
Query Processing in Data Integration Systems

Diego Calvanese

Free University of Bozen-Bolzano

BIT PhD Summer School – Bressanone
July 3–7, 2006

D. Calvanese Data Integration BIT PhD Summer School 1 / 156



Structure of the course

1 Introduction to data integration

Basic issues in data integration
Logical formalization

2 Query answering in the absence of constraints

Global-as-view (GAV) setting
Local-as-view (LAV) and GLAV setting

3 Query answering in the presence of constraints

The role of integrity constraints
Global-as-view (GAV) setting
Local-as-view (LAV) and GLAV setting

4 Concluding remarks

D. Calvanese Data Integration BIT PhD Summer School 2 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Part I

Query answering in the presence of constraints

D. Calvanese Data Integration BIT PhD Summer School 86 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Outline

1 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

2 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 87 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Outline

1 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

2 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 88 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Global integrity constraints

Integrity constraints (ICs) are posed over the global schema

Specify intensional knowledge about the domain of interest

Add semantics to the information

But data in the sources can conflict with global ICs

The presence of global ICs raises semantic and computational
problems

Many open issues

D. Calvanese Data Integration BIT PhD Summer School 89 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Integrity constraints for relational schemas

Most important types of ICs for the relational model:

key dependencies (KDs)

functional dependencies (FDs)

foreign keys (FKs)

inclusion dependencies (IDs)

exclusion dependencies (EDs)

D. Calvanese Data Integration BIT PhD Summer School 90 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple ~t1 in a
relation implies the presence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of inclusion dependencies

r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ID r[1] ⊆ s[2] corresponds to the
FOL sentence

∀x, y, w. r(x, y, w)→ ∃z. s(z, x)

Note: IDs are a special form of tuple-generating dependencies
D. Calvanese Data Integration BIT PhD Summer School 91 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Key dependencies (KDs)

A key dependency (KD) states that a set of attributes functionally
determines all the attributes of a relation

Syntax of key dependencies

key(r) = {i1, . . . , ik}
with i1, . . . , ik components of r

Example

For r of arity 3, the KD key(r) = {1} corresponds to the FOL sentence

∀x, y, y′, z, z′. r(x, y, z) ∧ r(x, y′, z′)→ y = y′ ∧ z = z′

Note: KDs are a special form of equality-generating dependencies

D. Calvanese Data Integration BIT PhD Summer School 92 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Exclusion dependencies (EDs)

An exclusion dependency (ED) states that the presence of a tuple ~t1 in
a relation implies the absence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of exclusion dependencies

r[i1, . . . , ik] ∩ s[j1, . . . , jk] = ∅
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ED r[1] ∩ s[2] = ∅ corresponds to
the FOL sentence

∀x, y, w, z. r(x, y, w)→ ¬s(z, x)

Note: EDs are a special form of denial constraints
D. Calvanese Data Integration BIT PhD Summer School 93 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Outline

1 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

2 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 94 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV system with integrity constraints

We consider a data integration system I = 〈G,S,M〉 where

G is a global schema with constraints

M is a set of GAV mappings, whose assertions have the form
φS ; g and are interpreted as

∀~x. φS(~x)→ g(~x)

where φS is a conjunctive query over S, and g is an element of G

Basic observation: Since G does have constraints, the retrieved global
database M(C) may not be legal for G

D. Calvanese Data Integration BIT PhD Summer School 96 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

Semantics of GAV systems with integrity constraints

Given a source db C, a global db B (over ∆) satisfies I relative to C if

1 it is legal wrt the global schema, i.e., it satisfies the ICs

2 it satisfies the mapping, i.e., B is a superset of the retrieved global
database M(C) (sound mappings)

Recall:

M(C) is obtained by evaluating, for each relation in AG , the
corresponding mapping query over the source database C
We are interested in certain answers to a query, i.e., those that hold
for all global databases that satisfy I relative to C

D. Calvanese Data Integration BIT PhD Summer School 97 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example

Consider I = 〈G,S,M〉, with

G: student(Code,Name,City) key(student) = {Code}
university(Code,Name) key(university) = {Code}
enrolled(Scode,Ucode)

enrolled[Scode] ⊆ student[Code]
enrolled[Ucode] ⊆ university[Code]

