO of O is called canonical if
for every model I of O there is a homomorphism from IO to I.

Theorem

Every satisfiable DL-Lite ontology has a canonical model.

Properties of the canonical models of a DL-Lite ontology:

A canonical model is in general infinite.

All canonical models are homomorphically equivalent, hence we can do as
if there was a single canonical model.
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Query answering in DL-Lite – Canonical model

From the definition of canonical model, and since homomorphisms are closed
under composition, we get that:

To compute the certain answer to a query q over an ontology O, one could in
principle evaluate q over a canonical model IO of O.

This does not give us directly an algorithm for query answering over an
ontology O = 〈T ,A〉, since IO may be infinite.

However, one can show that evaluating q over IO amounts to evaluating
the perfect rewriting rq,T over A.
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Ontology satisfiability Part 3: Ontology Based Data Access

Satisfiability of ontologies with only PIs

Let us now consider the problem of establishing whether an ontology is
satisfiable.

A first notable result tells us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be a DL-Lite ontology where T contains only PIs.
Then, O is satisfiable.
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Satisfiability of DL-LiteA ontologies

Unsatisfiability in DL-LiteA ontologies can be caused by NIs or by
functionality assertions.

Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: Student(john)
teaches(john, fl)
teaches(michael, fl)
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Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 is reduced to evaluating over
DB(A) a UCQ that asks for the existence of objects violating the NI and
functionality assertions.

Let TP the set of PIs in T .
We deal with NIs and functionality assertions differently.

For each NI N ∈ T :

1 we construct a boolean CQ qN () such that

〈TP ,A〉 |= qN () iff 〈TP ∪ {N},A〉 is unsatisfiable

2 We check whether 〈TP ,A〉 |= qN () using PerfectRef , i.e., we compute
PerfectRef(qN , TP ), and evaluate it over DB(A).

For each functionality assertion F ∈ T :

1 we construct a boolean CQ qF () such that

A |= qF () iff 〈{F},A〉 is unsatisfiable.

2 We check whether A |= qF (), by simply evaluating qF over DB(A).
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Checking violations of negative inclusions

For each NI N in T we compute a boolean CQ qN () according to the following
rules:

A1 v ¬A2 ; qN ()← A1(x), A2(x)
∃P v ¬A or A v ¬∃P ; qN ()← P (x, y), A(x)
∃P− v ¬A or A v ¬∃P− ; qN ()← P (y, x), A(x)
∃P1 v ¬∃P2 ; qN ()← P1(x, y), P2(x, z)
∃P1 v ¬∃P−2 ; qN ()← P1(x, y), P2(z, x)
∃P−1 v ¬∃P2 ; qN ()← P1(x, y), P2(y, z)
∃P−1 v ¬∃P

−
2 ; qN ()← P1(x, y), P2(z, y)

P1 v ¬P2 or P−1 v ¬P
−
2 ; qN ()← P1(x, y), P2(x, y)

P−1 v ¬P2 or P1 v ¬P−2 ; qN ()← P1(x, y), P2(y, x)
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Ontology satisfiability Part 3: Ontology Based Data Access

Checking violations of negative inclusions – Example

PIs TP : ∃teaches v Professor
NIs N : Professor v ¬Student

Query qN : qN ()← Student(x),Professor(x)

Perfect Rewriting: qN ()← Student(x),Professor(x)
qN ()← Student(x), teaches(x, )

ABox A: teaches(john, fl)
Student(john)

It is easy to see that 〈TP ,A〉 |= qN (), and that the ontology
〈TP ∪ {Professor v ¬Student}, A〉 is unsatisfiable.
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Boolean queries vs. non-boolean queries for NIs

To ensure correctness of the method, the queries used to check for the violation
of a NI need to be boolean.

Example

TBox T : A1 v ¬A0

A1 v A0

∃P v A1

A2 v ∃P−
ABox A: A2(c)

Since A1, P , and A2 are unsatisfiable, also 〈T ,A〉 is unsatisfiable.

