View-based Query Processing over Semistructured Data
Diego Calvanese
Free University of Bozen-Bolzano

View-based Query Processing
Diego Calvanese, Giuseppe De Giacomo, Georg Gottlob,

Maurizio Lenzerini, Riccardo Rosati

Corso di Dottorato — Dottorato in Ingegneria Informatica
University of Rome “La Sapienza”
September—October 2005

N

a &

VBQP over Semistructured Data — Outline

The semistructured data model and regular path queries (RPQs)
Containment of RPQs and 2RPQs

View-based query rewriting for RPQs and 2RPQs

View-based query answering for RPQs and 2RPQs via automata

View-based query answering for RPQs and 2RPQs via CSP

VBQP over Semistructured Data — Outline

= The semistructured data model and regular path queries (RPQSs)
2. Containment of RPQs and 2RPQs

3. View-based query rewriting for RPQs and 2RPQs

4. View-based guery answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

Semistructured data

Semistructured data (SSD) are an abstraction for data on the web, structured
documents, XML.:

e A (semistructured) database (DB) is a (finite) edge-labeled graph

‘bib
(o)

article book artlcle book
reference reference reference reference
. @ A/’_\ = A
title
author var author title
title author
(75 »

068
Path
"Victor Vianu" "Regular ..." "TovaMi Io Type Inference

firstname lasthname

"Dan" "Suci u"

e In some cases there are restrictions on the structure of the graph,
e.g., in XML the graph has to be a tree

Formalization of semistructured databases

Definition:
e The schema of a DB Is a relational alphabet X of binary predicates (one
for each edge label).
e A SSDB is a set of binary relations.

Note that we do not allow for constraints over the relations in a SSDB.

Example: ™ > = {bib, article,

| book, reference,
article book artlcle book
reference reference reference reference 1
/\A/F\ /ﬁ,ﬂ title, author, . ..}
title
author author title
title author
=) (@) -
X

Path
"Victor Vianu" "Regular ..." TovaMrIo Type Inference

firstname lastname

"Dan" "Suci u"

Queries over SSD

Queries over SSD are typically constituted by two parts:
e selection part: selects (tuples of) nodes that satisfy some condition
e restructuring part: reorganizes the selected nodes into a graph (or tree)

In this course we deal with the selection part only.

Queries must provide the ability to “navigate” the graph structure to relate pairs
of nodes ~» must contain some form of recursion:

e Datalog: provides a very expressive form of recursion

e XPath: descendant/ancestor axes refer to successor/predecessor nodes at
arbitrary depth in the tree — rather restricted form of recursion

e reflexive transitive closure provides a good tradeoff

Path queries

Are the basic element of all proposals for query languages over SSD.

Definition: A path query @ has the form

Q(z,y) «— x Ly

where L is a language over the alphabet X2 of binary DB predicates.

Recall that a DB B is a set of (binary) relations over X2, or equivalently a graph
whose edges are labeled with elements of 3.

Definition: The answer Q (1) to Q over B is the set of pairs of nodes (a, b)
such that thereisapatha 2 .- - 2 bin B, with p; - - - px € L.

Notable example: regular path queries (RPQs), in which L is a regular
language over X2

Regular path queries

In an RPQ, we can specify the regular language through a regular expression.

Example: DB alphabet: 3 = {bib, article, book, reference, title, . . .}

Query: Q(zx,y) <— x ((article + book)-reference™-title) y

Consider the DB B over X::

N Q(B)
' 01| 0
article bookl hrtlcle book 1 75
reference reference reference reference 01 | O3
— @ A/’_\ — /\L
. title 01 095
CULUT ZN author title
title res
=) (o) - @) () C
XPath
"Victor Vianu" "Regular ..." "TovaMilo" "Type Inference ..
firsthname lastname

"Dan" "Suciu"

Regular path queries — Observations

Expressive power of RPQs:
e Not expressible in first-order logic
e Are a fragment of transitive-closure logic

e Are a fragment of binary Datalog
— Concatenation: P(x,y) «— FEi(x,z2), Ex(z,y)
— Union: P(x,y) «— FEi(xz,y)
P(z,y) «— Ex(z,y)
— Reflexive-transitive closure: P(xz,y) «— FE(x,vy)
P(wa y) — E(wvz)7P(za y)

VBQP over Semistructured Data — Outline

= Containment of RPQs and 2RPQs
3. View-based query rewriting for RPQs and 2RPQs
4. View-based guery answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

Path query containment

Given Qi(z,y) «— =z L1y
Q2(z,y) «— xLyy
check whether Q1 C Q5, i.e., for every DB B, we have Q:(B) C Q2(B).