Source schema S: s1(Scode,Sname,City ,Age),
s2(Ucode,Uname), s3(Scode,Ucode)

Mapping M: { (c, n, ci) | s1(c, n, ci , a) } ; student(c, n, ci)
{ (c, n) | s2(c, n) } ; university(c, n)
{ (s, u) | s3(s, u) } ; enrolled(s, u)

D. Calvanese Data Integration BIT PhD Summer School 98 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of retrieved global db

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

���
���

���*

PPPPPPPPPPPPPi

�
�
�
���

university
Code Name
AF bocconi
BN ucla

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 AF
16 BN

Example of source database C and corresponding retrieved global
database M(C)

D. Calvanese Data Integration BIT PhD Summer School 99 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of incompleteness

sC3
12 AF
16 BN

enrolledB

Scode Ucode
12 AF
16 BN

studentB

Code Name City
12 anne florence
15 bill oslo
16 x y

sC3(16, BN) and the mapping imply enrolledB(16, BN) for all B ∈ semC(I)

Due to the inclusion dependency enrolled[Scode] ⊆ student[Code] in G,
16 is the code of some student in all B ∈ semC(I)

Since C does not provide information about name and city of the
student with code 16, a global database that is legal for I wrt C may
contain arbitrary values for these

D. Calvanese Data Integration BIT PhD Summer School 100 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Unfolding is not sufficient

Mapping M: { (c, n, ci) | s1(c, n, ci , a) } ; student(c, n, ci)
{ (c, n) | s2(c, n) } ; university(c, n)
{ (s, u) | s3(s, u) } ; enrolled(s, u)

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

Consider the query: q = { (c) | student(c, n, ci) }
Unfolding of q wrt M: unfM(q) = { (c) | s1(c, n, ci , a) }

The query unfM(q) retrieves from C only the answer {12, 15}, while the
correct answer would be {12, 15, 16}

The simple unfolding strategy is not sufficient for GAV with constraints

D. Calvanese Data Integration BIT PhD Summer School 101 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Example of inconsistency

sC1
12 anne florence 21
12 bill oslo 24

studentB

Code Name City
12 anne florence
12 bill oslo

The tuples in sC1 and the mapping imply studentB(12, anne, florence)
and studentB(12, bill, oslo), for all B that satisfy the mapping

Due to the key dependency key(student) = {Code} in G, there is no
global database that satisfies the mapping and is legal wrt the global
schema, i.e., semI(C) = ∅

D. Calvanese Data Integration BIT PhD Summer School 102 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV data integration systems with constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

IDs GAV yes no

KDs GAV yes / no yes

IDs + KDs GAV yes yes

yes (G)LAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 103 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Incompleteness and inconsistency in GAV systems Part 3: Query answering with constraints

GAV with constraints – Incompleteness and inconsistency

D. Calvanese Data Integration BIT PhD Summer School 104 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example

Global schema G: player(Pname,YOB ,Pteam)
team(Tname,Tcity ,Tleader)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Sources S: s1 and s3 store players
s2 stores teams

Mapping M: { (x, y, z) | s1(x, y, z) ∨ s3(x, y, z) } ; player(x, y, z)
{ (x, y, z) | s2(x, y, z) } ; team(x, y, z)

D. Calvanese Data Integration BIT PhD Summer School 106 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve

Retrieved global database M(C):

player:
Totti 1971 Roma
Buffon 1978 Juve

team: Juve Torino Del Piero

D. Calvanese Data Integration BIT PhD Summer School 107 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Warnings

1 There may be an infinite number of databases satisfying I
2 In case of cyclic IDs, databases satisfying I may be of infinite size

D. Calvanese Data Integration BIT PhD Summer School 108 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Consider the query q = { (x, z) | player(x, y, z) }

cert(q, I, C) = { (Totti, Roma), (Buffon, Juve), (Del Piero, Juve) }

D. Calvanese Data Integration BIT PhD Summer School 109 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with
r[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add r(b, c1)
2 add r(c1, c2)
3 add r(c2, c3)
4 . . . (ad infinitum)

Example

Let r, s be binary with
r[1] ⊆ s[1], s[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add s(a, c1)
2 add r(c1, c2)
3 add s(c1, c3)
4 add r(c3, c4)
5 . . . (ad infinitum)