Consider the query corresponding to the NI A1 v ¬A0.

qN ()← A1(x), A0(x)

Then PerfectRef(qN , TP ) is:

qN ()← A1(x), A0(x)
qN ()← A1(x)
qN ()← P (x, )
qN ()← A2( )

We have that 〈TP ,A〉 |= qN ().

q′N (x)← A1(x), A0(x)

Then PerfectRef(q′N , TP ) is

q′N (x)← A1(x), A0(x)
q′N (x)← A1(x)
q′N (x)← P (x, )

cert(q′N , 〈TP ,A〉) = ∅, hence q′N (x)
does not detect unsatisfiability.
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Checking violations of functionality assertions

For each functionality assertion F in T we compute a boolean FOL query
qF () according to the following rules:

(funct P ) ; qF ()← P (x, y), P (x, z), y 6= z
(funct P−) ; qF ()← P (x, y), P (z, y), x 6= z

Example

Functionality F : (funct teaches−)

Query qF : qF ()← teaches(x, y), teaches(z, y), x 6= z

ABox A: teaches(john, fl)
teaches(michael, fl)

It is easy to see that A |= qF (), and that 〈{(funct teaches−)},A〉, is
unsatisfiable.
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From satisfiability to query answering in DL-LiteA

Lemma (Separation for DL-LiteA)

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T such that 〈TP ,A〉 |= qN ().

(b) There exists a functionality assertion F ∈ T such that A |= qF ().

(a) relies on the properties that NIs do not interact with each other, and
that interaction between NIs and PIs is captured through PerfectRef .

(b) exploits the property that NIs and PIs do not interact with
functionalities: indeed, no functionality assertion is contradicted in a DL-LiteA
ontology O, beyond those explicitly contradicted by the ABox.

Notably, to check ontology satisfiability, each NI and each functionality
assertion can be processed individually.
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FOL-rewritability of satisfiability in DL-LiteA

From the previous lemma and the theorem on query answering for satisfiable
DL-LiteA ontologies, we get the following result.

Theorem

Let O = 〈T ,A〉 be a DL-LiteA ontology, and TP the set of PIs in T .
Then, O is unsatisfiable iff one of the following condition holds:

(a) There exists a NI N ∈ T s.t. Evalcwa(PerfectRef(qN , TP ),A) returns true.

(b) There exists a func. assertion F ∈ T s.t. Evalcwa(qF ,A) returns true.

Note: All the queries qN () and qF () can be combined into a single UCQ.
Hence, satisfiability of a DL-LiteA ontology is reduced to evaluating a
FOL-query over an ontology whose TBox consists of positive inclusions only
(and hence is satisfiable).
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Complexity of reasoning in DL-Lite Part 3: Ontology Based Data Access

Complexity results for DL-Lite

TBox reasoning

PTime in the size of the TBox (schema complexity)

Ontology satisfiability

PTime in the size of the ontology (combined complexity)

AC0 in the size of the ABox (data complexity)

Query answering

NP-complete in the size of query and ontology (combined complexity)

PTime in the size of the ontology (schema+data complexity)

AC0 in the size of the ABox (data complexity)

Can we further extend these results to more expressive ontology languages?
Essentially NO!

(unless we take particular care)
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Complexity of reasoning in DL-Lite Part 3: Ontology Based Data Access

Beyond DL-LiteA: results on data complexity

Essentially all extensions of DL-Lite with additional DL constructs, or with
combinations of constructs that are not legal in DL-Lite, make it lose its nice
computational properties [Calvanese et al., 2013b].

Lhs
of inclusions

Rhs
of inclusions Funct.

Role
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion AL v AT tAF

suffices! ; No hope of including covering constraints.
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Combining functionalities and role inclusions

One can show that, by including in DL-Lite both functionality of roles and role
inclusions without restrictions on their interaction [Artale et al., 2009]:

query answering becomes PTime-hard in data complexity;

the complexity of TBox reasoning jumps from NLogSpace to
ExpTime-complete.

Recall that, when the data complexity of query answering is above AC0, the DL does

not enjoy FOL-rewritability.

As a consequence of these results, we get:

The restriction on the interaction of functionality and role inclusions of
DL-LiteA is necessary:

to preserve FOL-rewritability of query answering and ontology satisfiability;

to guarantee efficient reasoning on the TBox (i.e., at the schema level).
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The impedance mismatch problem Part 3: Ontology Based Data Access

Data in external sources

There are several situations where the assumptions of having the data in an
ABox managed directly by the ontology system (e.g., a Description Logics
reasoner) is not feasible or realistic:

When the ABox is very large, so that it requires relational database
technology.