Language-Theoretic Lemma 1. Q.1 L Q. |Iff L; C Ly

D1

Proof: “Only if”; ConsideraDB a = --- 2% b withpy---pr € Ly and
P1-- Dk & Ly.

“I": If (a,b) € Q1(B), then B contains apath a = --+ 35 b with
p1--Pr € L. Butthenp, -+ -py, € Ly, and (a, b) € Q2(B).

Corollary: Path query containment is
e undecidable for context-free path queries
e PSPACE-complete for regular path queries [Stockmeyer 1973]

Containment of RPQs

Via language containment. We exploit that L; C L, iff L; — L, = 0.

Algorithm for checking whether L(E;,) C L(E-) (for regular expr. E;, E5)

1. Construct NFAs A; such that £L(A;) = L(E;)
~~ linear blowup

2. Construct NFA A, such that £(A,) = X* — L(A»)
~» exponential blowup

3. Construct A = A; X Ay suchthat L(A) = L(E;) — L(E,)
~~» guadratic blowup

4. Check whether there is a path from the initial state to a final state in A
~» NLOGSPACE

Theorem: Containment of RPQs is in PSPACE, and hence PSPACE-complete.

Two-way regular path queries (2RPQSs)

e Provide the ability to navigate DB edges in both directions.
Allow one to capture, e.g., the predecessor axis of XPath.

e We introduce an extended alphabet ¥* = ¥ U ¥, where
¥—={p" |pe}

e We call the elements of X~ inverse edge labels.

Definition: A two-way regular path query over X has the form

Q(r,y) —xEy

with E a regular expression over the extended alphabet X+

Example: Q2(x,y) «— x (article:(reference + reference™)*-title) y

Note: the edges of the DB are still labeled with elements of X only.

Semantics of two-way regular path queries
e Consider a 2RPQ Q(xz,y) «— = E y and a DB B over ..

e A semi-path aq Gy ay - ar+1 IN B Is a sequence of nodes with:
— either a; = a;4q in B, and r; = p;,
— Ora;11 — a;in B, and r; = p; .

e The answer Q (1) to Q over B is the set of pairs of nodes (a, b) s.t. there
isasemi-path a = -+ 5 b inB,withry -+ -1, € L(E).

Example: Query Q2(x, y) < x (article-(reference + reference™)*-title) y
Database B: bib
r Q:(B)

article book artlcle book

reference reference reference reference
AA/\ . A O1 | 083
title
author . author title 01 | Ogs
title author

068

XF’ath

"Victor Vianu" "Regular ..." TovaMrIo Type Inference

Two-way regular path queries — Observations

Language-Theoretic Lemma 1 does not hold anymore.

Reason: sequences of direct and inverse edge labels may be “folded” away.

Example: ¥ = {P}

Ql(wv y) — & Py
QZ(ZB, y) — SIJP-P_-Py

We have that:
e Q. L Q-: consider any path a X binaDB B
e but L(P) ¢ L(P-P~-P).

Foldings

Definition: Let u, v be words over ¥*. We say that v folds onto «, denoted
v ~ u, If we can transform v into u by repeatedly:

e replacing each occurrence in v of p-p—:-p with p, and

e replacing each occurrence in v of p—-p-p— with p—.

Example: rss~st~ rst

S S S t r S t
\ ° \ ° \

Pictorially: 5.5 20505 ~

Definition: Let E be a RE over X=T.
Then fold(E) = {v | v ~ u, forsome u € L(E)}

The notion of folding allows us to reduce containment of 2ZRPQs to a
language-theoretic problem.

