
Reasoning for Ontology Engineering and Reuse

Part 3
Modularisation and Explanation

Matthew Horridge, Uli Sattler
University of Manchester

1Monday, 27 October 2008

Modularisation

2Monday, 27 October 2008

TBox - Class-level
O

n
to

lo
g

y

ABox - Instance-level

TBox - Class-level O
n

to
lo

g
y
 2

ABox - Instance-level

Modular reuse of

Ontologies

Reasoner

3Monday, 27 October 2008

Why Modules & Reuse?
Many good reasons:
• common practice in software engineering
• we can borrow terms from other ontologies
• to cover topics that we aren’t experts in
• to safe time
• to ensure common understanding

• modularize our ontology
• to enable collaborative development
• to gain insight into its structure & dependencies

4Monday, 27 October 2008

Imports/Reuse Scenario

University

ComputerScience

Coverage: Import everything relevant for the given terms

Positions

Economy: Import only what is relevant for them

5Monday, 27 October 2008

Methodology
Edit working ontology O1

Load external ontology O2

Select terms from O2 to be reused

Get module from O2

Import module into O1

University

ComputerScience

Person
(and subclasses)

ComputerScienceMod

University ∪
ComputerScience

6Monday, 27 October 2008

Coverage
Goal: Import everything the external ontology knows
about the topic that consists of the specified terms
(but hopefully not the whole ontology)

A module, M ⊆ E covers E for the specified terms
if for all class expressions C, D built from these terms:

If O ∪ E ⊨ C ⊑ D
then O ∪ M ⊨ C ⊑ D

University

Positions

ComputerScience
Coverage:
Preserving entailments
No difference between using E or M

M

7Monday, 27 October 2008

Coverage
• How to guarantee coverage?

• In general, undecidable

• Closely related to “conservative extensions”

• We use a syntactic approximation of a semantic
approximation

• Fast!

• Quite good so far - modules are not minimal in
size, but guarantee coverage

8Monday, 27 October 2008

Safety

• Do you want to preserve meaning of terms imported?

• e.g., because you are not an expert in this topic

• also closely related to “conservative extensions”

• Subject to on-going research and development

• please stay tuned!

9Monday, 27 October 2008

Module Extraction in
Protégé

You can follow this demo using the
• version of Protégé and
• example ontologies from the tutorial web page
 http://owl.cs.manchester.ac.uk/2008/iswc-tones/

10Monday, 27 October 2008

http://owl.cs.manchester.ac.uk/2008/iswc-tones/
http://owl.cs.manchester.ac.uk/2008/iswc-tones/

TBox - Class-level

O
n

to
lo

g
y

ABox - Instance-level

Explanation of

reasoning
Reasoner

Classify

AsProf is
unsatisfiable

11Monday, 27 October 2008

Root Unsatisfiable Classes

• How do we know which unsatisfiable
classes to focus on?

12Monday, 27 October 2008

Root Unsatisfiable Classes
(Side example)

A published ontology,
the TAMBIS ontology,
contains 144
unsatisfiable classes

13Monday, 27 October 2008

Root/Derived Unsatisfiable
Classes

• How do we know where to start?

• The satisfiability of one class may depend
on the satisfiability of another class

• The tools show unsatisfiable class names in
red

LecturerTaking4Courses

14Monday, 27 October 2008

• How do we know where to start?

• The satisfiability of one class may depend
on the satisfiability of another class

• The tools show unsatisfiable class names in
red

CS_Course

Root/Derived Unsatisfiable
Classes

15Monday, 27 October 2008

• How do we know where to start?