D. Calvanese Data Integration BIT PhD Summer School 110 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

The chase of a database

Definition

The chase of a database is the exhaustive application of a set of rules
that transform the database, in order to make it consistent with a set of
integrity constraints

Typically, there will be one or more chase rules for each different type of
constraint

D. Calvanese Data Integration BIT PhD Summer School 111 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

The ID-chase rule

The chase for IDs has only one rule, the ID-chase rule

Let D be a database:

if the schema contains the ID r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
and there is a fact in D of the form r(a1, . . . , an)
and there are no facts in D of the form s(b1, . . . , bm)

such that ai` = bj`
for each ` ∈ {1, . . . , k},

then add to D the fact s(c1, . . . , cm),
where for each h ∈ {1, . . . ,m},

if h = j` for some ` then ch = ai`

otherwise ch is a new constant symbol (not in D yet)

Notice: New existential symbols are introduced (skolem terms)

D. Calvanese Data Integration BIT PhD Summer School 112 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Properties of the chase

Bad news: the chase is in general infinite

Good news: the chase identifies a canonical model
A canonical model is a database that “represents” all the models of
the system

We can use the chase to prove soundness and completeness of a
query processing method

. . . but only for positive queries!

D. Calvanese Data Integration BIT PhD Summer School 113 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under inclusion dependencies Part 3: Query answering with constraints

Limiting the chase

Why don’t we use a finite number of existential constants in the chase?

Example

Consider r[1] ⊆ s[1], and s[2] ⊆ r[1] and suppose M(C) = { r(a, b) }

Compute chase(M(C)) with only one new constant c1:
0) r(a, b); 1) add s(a, c1) 2) add r(c1, c1) 3) add s(c1, c1)

This database is not a canonical model for I wrt C
E.g., for query q = { (x) | r(x, y), s(y, y) }, we have a ∈ qchase(M(C))

while a 6∈ cert(q, I, C)

Arbitrarily limiting the chase is unsound, for any finite number of new
constants

D. Calvanese Data Integration BIT PhD Summer School 114 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Chasing the query

When chasing the data the termination condition would need to take
into account the query

We consider an alternative approach, based on the idea of a query chase

Instead of chasing the data, we chase the query

Is the dual notion of the database chase

IDs are applied from right to left to the query atoms

Advantage: much easier termination conditions, which imply:

decidability properties
efficiency

This technique provides an algorithm for rewriting UCQs under IDs

D. Calvanese Data Integration BIT PhD Summer School 116 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query rewriting under inclusion dependencies

Given a query q over the global schema G, we look for a rewriting
rew of q expressed over S

A rewriting rew is perfect if rewC = cert(q, I, C), for every source
database C

With a perfect rewriting, we can do query answering by rewriting
; We avoid actually constructing the retrieved global database
M(C)

D. Calvanese Data Integration BIT PhD Summer School 117 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query q = { (x, z) | player(x, y, z) }

and the constraint team[Tleader ,Tname] ⊆ player[Pname,Pteam]
as a logic rule: player(w3, w4, w1) ← team(w1, w2, w3)

We add to the rewriting the query q′ = { (x, z) | team(x, y, z) }

Definition

Basic rewriting step:

when an atom unifies with the head of the rule

substitute the atom with the body of the rule

D. Calvanese Data Integration BIT PhD Summer School 118 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query Rewriting for IDs – Algorithm ID-rewrite

Iterative execution of:
1 Reduction:

Atoms that unify with other atoms are eliminated and the
unification is applied
Variables that appear only once are marked

2 Basic rewriting step

A rewriting step is applicable to an atom if it does not eliminate
variables that appear somewhere else
May introduce fresh variables

Note: The algorithm works directly for unions of conjunctive queries
(UCQs), and produces an UCQ as result

D. Calvanese Data Integration BIT PhD Summer School 119 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

The algorithm ID-rewrite

Input: relational schema G, set ΨID of IDs, UCQ Q
Output: perfect rewriting of Q
Q′ := Q;
repeat

Qaux := Q′;
for each q ∈ Qaux do
(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};
(b) for each g ∈ body(q) do

for each ID ∈ ΨID do
if ID is applicable to g

then Q′ := Q′ ∪ { q[g/rewrite(g, ID)] }
until Qaux = Q′;
return Q′

D. Calvanese Data Integration BIT PhD Summer School 120 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Rewriting CQs under inclusion dependencies in GAV Part 3: Query answering with constraints