Containment of 2ZRPQs

Consider two 2RPQs Q:(z,y) «— x E1 y
Q2(z,y) — T Ex y

Language-Theoretic Lemma 2: Q1 C Q. iff L(E;) C fold(E-)

Proof: by considering simple semi-paths a = --- = b in a DB, where
ry---rr € L(EY).

To decide L(FE;) C fold(E-) we resort to two-way automata on words.

Two-way automata on words (2NFA)

A 2NFA is similar to a standard one-way automaton (1NFA)
A — (2,5,50,5,F)

but the transition function § : S x ¥ — 25x{=1.0:1} maps each state to a set of
pairs

e new state

e moving direction (left, don’t move, or right)

Theorem [Rabin&Scott, Shepherdson 1959]. 2NFAs accept regular languages

Given a 2NFA A with n states, one can construct a 1INFA with O(2™1°8 ™) states
accepting L(A).

2NFAs and foldings
Theorem: Let E be a RE over X=. There is a 2NFA AE such that
e L(Ag) = fold(E)

e The number of states of Ay is linear in the size of E

In the construction of A we exploit the fact that 2NFAs can move backwards
on a word. E.g., to fold pp~p onto p, the 2NFA:

1. Moves forward on p.

2. Makes a step backward and expects to see p while staying in place (this
corresponds to moving according to p—, i.e., backward on p).

3. Moves forward again on p.

2NFAs and foldings — Example

Regular expression over X+ E = r.(p+q)-p_-p-q—"

Word in £(FE) viewed as a path in a DB:

d O—>=OL >0=<L 0 ds

r p q $

1INFA that accepts L(FE)

@\/Z;@L,@_P,Q -

2NFA that accepts fold(FE)

p

1
A Wit i
65 Q x,1

2NFAs and foldings — Construction

Let E be a RE over X* and A = (%, S, Sy, 6, F) a INFA with
L(A) = L(E).
We construct the 2NFA
Ap = (SFU{S}, SU{s;}U{s|s€S} So, da {5/}

where 0 4 1s defined as follows:
e (s—,—1) € da(s,2),foreachs € Sand £ € =T U {$}
o (s2,1) € 6a(s1,7) and (s2,0) € da(s7 ,7r), for each transition sz € 6(s1, 1)
of E.
o (s7,1) € da(s,£),foreachs € Fand £ € T U {$}

We have that: w € fold(E) iff w$ € L(Ag)
(We can also get rid of the $ at the end of words in L(Ag).)

Containment of 2RPQs (cont'd)

Consider two 2RPQs Q:(z,y) «— x E1 y
Q2(z,y) — T Ex y

Summing what we have seen till now, we have that

Q: L Q- Iff

To check £(E;) C L(Ag,) we have to look into the transformation of 2NFAs
to INFAs.

Transforming 2NFAs to 1NFAs

Theorem [Vardi 1988]: Let A = (X, S, So, 9, F') be a 2NFA.
There is a INFA A€ such that
e Ac° accepts the complement of A, i.e., L(A°) = 3* — L(A)
e Acis exponential in A, i.e., ||A¢|| is 20UAID

Proof: guess a subset-sequence counterexample.

ap---ar_1 & L(A) iff there is a sequence Ty, . . ., T}, of subsets of S such
that:

e So CToand Ty NF =10

e Ifse T;and (t,+1) € 6(s,a;),thent € T; 1, for0 <1 < k

e Ifse€ T;and (t,0) € d(s,a;),thent € T;,for0 < i < k

e IfseT;and (t,—1) € §(s,a;),thent € T;_,,for0 < i < k

The 1INFA A€ guesses such a seQuence Ty, ..., T, and checks that it
satisfies the 4 conditions above.

Containment of 2RPQs (finally done!)

Consider two 2RPQs Q:(z,y) «— x E1 y
Q2(z,y) — T Ex y

Summing up, we have that

Q: L Q Iff
L(E) C L(Ap,) f

L(E) N L(AG)=0 iff
ﬁ(AEl X A(l:?z) =0

Theorem: Containment of 2ZRPQs is in PSPACE, hence PSPACE-complete.