• The satisfiability of one class may depend
on the satisfiability of another class

• The tools show unsatisfiable class names in
red

• Manual tracing can be very time consuming

Root/Derived Unsatisfiable
Classes

16Monday, 27 October 2008

• A class whose satisfiability depends on
another class is known as a
derived unsatisfiable class

• An unsatisfiable class that is not a derived
unsatisfiable class is a
root unsatisfiable class

Root/Derived Unsatisfiable
Classes

Root unsatisfiable classes should
be examined and fixed first

17Monday, 27 October 2008

Finding Root Unsatisfiable
Classes in Protégé

18Monday, 27 October 2008

19Monday, 27 October 2008

Justifications

• Justifications are a kind of explanation

• Justifications are minimal subsets of an
ontology that are sufficient for a given
entailment to hold

• Also known as MUPS, MinAs

20Monday, 27 October 2008

Justifications

O = {α1, α2 . . . αn} O |= η

J ⊆ O J |= η

J ′ !|= η∀J ′ ⊂ J

21Monday, 27 October 2008

22

Justifications

22Monday, 27 October 2008

Justifications

• There may be multiple justifications for an
entailment

• For a given entailment, if there are multiple
justifications they may overlap

• Removing one axiom from each
justification breaks the justifications so that
the entailment is no longer supported by
the remaining axioms. This is a repair.

23Monday, 27 October 2008

• A class is a derived unsatisfiable class if it
has a justification that is a superset of a
justification for some other unsatisfiable
class.

• An unsatisfiable class that is not derived is a
root unsatisfiable class, i.e., none of its
justifications contains a justification of
another unsatisfiable class.

Root/Derived Unsatisfiable
Classes

24Monday, 27 October 2008

• Partially derived unsatisfiable classes - derived
unsatisfiable classes for which there is at least
one justification that is not a superset of
justifications for other unsatisfiable classes

• Purely derived unsatisfiable classes -
unsatisfiable classes for which all of the
justifications are supersets of justifications for
other unsatisfiable classes

Root/Derived Unsatisfiable
Classes

25Monday, 27 October 2008

Justifications in Protégé

26Monday, 27 October 2008

Computing Justifications

• Implementations of a service for computing
justifications can be split into two main
categories:

• Glass-box

• Black-box

27Monday, 27 October 2008

Glass-box

• Glass-box techniques are specific to a
particular reasoner

• For an existing reasoner, implementing glass
box tracing requires a thorough and non-
trivial modification of the reasoner
internals

• Examples: Pellet, CEL

28Monday, 27 October 2008

Black-box

• Does not depend on a particular reasoner

• All that we require is that we can ask the
reasoner whether a class expression is
satisfiable - i.e. satisfiability checking

29Monday, 27 October 2008

Entailments to
Unsatisfiable Expressions

O |= C ! D

O |= C ! ¬D ≡⊥

30Monday, 27 October 2008

Black-box

• Typically uses an expand-contract strategy

• Create an empty ontology

• Expand until expression is unsatisfiable

• Prune until the expression is satisfiable

• Several optimisations, including the use of
use modularity

31Monday, 27 October 2008

Computing Justifications

Find One Justification

Find All Justifications

Black-Box

Glass-Box

32Monday, 27 October 2008

Superfluousness

33

33Monday, 27 October 2008

Superfluousness

34

B ! ∀R.⊥B ! ∀R.⊥

E !D " B D ! B
B ! ∃R.C B ! ∃R

34Monday, 27 October 2008

External Masking

35

35Monday, 27 October 2008

Fine-grained Justifications

36

Laconic
Precise

No superfluous parts

All parts as weak as possible

Primarily geared towards repair

Each axiom is a minimal repair

36Monday, 27 October 2008

Example

D ! ∀R.C # F
E ≡ ∃R.C # ∀R.C

A ! D "= 1R.C "B

D ! ∀R.C
∃R.C " ∀R.C $ E

A ! D " ≥ 1R

37

O = {

} |= A ! E

37Monday, 27 October 2008

Laconic Justifications in
Protégé

38Monday, 27 October 2008

Internal Masking

1) A ! B " ∃R.C " ∀R.C
(plus)F ≡ ∃R.C

1) A ! B " ∃R.C " ∀R.C
(plus)F ≡ ∃R.C

39

O = {A ! B " ∃R.C " ∀R.C
F ≡ ∃R.C} |= A ! F

39Monday, 27 October 2008

Wrap Up

• Modules for re-use

• Root/derived unsatisfiable classes

• Justifications

• Fine-grained Justifications

• Laconic justifications

• Precise justifications

• Tools available as plugins for Protégé 4

40Monday, 27 October 2008

41Monday, 27 October 2008