When we have no direct control over the data since it belongs to some
external organization, which controls the access to it.

When multiple data sources need to be accessed, such as in Information
Integration.

We would like to deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by leveraging the
capabilities of the relational engine.
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The impedance mismatch problem Part 3: Ontology Based Data Access

Ontology-based data access: Architecture

The architecture of an OBDA system is
based on three main components:

Ontology: provides a unified,
conceptual view of the managed
information.

Data source(s): are external and
independent (possibly multiple and
heterogeneous).

Mappings: semantically link data
at the sources with the ontology.

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries
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The impedance mismatch problem Part 3: Ontology Based Data Access

The impedance mismatch problem

We have to deal with the impedance mismatch problem:

Sources store data, which is constituted by values taken from concrete
domains, such as strings, integers, codes, . . .

Instead, instances of concepts and relations in an ontology are (abstract)
objects.

Solution:

We need to specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the ontology.

This specification is embedded in the mappings between the data sources
and the ontology.

Note: the ABox is only virtual, and the objects are not materialized.
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The impedance mismatch problem Part 3: Ontology Based Data Access

Solution to the impedance mismatch problem

We need to define a mapping language that allows for specifying how to
transform data into abstract objects:

Each mapping assertion maps:

a query that retrieves values from a data source to . . .
a set of atoms specified over the ontology.

Basic idea: use Skolem functions in the atoms over the ontology to
“generate” the objects from the data values.

Semantics of mappings:

Objects are denoted by terms (of exactly one level of nesting).
Different terms denote different objects (i.e., we make the unique name
assumption on terms).
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Impedance mismatch – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

Actual data is stored in a DB:
– An employee is identified by her SSN.
– A project is identified by its name.

D1[SSN: String,PrName: String]
Employees and projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Intuitively:

An employee should be created from her SSN: pers(SSN)

A project should be created from its name: proj(PrName)

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (61/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

The impedance mismatch problem Part 3: Ontology Based Data Access

Creating object identifiers

We need to associate to the data in the tables objects in the ontology.

We introduce an alphabet Λ of function symbols, each with an associated
arity.

To denote values, we use value constants from an alphabet ΓV .

To denote objects, we use object terms instead of object constants.
An object term has the form f(d1, . . . , dn), with f ∈ Λ, and each di a value
constant in ΓV .

Example

If a person is identified by her SSN, we can introduce a function symbol
pers/1. If VRD56B25 is a SSN, then pers(VRD56B25) denotes a person.

If a person is identified by her name and dateOfBirth, we can introduce a
function symbol pers/2. Then pers(Vardi, 25/2/56) denotes a person.
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Mapping assertions

Mapping assertions are used to extract the data from the DB to populate the
ontology.

We make use of variable terms, which are like object terms, but with variables
instead of values as arguments of the functions.

A mapping assertion between a database with schema S and a TBox T has
the form

Φ(~x) ; Ψ(~t, ~y)
where

Φ is an arbitrary SQL query of arity n > 0 over S;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables;

~x, ~y are variables, with ~y ⊆ ~x;

~t are variable terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x.
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Mapping assertions – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

D1[SSN: String,PrName: String]
Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s code with salary

D3[Code: String,SSN: String]
Employee’s code with SSN

. . .

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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The impedance mismatch problem Part 3: Ontology Based Data Access

Concrete mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:

They assume that the ontology is populated in terms of RDF triples.

Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML

Most popular RDB to RDF mapping language

W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

R2RML mappings are themselves expressed as RDF graphs and written in
Turtle syntax.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ObdalibObdaTurtlesyntax
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OBDA systems Part 3: Ontology Based Data Access

Ontology-based data access: Formalization

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries

To formalize OBDA, we distinguish between the
intensional and the extensional level information.

An OBDA specification is a triple P = 〈T ,S,M〉, where:

T is a DL TBox providing the intensional level of an ontology.

S is a (possibly federated) relational database schema for the data sources,
possibly with constraints;

M is a set of mapping assertions between T and S.

An OBDA system is a pair O = 〈P,D〉, where

P = 〈T ,S,M〉 is an OBDA specification, and

D is a relational database compliant with S.
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OBDA systems Part 3: Ontology Based Data Access

Semantics of an OBDA system: Intuition

In an OBDA system, the mapping M encodes how the data D in the source(s)
S should be used to populate the elements of the TBox T .