Containment of queries over semistructured data

Complexity of containment for various classes of queries over semistructured
data:

Language Complexity
RPQs PSPACE [PODS'99]
2RPQs PSPACE [PODS’00]
Tree-2RPQs PSPACE [DBPLO1]
Conjunctive-2RPQs EXPSPACE [KR'00]
Datalog in Unions of C2RPQs | 2EXPTIME [ICDT'03]

VBQP over Semistructured Data — Outline

= View-based query rewriting for RPQs and 2RPQs
4. View-based guery answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

View-based guery processing

— answers
interested in to Q

certain
answers
certQ,V

1 I
: Qf-mmmmmmmee @
|

I v

I . g

| View definition V ;| Database schema

: Vl V2 L] Vn -~ Rl R2 LI | Rm

|

I

1

1

h
?______I

A

View extension E Database B

View-based query processing for SSD

We consider the setting where:

The schema X is a set of binary predicates without constraints.
Each view symbol in V is a binary predicate.

Each view definition in V* is an RPQ/2RPQ over X.

Each view extension in £ is a binary relation.

The query @ is an RPQ/2RPQ over 3.

Views are sound, complete, or exact views (will discuss mostly the case of
sound views).

The domain is open.

Problem: Given a schema X, views V with definitions V> and extensions £, a
query Q over X, and a tuple t, decide whether t € cert(Q, =, V=, £).

View-based query answering for SSD — Example

Schema X = {article, reference, title, author, . . .}
Setof views V = {V;, V5, V5 }

View definitions V= = {V>, V.2, V. }, with
V>: Vi(bya) < b (article)a
V> Va(pi,p2) <« pi1 (reference*) po
V32 : Vi(p,t) «— p (title) ¢

View extensions £ = { E,, F>, Es}, where

— [FE, stores for each bibliography its articles

— FE stores for each publ. the ones it references directly or indirectly
— FE5 stores for each publication its title

View-based query answering via rewriting

certain

we are

answers
max . .
o R™qy % interested in

answers
to Q

QF---------- Q

v

answers

| A

| ¢ ______ RmaxQV

: :

: ! "

| , View definition V
|

: : Vl V2 e Vn

: l

! L -

|

|

View extension E

Ry Ry

J Database schema

R

m

1
|
1
|
|
I
<-O-17

Database B

S

Note: the class C of queries in which to express the rewriting is fixed a priori.

View-based query rewriting for SSD

Problem: Given a schema X, views V with definitions V>, a query Q over X,
and a class C of queries over YV, compute the query R over V such that:

1. RisaqueryinC.

2. R s a sound rewriting, i.e., for every database B over X and every view
extension £ that is sound wrt B (i.e., such that £ C V*(1)), we have
R(E) C Q(B).

3. R is the maximal (wrt containment) query in C satisfying condition (2).

Such a query is called the C-maximal rewriting of @ wrt X2 and V, and is
denoted rew(Q, >, V).

In the following, we assume that the class C of queries in which the rewriting is
expressed coincides with that of @Q (i.e., is that of RPQs / 2RPQs), and we do
not mention it explicitly.

View-based query rewriting for 2RPQs — Example

Consider three views with definitions:

Vi(b,a) <« b (article) a
Vo(p1,p2) «— pi1 (reference) p.
Vis(p,t) « p(title) ¢

Query: Q(x,y) <— x (article-(reference + reference™)*-title) y

e R(x,y) «— x (vi-va:v3) y is an RPQ rewriting of Q
o R(x,y) «— x (vi-(vo +Vv27)v3) y is a 2RPQ rewriting of @

o R(x,y) «— x (vi-(vo +v27)*v3)y is a2RPQ-maximal rewriting of Q
that is also exact

Sound rewritings

Since RPQs and 2RPQs are monotone queries, the following characterizations
of a sound rewriting R of QQ wrt 3 and V are equivalent:

e For every database B over X and every view extension £ with
£ C VE(B), we have that R(€) C Q(B).

e For every database B over X and every view extension £ with
£ = VE(B), we have that R(€) C Q(B).

e For every database B over X, we have that R(V*>(B)) C Q(B).

