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Query answering

In ontology-based data access we are interested in a reasoning service that is
not typical in ontologies (or in a FOL theory, or in UML class diagrams, or in a
knowledge base) but it is very common in databases: query answering.

Query

Is an expression at the intensional level denoting a set of tuples of individuals
satisfying a given condition.

Query Answering

Is the reasoning service that actually computes the answer to a query.

© D. Calvanese (FUB) End-User Access to Big Data Using Ontologies BigDat – 26–30/1/2015 (4/39)



Querying databases and ontologies Query answering in Description Logics References

Part 2: Querying Data and Knowledge

Example of a query over an ontology

Staff
name: String
ssn: Integer

Actor

SeriesActor MovieActor

Movie
mName: String

1..?

respFor
H 1..?

worksFor
H

1..?

1..?

playsInM
N

1..?

{disjoint}

q(st, sa, n) ← ∃t, a,m. worksFor(t,m) ∧ playsInM(a,m) ∧ respFor(t, a) ∧
ssn(t, st) ∧ ssn(a, sa) ∧ name(t, n) ∧ name(a, n)
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Part 2: Querying Data and Knowledge

Query answering under different assumptions

There are two fundamentally different assumptions when addressing query
answering:

Complete information on the data, as in traditional databases.

Incomplete information on the data, as in ontologies (aka knowledge
bases), but also information integration in databases.
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Query answering in traditional databases

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and therefore the
schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

; Query answering amounts to query evaluation, which is computationally
easy.
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Query answering in traditional databases (cont’d)

Reasoning

Conceptual
Schema /
Ontology

Logical
Schema

Query

Data
Store

Result
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Query answering in traditional databases – Example

Staff

Actor

MovieworksFor I

For each concept/relationship we have a (complete) table in the DB.
DB: Staff = { john, mary, nick }

Actor = { john, nick }
Movie = { mA, mB }
worksFor = { (john,mA), (mary,mB) }

Query: q(x) ← ∃m. Actor(x) ∧Movie(m) ∧ worksFor(x,m)

Answer: { john }

{
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Query answering in ontologies

An ontology (or conceptual schema, or knowledge base) imposes
constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

; Query answering amounts to logical inference, which is computationally
more costly.

Note:

The size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query answering
amounts to instance checking.
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Query answering in ontologies Part 2: Querying Data and Knowledge

Query answering in ontologies (cont’d)

Reasoning

Reasoning

Conceptual
Schema /
Ontology

Logical
Schema

Query

Data
Store

Result
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Query answering in ontologies – Example

Staff

Actor

MovieworksFor I

The tables in the database may be incompletely specified, or even missing for
some classes/properties.

DB: Actor ⊇ { john, nick }
Movie ⊇ { mA, mB }
worksFor ⊇ { (john,mA), (mary,mB) }

Query: q(x) ← Staff(x)

Answer: { john, nick, mary }

{
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Query answering in ontologies – Example 2

Person

J hasFather

1..? Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }
hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x)← ∃y. hasFather(x, y)
q3(x)← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3)← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{
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QA in ontologies – Andrea’s Example 1

Ontology:

Staff

Actor

SeriesActor MovieActor

respFor
H

worksWith I

{complete}

Actor is partitioned into

SeriesActor and MovieActor.

DB (incomplete):
Staff ⊇ { andrea, paul, mary, john }

Actor ⊇ { andrea, paul, mary }
SeriesActor ⊇ { paul }
MovieActor ⊇ { mary }

respFor ⊇ { (john,andrea), (john,mary) }
worksWith ⊇ { (mary,andrea), (andrea,paul) }

john

andreaActor mary MovieActor

paul SeriesActor

respFor respFor

worksWith

worksWith

1Due to Andrea Schaerf [Schaerf, 1993].
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QA in ontologies – Andrea’s Example (cont’d)

Ontology:

Staff

Actor

SeriesActor MovieActor

respFor
H

worksWith I

{complete}

DB (incomplete):

john

andreaActor mary MovieActor

paul SeriesActor

respFor respFor

worksWith

worksWith

q(x)← ∃y, z. respFor(x, y) ∧MovieActor(y) ∧
worksWith(y, z) ∧ SeriesActor(z)

Answer: { john }

To determine this answer, we need to reason model by model.
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Query answering in ontology-based data access

In OBDA, we have to face the difficulties of both settings:

The actual data is stored in external information sources (i.e., databases),
and thus its size is typically very large.

The ontology introduces incompleteness of information, and we have to
do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints expressed in the
ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus face also
the problems that are typical of data integration.
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Query answering in ontology-based data access Part 2: Querying Data and Knowledge

Questions that need to be addressed

In the context of ontology-based data access:

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology and the
data sources?

4 How can tools for ontology-based data access take into account these
issues?
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Query answering in ontology-based data access Part 2: Querying Data and Knowledge

Which language to use for querying ontologies?

Two borderline cases:

1 Just classes and properties of the ontology ; instance checking

Ontology languages are tailored for capturing intensional relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the ontology,
i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, domain independent first-order logic)

Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

A good tradeoff is to use (unions of) conjunctive queries.
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Unions of conjunctive queries

A good tradeoff is to use (unions of) conjunctive queries (UCQs):

A (U)CQ is a first-order query using only conjunction, existential
quantification (and disjunction) – No forms of negation.

Correspond to SQL/relational algebra (union) select-project-join (SPJ)
queries – the most frequently asked queries.

For (U)CQs over an ontology, the predicates in atoms are concepts and
roles of the ontology.