Query answering in GAV under IDs

Properties of ID-rewrite

ID-rewrite terminates

ID-rewrite produces a perfect rewriting of the input query

More precisely, let unfM(q) be the unfolding of the query q wrt the GAV
mappingM

Theorem

unfM(ID-rewrite(q)) is a perfect rewriting of the query q

Theorem

Query answering in GAV systems under IDs is in PTime in data
complexity (actually in LogSpace)

D. Calvanese Data Integration BIT PhD Summer School 121 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query answering under IDs and KDs

We have already seen that in GAV systems under sound mappings

Key dependencies may give rise to inconsistencies

WhenM(C) violates the KDs, no legal database exists and query
answering becomes trivial

How do KDs interact with IDs?

Theorem

Query answering under IDs and KDs is undecidable

Proof: By reduction from implication of IDs and KDs

We need to look for syntactic restrictions on the form of the
dependencies that ensures decidability

D. Calvanese Data Integration BIT PhD Summer School 123 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Non-key-conflicting IDs

Definition

Non-key-conflicting IDs (NKCIDs) are of the form r1[~x1] ⊆ r2[~x2]
where ~x2 is not a strict superset of key(r2)

Example

Let r be of arity 3 and s of arity 4 with key(s) = {1, 2}
The following are NKCIDs

r[2] ⊆ s[2], since {2} is a strict subset of key(s)
r[2, 3] ⊆ s[1, 2], since {1, 2} coincides with key(s)
r[1, 2] ⊆ s[2, 3], since 1 ∈ key(s) but 1 6∈ {2, 3}

The following is not a NKCID: r[1, 2, 3] ⊆ s[1, 2, 4]

Note: Foreign keys (FKs) are a special case of NKCIDs

D. Calvanese Data Integration BIT PhD Summer School 124 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Separation for IDs and KDs

Theorem (IDs-KDs separation)

Under KDs and NKCIDs, ifM(C) satisfies the KDs, then the KDs can
be ignored wrt certain answers of a user query q

Intuition: For NKCIDs, when applying the ID-chase rule to a tuple
~t1 ∈ rB1 , we can choose the tuple ~t2 to introduce in rB2 so that it does
not violate key(r2):

When key(r2) 6⊆ ~x2, fresh constants in ~t2 are chosen for key
attributes, and so there is no other tuple in rB2 coinciding with ~t2
on all key attributes
When key(r2) = ~x2, if there is already a tuple ~t in rB2 such that
~t1[~x1] = ~t[~x2], we choose ~t for ~t2

Query answering becomes undecidable as soon as we extend the
language of the IDs

D. Calvanese Data Integration BIT PhD Summer School 125 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query processing under separable KDs and IDs

Global algorithm:

1 Verify consistency ofM(C) with respect to KDs

2 Compute ID-rewrite of the input query

3 Unfold wrtM the query computed at previous step

4 Evaluate the unfolded query over the sources

Note:

The KD consistency check can be done by suitable CQs with
inequality

The computation ofM(C) can be avoided (by unfolding the
queries for the KD consistency check)

D. Calvanese Data Integration BIT PhD Summer School 126 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Checking KD consistency – Example

Relation: player[Pname,Pteam]
Key dependency: key(player) = {Pname}

Query to check (in)consistency of the KD:
q = { () | player(x, y), player(x, z), y 6= z }

is true iff the instance of player violates the KD

Mapping M: { (x, y) | s1(x, y) ∨ s2(x, y) } ; player(x, y)

Unfolding of q wrt M: { () | s1(x, y), s1(x, z), y 6= z ∨
s1(x, y), s2(x, z), y 6= z ∨
s2(x, y), s1(x, z), y 6= z ∨
s2(x, y), s2(x, z), y 6= z }

D. Calvanese Data Integration BIT PhD Summer School 127 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs and KDs Part 3: Query answering with constraints

Query answering in GAV under separable IDs+KDs

Theorem (Cal̀ı, Lembo & Rosati, PODS’03)

Answering conjunctive queries in GAV systems under KDs and NKCIDs
is in PTime in data complexity (actually in LogSpace )

Can we extend these results to more expressive user queries?