Observe: The following two ways of computing R(V*>(B)) are equivalent:

e First evaluate the view definitions V= over B, and then evaluate R over the
obtained view extension.

e First expand in R the view symbols V with the corresponding definitions
V>, and then evaluate the resulting query over B.

Expansion of an RPQ / 2RPQ

We call a query over X a 3-query, and a query over V a V-query.

Consider:
e asetofviews V ={Vi,...,Vi}
e a set of view definitions (RPQs or 2RPQs) V> = {V 2, ..., V. >},
with V> : Vi(z,y) — x E; y
e a V-query (RPQor2RPQ) R: R(x,y) «— x Ery

Definition: The expansion Ry, .y=) of R wrt V* is the 3-query obtained from
R by replacing in E'i:
e each occurrence of a view symbol V; with FE;.
e each occurrence of an inverse view symbol V.~ with inv(E;), where
nv(p) =p~ inv(e; + ez) = inv(ep) + inv(es)
mv(p~) =p inv(ej-ex) = tnv(ez)-1nv(es)

v (e*) = inv(e)*

Checking rewritings via expansion

Hence, to check whether a rewriting R of Q wrt 3 and V* is sound, we can:

1. Compute Ry, ,y=) by expanding each direct (resp., inverse) view symbol
V (resp., V™) in R with the corresponding definition V'* (resp., inv(V*>)).

2. Check whether Ry, ,y=) L Q (notice that both are X-queries).

Counterexample method for rewriting of RPQs

Due to Language-Theoretic Lemma 1, we can treat RPQs simply as regular
expressions.

Consider a candidate rewriting: B = wq - - - uy € YV*
e Risabadrewriting of QIf Ry ,y=) £ Q

e R is a bad rewriting of @ If there are witnesses wq, ..., w, € X* such
that w; - - - wy, IZ Q, where w; € E(Vf) if u; = V.

Example: Q = abed, V ={Vi,V2}, V*=ab, V;”=cd
e bad rewriting: V5V;, with withesses ed and ab

e good rewriting: V; V5

Rewriting of RPQs
Construction is based on 1NFAs:
1. Construct a 1DFA Ag = (3, S, so, 9, F') for @ ~» exponential blowup
2. Construct the INFA A, = (V, S, s0,6’, S — F), where
s; € 8'(s;, V) iff there exists aword w € L(V>) s.t. s; € §*(s;, w)
Note:
o Ag and Ap.q have the same states, but complementary final states.
o A,.qacceptsaword u;---u € V*iffitis a bad rewriting of Q.

The words w used in the definition of §’ act as withesses.
~~ linear blowup

3. Complement A4 to get a INFA A,.,, for good rewritings.
~» exponential blowup

The construction yields the maximal path rewriting.

It is represented by a 1DFA. ~» The maximal path rewriting is an RPQ.

Rewriting of RPQs — Example

Query: Q = a+(b-a+ ¢)*
Views: VY = {V;, V5, V3}, with Vl2 = a, sz = a-c*-b, V;;Z = c

AN A \

Rewriting of RPQs — Complexity

Checking nonemptiness of the maximal path-rewriting of an RPQ Query wrt a
set of RPQ views is EXPSPACE-complete.

Proof:
e The 1DFA A,.,, is of double exponential size.

e We can check for its non-emptiness on the fly in NLOGSPACE In the
number of its states, i.e., in EXPSPACE In the size of ()

e The matching lower-bound is by a reduction from an EXPSPACE-hard
tiling problem.

There exists an RPQ Query @@ and RPQ views V over an alphabet X such that
the smallest 1NFA for the rewriting rew (Q, X, V) is of double exponential size.

Exact rewritings

Definition: A rewriting R of an RPQ Q wrt X and V* is exact if Q C Ry oy

Note: since R is a rewriting, we also have R, ,y=) L Q.