Notation for CQs

We write conjunctive queries as:

q(~x)← ∃~y.E1(~z1) ∧ · · · ∧ En(~zn)

or as rules (Datalog notation):

q(~x)← E1(~z1), . . . , En(~zn)
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Example of conjunctive query over an ontology

The queries we have seen so far are examples of conjunctive queries.

Staff
name: String
ssn: Integer

Actor

SeriesActor MovieActor

Movie
mName: String

1..?

respFor
H 1..?

worksFor
H

1..?

1..?

playsInM
N

1..?

{disjoint}

q(st, sa, n) ← ∃t, a,m. worksFor(t,m) ∧ playsInM(a,m) ∧ respFor(t, a) ∧
ssn(t, st) ∧ ssn(a, sa) ∧ name(t, n) ∧ name(a, n)
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x) = ∃~y. conj (~x, ~y) a CQ.

The answer to q(~x) over I, denoted qI

is the set of tuples ~c of constants of A such that the formula ∃~y. conj (~c, ~y)
evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O)

are the tuples ~c of constants of A such that ~c ∈ qI , for every model I of O.
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Query answering in ontologies

Query answering over an ontology O
Is the problem of computing the certain answers to a query over O.

Computing certain answers is a form of logical implication:

~c ∈ cert(q,O) iff O |= q(~c)

Note: A special case of query answering is instance checking: it amounts to
answering the boolean query q()← A(c) (resp., q()← P (c1, c2)) over O (in
this case ~c is the empty tuple).
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Query answering in ontologies – Example

Person

J hasFather

1..? TBox T : ∃hasFather v Person
∃hasFather− v Person

Person v ∃hasFather

ABox A: Person(john), Person(nick), Person(toni)
hasFather(john,nick), hasFather(nick,toni)

Queries:
q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1) ∧ hasFather(y1, y2) ∧ hasFather(y2, y3)

Certain answers: cert(q1, 〈T ,A〉) = { (john,nick), (nick,toni) }

{

cert(q2, 〈T ,A〉) = { john, nick, toni }

{

cert(q3, 〈T ,A〉) = { john, nick, toni }

{

cert(q4, 〈T ,A〉) = { }

{
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Complexity of query answering Part 2: Querying Data and Knowledge

Complexity measures for queries over ontologies

When measuring the complexity of answering a query q(~x) over an ontology
O = 〈T ,A〉, various parameters are of importance.

Depending on which parameters we consider, we get different complexity
measures:

Data complexity: only the size of the ABox (i.e., the data) matters.
TBox and query are considered fixed.

Query complexity: only the size of the query matters.
TBox and ABox are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema) matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the OBDA setting, the size of the data largely dominates the size of the
conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering Part 2: Querying Data and Knowledge

Data complexity of query answering

When studying the complexity of query answering, we need to consider the
associated decision problem:

Recognition problem for query answering

Given an ontology O, a query q over O, and a tuple ~c of constants, check
whether ~c ∈ cert(q,O).

We look mainly at the data complexity of query answering, i.e., complexity of
the recognition problem computed w.r.t. the size of the ABox only.
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Complexity of query answering in DLs

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in AC0 (1)

ALCI, SH, SHIQ, . . . 2ExpTime-complete (3) coNP-complete (2)

OWL 2 (and less) 3ExpTime-hard coNP-hard

(1) This is what we need to scale with the data.
(2) coNP-hard already for a TBox with a single disjunction

[Donini et al., 1994; Calvanese et al., 2006; Calvanese et al., 2013].
In coNP for very expressive DLs

[Levy and Rousset, 1998; Ortiz et al., 2006; Glimm et al., 2007; Ortiz et al., 2008].
(3) [Calvanese et al., 1998; Calvanese et al., 2008; Lutz, 2007]

Questions

Can we find interesting (description) logics for which query answering can
be done efficiently (i.e., in AC0)?

If yes, can we leverage relational database technology for query answering?
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Inference in query answering

Perfect
rewriting

(under OWA)

Query
evaluation

(under CWA)

Logical Inference

q

T

A cert(q, 〈T ,A〉)

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of q and T .

; Query answering by query rewriting.
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Query answering by query rewriting

Perfect
rewriting

(under OWA)

Query
evaluation

(under CWA)

Logical Inference

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query rq,T
(called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a complete
database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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LQ-rewritability

Let:

LQ be a target query language (i.e., a class of queries), e.g., FOL/SQL;

LT be an ontology TBox language, e.g., ALC, DL-Lite, OWL 2, . . .

Def.: LQ-rewritability of conjunctive query answering

Conjunctive query answering is LQ-rewritable in LT , if for every TBox T of
LT and for every conjunctive query q, the perfect rewriting rq,T of q w.r.t. T
can be expressed in LQ.

Note: Assume that the relevant measure is the size of the data A. We have:

data complexity of computing cert(q, 〈T ,A〉)
=

complexity of evaluating rq,T over A

Hence, LQ-rewritability is tightly related to the data complexity of
evaluating queries expressed in the language LQ.
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Language of the rewriting

The expressiveness of the ontology language affects the rewriting
language, i.e., the language into which we are able to rewrite UCQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in AC0).

When we can rewrite into UCQs.
; Query evaluation can be “optimized” via an RDBMS.

When we can rewrite into non-recursive Datalog.
; Query evaluation can be done via an RDBMS, but using views.

When we need an NLogSpace-hard language to express the rewriting.
; Query evaluation requires (at least) linear recursion.

When we need a PTime-hard language to express the rewriting.
; Query evaluation requires full recursion (e.g., Datalog).

When we need a coNP-hard language to express the rewriting.
; Query evaluation requires (at least) the power of Disjunctive Datalog.
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