 Ontology-based
 Data Access

Virtual data layer

Source Source
Source

 Ontology

Mapping

Queries
The data D and the mapping M define a virtual
data layer V, which behaves like a (virtual) ABox.

Queries are answered w.r.t. T and V.

One aim is to avoid materializing the data of
V.

Instead, the intensional information in T and
M is used to translate queries over T into
queries formulated over S.

OBDA vs. Ontology Based Query Answering (OBQA)

OBDA relies on OBQA to process queries w.r.t. the TBox T , but in addition is
concerned with efficiently dealing with the mapping M.

OBDA should not be confused with OBQA.
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OBDA systems Part 3: Ontology Based Data Access

Semantics of mappings

To formally define the semantics of an OBDA system O = 〈P,D〉, where
P = 〈T ,S,M〉, we first need to define the semantics of mappings.

Satisfaction of a mapping assertion with respect to a database

An interpretation I satisfies a mapping assertion Φ(~x) ; Ψ(~t, ~y) in M with
respect to a database D for S, if for each tuple of values ~v ∈ Eval(Φ,D), and
for each ground atom in Ψ[~x/~v], we have that:

if the ground atom is A(s), then sI ∈ AI .

if the ground atom is P (s1, s2), then (sI1 , s
I
2 ) ∈ P I .

Intuitively, I satisfies Φ ; Ψ w.r.t. D if all facts obtained by evaluating Φ
over D and then propagating the answers to Ψ, hold in I.

Note: Eval(Φ,D) denotes the result of evaluating Φ over the database D.
Ψ[~x/~v] denotes Ψ where each xi has been substituted with vi.
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Semantics of mappings – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

D1: SSN PrName
23AB optique
· · · · · ·

D2: Code Salary
e23 1500
· · · · · ·

D3: Code SSN
e23 23AB
· · · · · ·

The following interpretation I satisfies the mapping assertions m1 and m2

with respect to the above database:
I : ∆ I

O = {pers(23AB), proj(optique), . . .}, ∆ I
V = {optique, 1500, . . .}

EmployeeI = {pers(23AB), . . .}, ProjectI = {proj(optique), . . .},
projectNameI = {(proj(optique), optique), . . .},
worksForI = {(pers(23AB), proj(optique)), . . . },
salaryI = {(pers(23AB), 1500), . . .}

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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OBDA systems Part 3: Ontology Based Data Access

Semantics of an OBDA system

 Ontology-based
 Data Access

Source Source
Source

 Ontology

Mapping

Queries

Model of an OBDA system

An interpretation I is a model of O = 〈P,D〉,
with P = 〈T ,S,M〉, if:

I is a model of T , and

I satisfies M w.r.t. D, i.e.,
I satisfies every assertion in M w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model.
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Query answering in OBDA systems Part 3: Ontology Based Data Access

Answering queries over an OBDA system

In an OBDA system O = 〈P,D〉, where P = 〈T ,S,M〉
Queries are posed over the TBox T .

The data needed to answer queries is stored in the database D.

The mapping M is used to bridge the gap between T and S.

Two approaches to exploit the mapping:

bottom-up approach: simpler, but less efficient

top-down approach: more sophisticated, but also more efficient

Note: Both approaches require to first split the TBox queries in the mapping
assertions into their constituent atoms.
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Splitting of mappings

A mapping assertion Φ ; Ψ, where the TBox query Ψ is constituted by the
atoms X1,. . . ,Xk, can be split into several mapping assertions:

Φ ; X1 · · · Φ ; Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

is split into
m1

1: SELECT SSN, PrName FROM D1 ; Employee(pers(SSN))
m2

1: SELECT SSN, PrName FROM D1 ; Project(proj(PrName))
m3

1: SELECT SSN, PrName FROM D1 ; projectName(proj(PrName), PrName)
m4

1: SELECT SSN, PrName FROM D1 ; worksFor(pers(SSN), proj(PrName))
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Bottom-up approach to query answering

Consists in a straightforward application of the mappings:

1 Propagate the data from D through M, materializing an ABox AM,D (the
constants in such an ABox are values and object terms).