To verify whether R is an exact rewriting of Q wrt X and V*:

1. Construct a INFA B over X accepting Ry, ,y=;.
It suffices to replace each V; edge in R with a 1NFA for Viz.

2. Check whether L(Ag) C L(B), i.e.,
e complement B to obtain an 1NFA B,
e check whether L(Ag) N L(B) = 0, i.e., whether L(Ag X B) = 0.

B may be of triply exponential size in Q but we can check its emptyness
on-the-fly in 2EXPSPACE.

Rewriting of RPQs — Results
Theorem:
e Nonemptiness of the maximal rewriting is EXPSPACE-complete.
e The maximal rewriting may be of double exponential size.

e EXxistence of an exact rewriting is 2ZEXPSPACE-complete.

Rewriting of 2ZRPQs
e The guery and the view definitions are 2RPQs over ..
e We look for rewritings that are a 2RPQ over V.

e We consider again candidate rewritings and try to characterize bad
rewritings.

Candidate rewriting: R = uq - - - up, € V**

e To check whether a rewriting is bad, we need to expand both direct and
Inverse view symbols.

e Ris abad rewriting of Q if Ry y=) Z Q

e R is a bad rewriting of @ If there are witnesses wi,...,w, € >»** such
that wq - - - wy, £ Q, where
- w; € L(V7) ifu; = Vj.
- w; € L(>inv(V7)) ifu; = V.

Counterexample method for rewriting of 2ZRPQs

We consider counterexample words, which are obtained from a bad rewriting
by inserting after each symbol w its withess w.

Definition: Counterexample word — w,wq « + » upwy
1 w; € L(VF) ifu; =V

2. w; € L(>inv(V7)) ifu; = V.

3. wyrwi L Q.

Example: Q = abed, V = {Vi, >}, Vl2 = ab, V22 — cd
e bad rewriting: V5,V;, with withesses w; = cd, wy = ab
e counterexample word: V5 cd V5 ab

Checking counterexample words with 2NFAs
e Check (1) and (2) with 2NFAs for V*.
e Use folding technique to construct 2NFA to check w - - - wp, T Q.
e Complement resulting 2NFA.

~» Complexity is exponential

From counterexamples to rewritings

To construct good rewritings:

1. Construct INFA A, for counterexample words w;w; - - - upwy,.
~» exponential

2. Project out witness words w; to get 1INFA A, for bad rewritings wq - - - uy,.
~» linear

3. Complement A, to get 1NFA for good rewritings.
~» exponential

The construction yields the maximal two-way path rewriting

It is represented by a 1IDFA. ~» The maximal two-way path rewriting is a
2RPQ.

Rewriting of 2ZRPQs — Results

We get for 2ZRPQs the same upper (and lower) bounds as for RPQs.

Theorem:
e Nonemptiness of the maximal rewriting is EXPSPACE-complete.
e The maximal rewriting may be of double exponential size.

e EXxistence of an exact rewriting is 2ZEXPSPACE-complete.

VBQP over Semistructured Data — Outline

= View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

View-based guery answering for RPQs / 2RPQs
Given:

e a set V of view symbols with a corresponding set V> of RPQ / 2RPQ view
definitions over a relational alphabet X

e a corresponding set £ of view extensions
e a2RPQ @ over X
e a pair (c, d) of objects

check whether (¢, d) € cert(Q,X, V>, E).

In other words, check whether for every database B over X such that the view
extension £ is sound wrt B (i.e, € C V(B)), we have that (c,d) € Q(B).

View-based query answering for 2RPQs — Idea

We search for a counterexample database, i.e., a database B such that £ is
sound wrt B, but such that (c, d) is not in the answer to @ over B.

Technique:
1. Encode counterexample databases as finite words.
2. Construct a 2NFA that accepts such words.