The rewriting technique extends immediately to unions of CQs
ID-rewrite(q1 ∨ · · · ∨ qn) = ID-rewrite(q1) ∨ · · · ∨ ID-rewrite(qn)

This is not the case for recursive queries

Theorem (— & Rosati KRDB’03)

Answering recursive queries under KDs and FKs is undecidable
Answering recursive queries under IDs is undecidable

D. Calvanese Data Integration BIT PhD Summer School 128 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering under IDs and EDs

Under EDs:

Possibility of inconsistencies

WhenM(C) violates the EDs, no legal database exists and query
answering becomes trivial

Under IDs and EDs:

How do EDs and IDs interact?

Is query answering separable?

Is query answering decidable?

D. Calvanese Data Integration BIT PhD Summer School 130 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Exclusion dependencies – Example

Global schema G: player(Pname,YOB ,Pteam)
team(Tname,Tcity ,Tleader)
coach(Cname,Cteam)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]
coach[Cname] ∩ player[Pname] = ∅

Sources S: s1 and s3 store players
s2 stores teams
s4 stores coaches

Mapping M: { (x, y, z) | s1(x, y, z) ∨ s3(x, y, z) } ; player(x, y, z)
{ (x, y, z) | s2(x, y, z) } ; team(x, y, z)
{ (x, y) | s4(x, y, z) } ; coach(x, y)

D. Calvanese Data Integration BIT PhD Summer School 131 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Retrieved global db under EDs – Example

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve s4: Del Piero Viterbese

Retrieved global database M(C):

player :
Totti 1971 Roma
Buffon 1978 Juve

team :
Juve Torino Del Piero

coach :
Del Piero Viterbese

D. Calvanese Data Integration BIT PhD Summer School 132 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

“Repair” of retrieved global db under EDs – Example

Retrieved global database M(C):

player :
Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team :
Juve Torino Del Piero

coach :
Del Piero Viterbese

“Repair”of team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Violation of coach[Cname] ∩ player[Pname] = ∅

Can we detect such situations without actually constructingM(C)?

D. Calvanese Data Integration BIT PhD Summer School 133 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Deductive closure of EDs under IDs – Example

Can we saturate (close) the EDs by adding all the EDs that are logical
consequences of the EDs and IDs?

Example

From
team[Tleader ,Tname] ⊆ player[Pname,Pteam]
coach[Cname] ∩ player[Pname] = ∅

it follows that

coach[Cname] ∩ team[Tleader ] = ∅

This constraint is violated by the retrieved global database M(C)

D. Calvanese Data Integration BIT PhD Summer School 134 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Deductive closure of EDs under IDs

Definition

Derivation rule of EDs under EDs and IDs:

From the ED r[i1, . . . , ik] ∩ s[j1, . . . , jk] = ∅
and the ID t[`1, . . . , `k] ⊆ s[j1, . . . , jk]
derive the ED r[i1, . . . , ik] ∩ t[`1, . . . , `k] = ∅

Corresponds to a simple application of resolution on the FOL sentences
corresponding to EDs and IDs

Theorem

If the set of EDs is closed with respect to the above rule, it contains all
EDs that are logical consequences of the initial EDs and IDs

D. Calvanese Data Integration BIT PhD Summer School 135 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering in GAV under IDs and EDs

Theorem (ID-ED Separation)

Under IDs and EDs,
ifM(C) satisfies all EDs derived from the IDs and the original EDs
then the EDs can be ignored wrt certain answers of a query

We obtain a method for query answering in GAV under EDs and IDs:

1 Close the set of EDs with respect to the IDs

2 Verify consistency ofM(C) with respect to EDs

3 Compute ID-rewrite of the input query

4 Unfold the query computed at the previous step

5 Evaluate the query over the sources

The ED consistency check can be done by suitable CQs

D. Calvanese Data Integration BIT PhD Summer School 136 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answering in GAV under IDs, KDs and EDs

Theorem (ID-KD-ED Separation)

Under KDs, NKCIDs, and EDs,
ifM(C) satisfies all the KDs
and satisfies all EDs derived from the IDs and the original EDs
then the KDs and EDs can be ignored wrt certain answers of a query

We obtain a method for query answering in GAV under KDs, NKCIDs,
and EDs:

1 Close the set of EDs with respect to the IDs

2 Verify consistency ofM(C) with respect to KDs and EDs

3 Compute ID-rewrite of the input query

4 Unfold the query computed at the previous step

5 Evaluate the query over the sources

D. Calvanese Data Integration BIT PhD Summer School 137 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in GAV under IDs, KDs, and EDs Part 3: Query answering with constraints

Query answ. in GAV under IDs, KDs and EDs – Complexity

Note:

1 Closing the set of EDs wrt the IDs is independent of the data

2 Consistency ofM(C) wrt KDs and EDs can be verified through
suitable queries over the source database C

Theorem (Lembo & Rosati, 2004)

Answering conjunctive queries in GAV systems under KDs, NKCIDs and
EDs is in PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 138 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Part 3: Query answering with constraints

Outline

1 Query answering in GAV without constraints
Retrieved global database
Query answering via unfolding
Universal solutions

2 Query answering in (G)LAV without constraints
(G)LAV and incompleteness
Approaches to query answering in (G)LAV
(G)LAV: Direct methods (aka view-based query answering)
(G)LAV: Query answering by (view-based) query rewriting

D. Calvanese Data Integration BIT PhD Summer School 139 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV system with integrity constraints

We consider a data integration system I = 〈G,S,M〉 where

G is a global schema with constraints

M is a set of LAV mappings, whose assertions have the form
φS ; φG and are interpreted as

∀~x. φS(~x)→ φG(~x)

where φS is a conjunctive query over S, and φG is a conjunctive
query over G

Basic observation: Since G does have constraints, the canonical
retrieved global database M(C)↓ may not be legal for G

D. Calvanese Data Integration BIT PhD Summer School 141 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

Semantics of (G)LAV systems with integrity constraints

Given a source db C, a global db B (over ∆) satisfies I relative to C if

1 it is legal wrt the global schema, i.e., it satisfies the ICs

2 it satisfies the mapping, i.e., B is a superset of the canonical
retrieved global database M(C)↓ (sound mappings)

Recall:

M(C) is obtained by evaluating, for each mapping assertion
φS ; φG , the query φS over C, and using the obtained tuples to
populate the global relations according to φG , using fresh constants
for existentially quantified elements

We are interested in certain answers to a query, i.e., those that hold
for all global databases that satisfy I relative to C

D. Calvanese Data Integration BIT PhD Summer School 142 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV data integration systems with constraints

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes / no no

no (G)LAV yes no

IDs GAV yes no

KDs GAV yes / no yes

IDs + KDs GAV yes yes

IDs (G)LAV yes no

KDs (G)LAV yes yes

IDs + KDs GAV yes yes

D. Calvanese Data Integration BIT PhD Summer School 143 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and integrity constraints Part 3: Query answering with constraints

(G)LAV with constr. – Incompleteness and inconsistency

D. Calvanese Data Integration BIT PhD Summer School 144 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

(G)LAV systems under IDs

Under IDs only, we can exploit the previous results for GAV also for
(G)LAV, by turning the (G)LAV mappings into GAV mappings:

We transform a (G)LAV integration system I = 〈G,S,M〉 with IDs
only into a GAV system I ′ = 〈G′,S,M′〉

With respect to I, the transformed system I ′ contains auxiliary IDs
and auxiliary global relation symbols

The transformation is query-preserving:

For every conjunctive query q and for every source database C, the
certain answers to q wrt I and C are equal to the certain answers
to q wrt I ′ and C

D. Calvanese Data Integration BIT PhD Summer School 146 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

Transforming LAV into GAV – Example

Initial LAV mappings: s(x, y) ; { (x, y) | r1(x, z), r2(y, w) }
t(x, y) ; { (x, y) | r1(x, z), r3(y, x) }

We introduce two new global relations for each mapping assertion:
si/2, se/4, and ti/2, te/3

Transformed GAV mappings: { (x, y) | s(x, y) } ; si(x, y)
{ (x, y) | t(x, y) } ; ti(x, y)

Additional IDs generated by the transformation:

si[1, 2] ⊆ se[1, 2] se[1, 3] ⊆ r1[1, 2] se[2, 4] ⊆ r2[1, 2]
ti[1, 2] ⊆ te[1, 2] te[1, 3] ⊆ r1[1, 2] te[2, 1] ⊆ r3[1, 2]