2 Apply to AM,D and to the TBox T , the satisfiability and query answering
algorithms developed for DL-LiteA.

This approach has several drawbacks (hence is only theoretical):

The technique is no more AC0 in the data, since the ABox AM,D to
materialize is in general polynomial in the size of the data.

AM,D may be very large, and thus it may be infeasible to actually
materialize it.

Freshness of AM,D with respect to the underlying data source(s) may be
an issue, and one would need to propagate source updates (cf. Data
Warehousing).
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Query answering in OBDA systems Part 3: Ontology Based Data Access

Top-down approach to query answering

Consists of three steps:

1 Reformulation: Compute the perfect reformulation
qpr = PerfectRef(q, TP ) of the original query q, using the inclusion
assertions of the TBox T (see later).

2 Unfolding: Compute from qpr a new query qunf by unfolding qpr using
(the split version of) the mappings M.

Essentially, each atom in qpr that unifies with an atom in Ψ is substituted
with the corresponding query Φ over the database.
The unfolded query is such that Eval(qunf ,D) = Eval(qpr ,AM,D).

3 Evaluation: Delegate the evaluation of qunf to the relational DBMS
managing D.
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Unfolding

To unfold a query qpr with respect to a set of mapping assertions:

1 For each non-split mapping assertion Φi(~x) ; Ψi(~t, ~y):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi(~x)← Φi(~x).

2 For each split version Φi(~x) ; Xj(~t, ~y) of a mapping assertion, introduce
a clause Xj(~t, ~y)← Auxi(~x).

3 Obtain from qpr in all possible ways queries qaux defined over the view
symbols Auxi as follows:

1 Find a most general unifier ϑ that unifies each atom X(~z) in the body of
qpr with the head of a clause X(~t, ~y)← Auxi(~x).

2 Substitute each atom X(~z) with ϑ(Auxi(~x)), i.e., with the body the unified
clause to which the unifier ϑ is applied.

4 The unfolded query qunf is the union of all queries qaux , together with the
view definitions for the predicates Auxi appearing in qaux .

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (77/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Query answering in OBDA systems Part 3: Ontology Based Data Access

Unfolding – Example

Employee
empCode: Integer
salary: Integer

Project
projectName: String

1..?

worksFor
H

1..?

m1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

m2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Employee(pers(SSN)) ← Aux1(SSN,PrName)
projectName(proj(PrName),PrName) ← Aux1(SSN,PrName)

Project(proj(PrName)) ← Aux1(SSN,PrName)
worksFor(pers(SSN), proj(PrName)) ← Aux1(SSN,PrName)

Employee(pers(SSN)) ← Aux2(SSN, Salary)
salary(pers(SSN),Salary) ← Aux2(SSN, Salary)
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Unfolding – Example (cont’d)

Query over ontology: employees who work for optique and their salary:
q(e, s)← Employee(e), salary(e, s),worksFor(e, p), projectName(p, optique)

A unifier between the atoms in q and the clause heads is:
ϑ(e) = pers(SSN) ϑ(s) = Salary
ϑ(PrName) = optique ϑ(p) = proj(optique)

After applying ϑ to q, we obtain:
q(pers(SSN),Salary)← Employee(pers(SSN)), salary(pers(SSN),Salary),

worksFor(pers(SSN),proj(optique)),
projectName(proj(optique), optique)

Substituting the atoms with the bodies of the unified clauses, we obtain:
q(pers(SSN),Salary)← Aux1(SSN, optique), Aux2(SSN,Salary),

Aux1(SSN, optique), Aux1(SSN, optique)
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Exponential blowup in the unfolding

When there are multiple mapping assertions for each atom, the unfolded query
may be exponential in the original one.

Consider a query: q(y)← A1(y), A2(y), . . . , An(y)

and the mappings: m1
i : Φ1

i (x) ; Ai(f(x))
m2

i : Φ2
i (x) ; Ai(f(x))

(for i ∈ {1, . . . , n})

We add the view definitions: Auxji (x)← Φj
i (x)

and introduce the clauses: Ai(f(x))← Auxji (x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = f(x), but each atom Ai(y) in the query
unifies with the head of two clauses.

Hence, we obtain one unfolded query

q(f(x))← Auxj11 (x),Auxj22 (x), . . . ,Auxjnn (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.
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Computational complexity of query answering

From the top-down approach to query answering, and the complexity results for
DL-Lite, we obtain the following result.