3. Check for emptiness of the automaton.

Canonical counterexample databases

A database B is a counterexample to (¢, d) € cert(Q,X,V,E) if
o £ C V*(B), i.e., the view extension € is sound wrt B,

e (c,d) ¢ Q(B).
Observations:

e [t is sufficient to restrict the attention to counterexamples of a special form
(canonical databases)

d d d
.1 - ».2 - ».47.3,\5* Set of objects in the view extension &:
Ql r Ag = {d17d27d39 d49d59-~-}

.‘—.—»‘ d5

da y 2 P

e Each canonical database B can be represented as a word wg over
Y4 =Xt U As U {$} of the form

$d1w1d2$d3w2d4$ e $d2m_1wmd2m$

Canonical DBs and 2NFAs

dy d> ds
o >0 >0< @

B: rqlp TN

v Qz,y) — z(r-(p+q)p pqa)y

@ <—o0 >0 ds
da y 2 y 2

Word representing B:
$d1’l"d2 $d4p_pd5 $d4q_d2 $d3’l"’l"d3 $ dgpq_d3 $

To verify whether (d;, d;) € Q(B) we exploit that 2NFAs can:
e move on the word both forward and backward

e jump from one position in the word representing a node to any other position
representing the same node (search mode)

~ We can construct a 2NFA A q.q;,4,) that accepts w iff (d;, d;) € Q(B)

View-based query answering for 2RPQs — Technique

To check whether (¢, d) ¢ cert(Q,3,V, £), we construct a INFA A, as the
Intersection of:

o the INFA A, that accepts ($-As- T TECAL)*$

e the 1NFAs corresponding to the various A = ,
(for each sound or exact view V;, and for each pair (a,b) € E;)

e the 1NFAs corresponding to the complement of each Ay,
(for each complete or exact view V;, the 2NFA Ay, checks whether a pair of
objects other than those in E; is in V;(B))

o the 1NFA corresponding to the complement of A g . q)

~ Aga accepts words representing counterexample DBs

We have that (¢, d) & cert(Q,>,V,E) Iff Aga is nonempty.

Complexity of query answering
Can be measured in three different ways:
e Data complexity: as a function of the size of the view extension £

e Expression complexity: as a function of the size of the query @ and of the
view definitions V>, ..., V>

e Combined complexity: as a function of the size of both the view extension
£ and the expressions Q, V>, ..., V>

View-based query answering for 2RPQs — Upper bounds

e All 2NFAs are of linear size in the size of (), all views in V and the view
extensions £.

~» The corresponding 1NFA would be exponential.

e However, we can avoid the explicit construction of A4, and we can
construct it on the fly while checking for nonemptiness.

~» View-based query answering for 2RPQs is in PSPACE wrt expression
complexity and combined complexity.

PSPACE-hardness follows immediately by reduction from universality of
regular languages.

What about data complexity, i.e., complexity in the size of the view extension £7?

VBQP over Semistructured Data — Outline

v/ The semistructured data model and regular path queries (RPQs)
v/ Containment of RPQs and 2RPQs

v/ View-based query rewriting for RPQs and 2RPQs

v/ View-based query answering for RPQs and 2RPQs via automata

= View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 53

View-based query answering for 2RPQs — Data complexity

e In the previous algorithm one cannot immediately single out the
contribution of £ to the nonemptiness check of the automaton Ag4.

e This can however be done by analyzing the transformation from 2NFA to
INFA, and modifying the construction of the automata to avoid search
mode.

We look at an alternative way to analyze data complexity, derived from a tight
connection between view-based query answering under sound views and
constraint satisfaction (CSP).

~» Better insight into view-based query answering for RPQs and 2RPQs.

~» Several additional results on various forms of view-based query processing.

Constraint satisfaction problems

Let LA and B be relational structures over the same alphabet.

A homomorphism h is a mapping from .A to B such that for every relation R,
if (c15...,¢cn) € R(A), then (h(cy),...,h(c,)) € R(B).

Non-uniform constraint satisfaction problem CSP (B): the set of relational
structures A such that there is a homomorphism from A to B.

Complexity:
e CSP(B)isin NP.
e There are structures B for which CSP (B) is NP-hard.