D. Calvanese Data Integration BIT PhD Summer School 147 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in (G)LAV under inclusion dependencies Part 3: Query answering with constraints

Query answering in (G)LAV systems under IDs

Method for query answering in a (G)LAV system I with IDs:

1 Transform I into a GAV system I ′

2 Apply the query answering method for GAV systems under IDs
(The unfolding step must take into account the presence of
auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs is in
PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 148 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in (G)LAV under IDs and EDs Part 3: Query answering with constraints

(G)LAV systems under IDs and EDs

What happens if we have also EDs in the global schema?

The above transformation of (G)LAV into GAV is still correct in the
presence of EDs

It is thus possible to first turn the (G)LAV system into a GAV one
and then compute query answering in the transformed system

The addition of EDs is completely modular (we just need to add
auxiliary steps in the query answering technique)

D. Calvanese Data Integration BIT PhD Summer School 150 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

Query answering in (G)LAV under IDs and EDs Part 3: Query answering with constraints

Query answering in (G)LAV systems under IDs and EDs

Method for query answering in a (G)LAV system I with IDs and EDs:

1 Transform I into a GAV system I ′

2 Apply the query answering method for GAV systems under IDs and
EDs
(The unfolding step must take into account the presence of
auxiliary global symbols)

Theorem

Answering conjunctive queries in (G)LAV systems under IDs end Eds is
in PTime in data complexity (actually in LogSpace )

D. Calvanese Data Integration BIT PhD Summer School 151 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and key dependencies Part 3: Query answering with constraints

(G)LAV systems under KDs

We consider a (G)LAV system with only KDs in the global schema:

The transformation of (G)LAV into GAV is still correct in the
presence of KDs

More precisely, starting from a (G)LAV system I with KDs, we
obtain a GAV system I ′ with KDs and IDs

But in general, I ′ is such that the IDs added by the transformation
are key-conflicting IDs (i.e., these IDs are not NKCIDs), and hence
the KDs are in general not separable

Therefore, it is not possible to apply the query answering method for
(G)LAV systems under separable KDs and IDs

Question: Can we find some analogous query answering method based
on query rewriting?

D. Calvanese Data Integration BIT PhD Summer School 153 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and key dependencies Part 3: Query answering with constraints

(G)LAV systems under KDs – A negative result

Problem: KDs and LAV mappings derive new equality-generating
dependencies (not simple KDs)

Theorem (Duschka & al., 1998)

Given a LAV data integration system I with KDs in the global schema
and a conjunctive query q, in general there does not exist a first-order
query rew such that rewC = cert(q, I, C) for every source database C

In other words, in LAV with KDs, conjunctive queries are not first-order
rewritable, and one would need to resort to more powerful relational
query languages (e.g., Datalog)

D. Calvanese Data Integration BIT PhD Summer School 154 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and key dependencies Part 3: Query answering with constraints

Data integration with constraints – First-order rewritability

Can query answering in integration systems be performed by first-order
(UCQ) rewriting?

GAV with IDs + EDs: yes

GAV with IDs + KDs + EDs: only if KDs and IDs are separable

LAV with IDs + EDs: yes

LAV with KDs: no

D. Calvanese Data Integration BIT PhD Summer School 155 / 156



Query answering QA in GAV without constraints QA in (G)LAV without constraints

LAV systems and key dependencies Part 3: Query answering with constraints

Data integration with constraints – Complexity results

EDs KDs IDs Data/Combined complexity

no no general PTIME/PSPACE

yes-no yes no PTIME/NP

yes yes-no no PTIME/NP

yes-no yes NKC PTIME/PSPACE

yes no general PTIME/PSPACE

yes-no yes 1KC undecidable

yes-no yes general undecidable

D. Calvanese Data Integration BIT PhD Summer School 156 / 156


	Part 2: Query answering without constraints
	Query answering
	Query answering in GAV without constraints
	Retrieved global database
	Query answering via unfolding
	Universal solutions

	Query answering in (G)LAV without constraints
	(G)LAV and incompleteness
	Approaches to query answering in (G)LAV
	(G)LAV: Direct methods (aka view-based query answering)
	(G)LAV: Query answering by (view-based) query rewriting