Theorem

Query answering in a DL-Lite OBDM system O = 〈T ,M,D〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappings M.

3 AC0 in the size of the database D.

Note: The AC0 result is a consequence of the fact that query answering in
such a setting can be reduced to evaluating an SQL query over the relational
database.
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Implementation of top-down approach to query answering

To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the

corresponding SQL query over the source:

+ joins are performed on the DB attributes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes
the union of all SQL queries corresponding to the view predicates, and
constructs also the Skolem terms:

+ avoids exponential blow-up of the resulting query, since the union (of the
queries coming from multiple mappings) is done before the joins;

– joins are performed on Skolem terms;
– generates doubly nested queries.

Which method is better, depends on various parameters.
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Towards answering arbitrary SQL queries

We have seen that answering full SQL (i.e., FOL) queries is undecidable.

However, we can treat the answers to an UCQ, as “knowledge”, and
perform further computations on that knowledge.

This corresponds to applying a knowledge operator to UCQs that are
embedded into an arbitrary SQL query (EQL queries) [Calvanese et al.,
2007b]

The UCQs are answered according to the certain answer semantics.
The SQL query is evaluated on the facts returned by the UCQs.

The approach can be implemented by rewriting the UCQs and embedding
the rewritten UCQs into SQL.

The user “sees” arbitrary SQL queries, but these SQL queries are evaluated
according to a weakened semantics.
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Optimizing OBDA in Ontop Part 3: Ontology Based Data Access

Experimentations and experiences

Several experimentations (in rough chronological order):

Monte dei Paschi di Siena (led by Sapienza Univ. of Rome)

Selex: world leading radar producer

National Accessibility Portal of South Africa

Horizontal Gene Transfer data and ontology

Stanford’s “Resource Index” comprising 200 ontologies from BioPortal

Norwegian Petroleum Directorate (NPD) FactPages (within Optique)

Benchmarking on (partially) artificial data ongoing

Observations:

Approach highly effective for bridging impedance mismatch between data
sources and ontology.

Rewriting technique effective against incompleteness in the data.

However, performance is a major issue that still prevents large-scale
deployment of this technology.
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Optimizing OBDA in Ontop Part 3: Ontology Based Data Access

Query processing in a traditional OBDA system

SPARQL q

Ontology T

UCQ q′

Mapping M

SQL q′′

Data DVirtual ABox V

+

Rewriting

+

Unfolding

+

ABox virtualisation
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What makes the resulting SQL query grow exponentially?

Three main factors affect the size of the resulting query q′′:

Existentials: Sub-queries of q with existentially quantified variables might
lead in general to exponentially large rewritings.

Hierarchies: Concepts / roles occurring in the query q can have many
subconcepts / subroles according to T , which all have to be
included in the rewriting q′.

Mappings: The mapping M can provide multiple definitions of the
concepts and roles in the ontology, which may result in a
further exponential blowup in the unfolding step of q′ to q′′.
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Optimizing OBDA in Ontop Part 3: Ontology Based Data Access

Impact of hierarchies – Example

Example

TBox T : A

B C

D E F G H I

q(x)← A(x), P (x, y), A(y), P (y, z), A(z)

UCQ rewriting of q w.r.t. T contains 729 CQs
i.e., a UNION of 729 SPJ SQL queries

The size of UCQ rewritings may become very large

In the worst case, it may be O((|T | · |q|)|q|), i.e., exponential in |q|.
Unfortunately, this blowup occurs also in practice.
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Taming the size of the rewriting

Note: It is not possible to avoid rewriting altogether, since this would require in
general to materialize an infinite database [Calvanese et al., 2007c].

Several techniques have been proposed recently to limit the size of the rewriting:

Alternative rewriting techniques [Pérez-Urbina et al., 2010]: more efficient
algorithm based on resolution, but produces still an exponential UCQ.

Combined approach [Kontchakov et al., 2010]: combines partial
materialization with rewriting:

When T contains no role inclusions rewriting is polynomial.
But in general rewriting is exponential.
Materialization requires control over the data sources and might not be
applicable in an OBDA setting.

Rewriting into non-recursive Datalog:
Presto system [Rosati and Almatelli, 2010]: still worst-case exponential.
Polynomial rewriting for Datalog± [Gottlob and Schwentick, 2012]:
rewriting uses polynomially many new existential variables and “guesses” a
relevant portion of the canonical model for the TBox.