Example: *
£

CSP and VBQA for 2RPQs — Constraint template

From @ and V, we can define a relational structure 7 = CT'g), called
constraint template of Q wrt V:

e The vocabulary of 7 is { Ry, ..., R} U {Uini, Usn }, Wwhere
— each R; corresponds to a view V; and denotes a binary predicate
— U,n; and Ug, denote unary predicates

e Let Q be represented by a INFA (X%, S, S,, d, F):
— The domain A of 7 is 25, i.e., all sets of states of Q
—oceU;u(7T) iff SoCo
— 0 €Ugxp(T) iff oNF =10
— (o1,02) € R;(T) iff there existsaword p;---pg € L(V,*) and a
sequence Ty, ..., T} of subsets of S such that:
1. Ty = oy and Ty, = o5
2. fseT;andt € (s, p;ir1), thent € T; 4
3. ifseT;andt € §(s,p;),thent € T;_,

CSP and VBQA for 2RPQs — Constraint instance

Observations:

¢ Intuitively, the constraint template C'T ¢y, encodes how the states of ()
change when moving along a database according to the views.

e The existence of aword p; - - - pr, € L(V;*) and of a sequence Ty, ..., T}
of subsets of S satisfying conditions 1-3 can be checked in PSPACE.

e CT g,y can be computed in time exponential in Q and polynomial in V.

From £ and two objects c and d, we can define another relational structure
T = CI%” over the same vocabulary, called the constraint instance:

e The domain Az of Zis Ag U {c,d}

e R(Z)=FE; for: e {1,...,k}

e U,i(Z) = {c}

o Umn(Z) = {d}

CSP and view-based query answering for 2ZRPQs

Theorem: (c, d) is not a certain answer to Q wrt V and £
If and only if
there is a homomorphism from CI%“ to CTgy,le, CIg¢? CSP(CTg,v)

~» Characterization of view-based query answering for 2RPQs in terms of CSP

~+ View-based query answering for 2RPQs is in coNP wrt data complexity

Query answering for RPQs — Data complexity lower bound

coNP-hard wrt data compexity, by reduction from 3-coloring:

Views: V, = §5,.4+5,4+ S
Ve = R, + R, + Ry + Ry + Ryp + Ry
Ve = F.+ F,+ F,
Query: Q =) sy SeFy+ 2 orpvwes Sz Byw F, (color mismatch)

Only domain and view extensions depend on graph G = (N, E).

Domain: Ag
Extensions: FE,

N U {ec,d}
{(c,a) |[a € N}

{(a,b), (b,a) | (a,b) € E}
E; = {(a,d)|ae N}

&
Q
]

Thm: G is 3-colorable iff (¢, d) is not a certain answer to Q.

Note: we have used only a query and views that are unions of simple paths.

Complexity of view-based query answering for RPQs / 2RPQs

Assumption on | Assumption on Complexity

domain vViews data | expression | combined

all sound coNP coNP coNP

closed all exact coNP coNP coNP

arbitrary coNP coNP coNP
all sound coNP | PSPACE | PSPACE
open all exact coNP | PSPACE | PSPACE
arbitrary coNP | PSPACE | PSPACE

From [ICDE’00] for RPQs and [PODS’00, ICDT’05] for 2RPQs.

Consequence of complexity results

+ The view-based guery answering algorithm provides a set of answers that
IS sound and complete.

— A coNP data complexity does not allow for effective deployment of the
guery answering algorithm.

Note that coNP-hardness holds already for queries and views that are
unions of simple paths (no reflexive-transitive closure).

~» Adopt an indirect approach to view-based guery answering, via query
rewriting.

Query answering by rewriting

To answer a query Q wrt V and &:
1. re-express () in terms of the view symbols, i.e., compute a rewriting of Q).
2. directly evaluate the rewriting over £.

Comparison with direct approach to query answering:

+ We can consider rewritings in a class with polynomial data complexity
(e.g., 2RPQs) ~» the data complexity for query answering is polynomial.

+/— We have traded expression complexity for data complexity.

— We may lose completeness (i.e., not obtain all certain answers).

We need to establish the “quality” of a rewriting:
e When does the (maximal) rewriting compute all certain answers?
e What do we gain or lose by considering rewritings in a given class?