See [Kikot et al., 2012; Gottlob et al., 2014] for discussion and further results.
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A holistic approach to optimization

Recall our main objective

Given an OBDA specification P = 〈T ,M,S〉, a database D, and a set of
queries, compute the certain answers of such queries w.r.t. O = 〈P,D〉
as efficiently as possible.

Observe:
The size of the rewriting is only one coordinate in the problem space.
Optimizing rewriting is necessary but not sufficient, since the more
compact rewritings are in general much more difficult to evaluate.
In fact, the efficiency of the query evaluation by the DBMS is the
crucial factor.

Hence, a holistic approach is required, that considers all components of an
OBDA system, i.e.:

the TBox T ,
the mappings M,
the data sources D with their dependencies in S, and
the query load.
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Optimizations in Ontop [Rodriguez-Muro et al., 2013]

1 Tree-witness rewriting over H-complete ABoxes.

2 T -mappings incorporating T into M.

3 Simplification of T -mappings using Semantic Query Optimisation (SQO).

4 Optimized unfolding.
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The Ontop OBDA framework

Developed at the Free Univ. of Bozen-Bolzano: http://ontop.inf.unibz.it/

“Stay on top of your data with semantics”

Features of Ontop

Query language: support for SPARQL 1.0 (and part of 1.1)

Mapping languages:

Intuitive Ontop mapping language
Support for R2RML W3C standard

Database: Support for free and commercial DBMSs

PostgreSQL, MySQL, H2, DB2, ORACLE, MS SQL SERVER, TEIID, ADP

Java library/providers for Sesame and OWLAPI

Sesame: a de-facto standard framework for processing RDF data
OWLAPI: Java API and reference implementation for OWL Ontologies

Integrated with Protege 4.x

Provides a SPARQL end-point (via Sesame Workbench)

Apache open source license
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Main publications

Most of the results presented in this course have been published:

Reasoning and query answering in DL-Lite: [Calvanese et al., 2005; Calvanese

et al., 2006b; Calvanese et al., 2007c; Calvanese et al., 2007a; Artale et al.,

2009; Calvanese et al., 2013b]

Mapping to data sources and OBDA: [Calvanese et al., 2006a; Calvanese et

al., 2008a; Poggi et al., 2008a]

Connection between description logics and conceptual modeling
formalisms: [Calvanese et al., 1998; Berardi et al., 2005; Artale et al., 2007;

Calvanese et al., 2009b]

Tool descriptions: [Poggi et al., 2008b; Rodŕıguez-Muro and Calvanese, 2008;

Calvanese et al., 2011; Rodriguez-Muro and Calvanese, 2012]

Optimization techniques: [Rodriguez-Muro et al., 2013; Kontchakov et al.,

2014]

Case studies: [Keet et al., 2008; Savo et al., 2010; Calvanese et al., 2013a]

A summary of many of the presented results and techniques, with detailed
proofs is given in [Calvanese et al., 2009a].
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Query rewriting for more expressive ontology languages

These result have then been extended to more expressive ontology languages,
using different techniques:

In [Artale et al., 2009] various DL-Lite extensions are considered, providing a
comprehensive treatment of the expressiveness/complexity trade-off for the
DL-Lite family and related logics:

number restrictions besides functionality;
conjunction on the left-hand side of inclusions (horn logics);
boolean constructs;
constraints on roles, such as (ir)reflexivity, (a)symmetry, transitivity;
presence and absence of the unique name assumption.

Alternative query rewriting techniques based on resolution, and applicable
also to more expressive logics (leading to recursive rewritings)
[Pérez-Urbina et al., 2010].

Query rewriting techniques for database inspired constraint languages
[Cal̀ı et al., 2009a; Cal̀ı et al., 2009b; Cal̀ı et al., 2012; Gottlob et al., 2014].
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Further theoretical work

The results presented in this course have also inspired additional work relevant
for ontology-based data access:

We have considered mainly query answering. However, several other
ontology-based services are of importance:

write-also access: updating a data source through an ontology
[De Giacomo et al., 2009; Calvanese et al., 2010; Zheleznyakov et al., 2010]

modularity and minimal module extraction
[Kontchakov et al., 2008; Kontchakov et al., 2009]

privacy aware data access [Calvanese et al., 2008b]

meta-level reasoning and query answering, a la RDFS
[De Giacomo et al., 2008]

provenance and explanation [Borgida et al., 2008]

Reasoning with respect to finite models only [Rosati, 2008].

We have dealt only with the static aspects of information systems.
However a crucial issue is how to deal with dynamic aspects.
See also work carried out in the EU project ACSI.

Work on most of these issues is still ongoing.
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Further practical and experimental work

The theoretical results indicate a good computational behaviour in the size of
the data. However, performance is a critical issue in practice:

The rewriting consists of a large number of CQs. Query containment can
be used to prune the rewriting. This is already implemented in -ontop-
system, but requires further optimizations.

The SQL queries generated by the mapping unfolding are not easy to
process by the DBMS engine (e.g., they may contain complex joins on
skolem terms computed on the fly).
Different mapping unfolding strategies have a strong impact on
computational complexity. Experimentation is ongoing to assess the
tradeoff.

Further extensive experimentations are ongoing:

on artificially generated data;
on real-world use cases.

An OBDA benchmarking suite is under development [Calvanese et al., 2014;

Lanti et al., 2015].
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Explanation in the DL-Lite family of description logics.

In Proc. of the 7th Int. Conf. on Ontologies, DataBases, and Applications of Semantics
(ODBASE), volume 5332 of Lecture Notes in Computer Science, pages 1440–1457.
Springer, 2008.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (99/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Part 3: Ontology Based Data Access

References II

[Cal̀ı et al., 2009a] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz.

Datalog±: a unified approach to ontologies and integrity constraints.

In Proc. of the 12th Int. Conf. on Database Theory (ICDT), pages 14–30, 2009.

[Cal̀ı et al., 2009b] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz.

A general Datalog-based framework for tractable query answering over ontologies.

In Proc. of the 28th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS), pages 77–86, 2009.

[Cal̀ı et al., 2012] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz.

A general Datalog-based framework for tractable query answering over ontologies.

J. of Web Semantics, 14:57–83, 2012.

[Calvanese et al., 1998] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi.

Description logics for conceptual data modeling.

In Jan Chomicki and Günter Saake, editors, Logics for Databases and Information Systems,
pages 229–264. Kluwer Academic Publishers, 1998.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (100/111)



The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Part 3: Ontology Based Data Access

References III

[Calvanese et al., 2005] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati.

DL-Lite: Tractable description logics for ontologies.

In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI), pages 602–607, 2005.

[Calvanese et al., 2006a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.

Linking data to ontologies: The description logic DL-Litea.

In Proc. of the 2nd Int. Workshop on OWL: Experiences and Directions (OWLED), volume
216 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2006.

[Calvanese et al., 2006b] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati.

Data complexity of query answering in description logics.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR), pages 260–270, 2006.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (101/111)

http://ceur-ws.org/


The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Part 3: Ontology Based Data Access

References IV

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati.

Can OWL model football leagues?

In Proc. of the 3rd Int. Workshop on OWL: Experiences and Directions (OWLED), volume
258 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati.

EQL-Lite: Effective first-order query processing in description logics.

In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 274–279, 2007.

[Calvanese et al., 2007c] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family.

J. of Automated Reasoning, 39(3):385–429, 2007.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (102/111)

http://ceur-ws.org/


The DL-Lite family Reasoning in DL-Lite Linking ontologies to relational data Conclusions and further work

Part 3: Ontology Based Data Access

References V

[Calvanese et al., 2008a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Riccardo Rosati, and Marco Ruzzi.

Data integration through DL-LiteA ontologies.

In Klaus-Dieter Schewe and Bernhard Thalheim, editors, Revised Selected Papers of the
3rd Int. Workshop on Semantics in Data and Knowledge Bases (SDKB 2008), volume 4925
of Lecture Notes in Computer Science, pages 26–47. Springer, 2008.

[Calvanese et al., 2008b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati.

View-based query answering over description logic ontologies.

In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR), pages 242–251, 2008.

[Calvanese et al., 2009a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodŕıguez-Muro, and Riccardo Rosati.
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Y. Ioannidis, E. Jiménez-Ruiz, E. Kharlamov, H. Kllapi, J. Klüwer, M. Koubarakis,
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