
View-based Query Processing over Semistructured Data

Diego Calvanese

Free University of Bozen-Bolzano

View-based Query Processing

Diego Calvanese, Giuseppe De Giacomo, Georg Gottlob,

Maurizio Lenzerini, Riccardo Rosati

Corso di Dottorato – Dottorato in Ingegneria Informatica
University of Rome “La Sapienza”

September–October 2005



VBQP over Semistructured Data – Outline

1. The semistructured data model and regular path queries (RPQs)

2. Containment of RPQs and 2RPQs

3. View-based query rewriting for RPQs and 2RPQs

4. View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 1



VBQP over Semistructured Data – Outline

⇒ The semistructured data model and regular path queries (RPQs)

2. Containment of RPQs and 2RPQs

3. View-based query rewriting for RPQs and 2RPQs

4. View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 2



Semistructured data

Semistructured data (SSD) are an abstraction for data on the web, structured
documents, XML:

• A (semistructured) database (DB) is a (finite) edge-labeled graph

article

...

o1

o71 o83

o52 o53

o68

author
title

title

lastnamefirstname

reference

book

bib

"Victor Vianu" "Regular ..."

"Dan" "Suciu"

o42o37o15

o75

...

...

...

referencereference reference
o58

author

o64

author

"Tova Milo"

...
book

...

o95

title

"Type Inference ..."
"XPath ..."

article

• In some cases there are restrictions on the structure of the graph,
e.g., in XML the graph has to be a tree

D. Calvanese View-based Query Processing over Semistructured Data 3



Formalization of semistructured databases

Definition:
• The schema of a DB is a relational alphabet Σ of binary predicates (one

for each edge label).
• A SSDB is a set of binary relations.

Note that we do not allow for constraints over the relations in a SSDB.

Example:

article

...

o1

o71 o83

o52 o53

o68

author
title

title

lastnamefirstname

reference

book

bib

"Victor Vianu" "Regular ..."

"Dan" "Suciu"

o42o37o15

o75

...

...

...

referencereference reference
o58

author

o64

author

"Tova Milo"

...
book

...

o95

title

"Type Inference ..."
"XPath ..."

article

Σ = {bib, article,

book, reference,

title, author, . . .}

D. Calvanese View-based Query Processing over Semistructured Data 4



Queries over SSD

Queries over SSD are typically constituted by two parts:
• selection part: selects (tuples of) nodes that satisfy some condition

• restructuring part: reorganizes the selected nodes into a graph (or tree)

In this course we deal with the selection part only.

Queries must provide the ability to “navigate” the graph structure to relate pairs

of nodes ; must contain some form of recursion:

• Datalog: provides a very expressive form of recursion

• XPath: descendant/ancestor axes refer to successor/predecessor nodes at

arbitrary depth in the tree – rather restricted form of recursion

• reflexive transitive closure provides a good tradeoff

D. Calvanese View-based Query Processing over Semistructured Data 5



Path queries

Are the basic element of all proposals for query languages over SSD.

Definition: A path query Q has the form

Q(x, y)← x L y

where L is a language over the alphabet Σ of binary DB predicates.

Recall that a DB B is a set of (binary) relations over Σ, or equivalently a graph
whose edges are labeled with elements of Σ.

Definition: The answer Q(B) to Q over B is the set of pairs of nodes (a, b)

such that there is a path a
p1→ · · · pk→ b in B, with p1 · · · pk ∈ L.

Notable example: regular path queries (RPQs), in which L is a regular
language over Σ

D. Calvanese View-based Query Processing over Semistructured Data 6



Regular path queries

In an RPQ, we can specify the regular language through a regular expression.

Example: DB alphabet: Σ = {bib, article, book, reference, title, . . .}
Query: Q(x, y)← x ((article + book)·reference

∗·title) y

Consider the DB B over Σ:

article

...

o1

o71 o83

o52 o53

o68

author
title

title

lastnamefirstname

reference

book

bib

"Victor Vianu" "Regular ..."

"Dan" "Suciu"

o42o37o15

o75

...

...

...

referencereference reference
o58

author

o64

author

"Tova Milo"

...
book

...

o95

title

"Type Inference ..."
"XPath ..."

article

Q(B)

o1 o75

o1 o83

o1 o95

...
...

D. Calvanese View-based Query Processing over Semistructured Data 7



Regular path queries – Observations

Expressive power of RPQs:

• Not expressible in first-order logic

• Are a fragment of transitive-closure logic

• Are a fragment of binary Datalog
– Concatenation: P (x, y) ← E1(x, z), E2(z, y)

– Union: P (x, y) ← E1(x, y)

P (x, y) ← E2(x, y)

– Reflexive-transitive closure: P (x, y) ← E(x, y)

P (x, y) ← E(x, z), P (z, y)

D. Calvanese View-based Query Processing over Semistructured Data 8



VBQP over Semistructured Data – Outline

√
The semistructured data model and regular path queries (RPQs)

⇒ Containment of RPQs and 2RPQs

3. View-based query rewriting for RPQs and 2RPQs

4. View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 9



Path query containment

Given Q1(x, y) ← x L1 y

Q2(x, y) ← x L2 y

check whether Q1 ⊑ Q2, i.e., for every DB B, we have Q1(B) ⊆ Q2(B).

Language-Theoretic Lemma 1: Q1 ⊑ Q2 iff L1 ⊆ L2

Proof: “Only if”: Consider a DB a
p1→ · · · pk→ b with p1 · · · pk ∈ L1 and

p1 · · · pk /∈ L2.

“If”: If (a, b) ∈ Q1(B), then B contains a path a
p1→ · · · pk→ b with

p1 · · · pk ∈ L1. But then p1 · · · pk ∈ L2, and (a, b) ∈ Q2(B).

Corollary: Path query containment is
• undecidable for context-free path queries
• PSPACE-complete for regular path queries [Stockmeyer 1973]

D. Calvanese View-based Query Processing over Semistructured Data 10



Containment of RPQs

Via language containment. We exploit that L1 ⊆ L2 iff L1 − L2 = ∅.

Algorithm for checking whether L(E1) ⊆ L(E2) (for regular expr. E1, E2)

1. Construct NFAs Ai such that L(Ai) = L(Ei)

; linear blowup

2. Construct NFA A2 such that L(A2) = Σ∗− L(A2)

; exponential blowup

3. Construct A = A1 ×A2 such that L(A) = L(E1)− L(E2)

; quadratic blowup

4. Check whether there is a path from the initial state to a final state in A

; NLOGSPACE

Theorem: Containment of RPQs is in PSPACE, and hence PSPACE-complete.

D. Calvanese View-based Query Processing over Semistructured Data 11



Two-way regular path queries (2RPQs)

• Provide the ability to navigate DB edges in both directions.
Allow one to capture, e.g., the predecessor axis of XPath.

• We introduce an extended alphabet Σ± = Σ ∪ Σ−, where
Σ− = {p− | p ∈ Σ}.

• We call the elements of Σ− inverse edge labels.

Definition: A two-way regular path query over Σ has the form

Q(x, y)← x E y

with E a regular expression over the extended alphabet Σ±.

Example: Q2(x, y)← x (article·(reference + reference
−)∗·title) y

Note: the edges of the DB are still labeled with elements of Σ only.

D. Calvanese View-based Query Processing over Semistructured Data 12



Semantics of two-way regular path queries

• Consider a 2RPQ Q(x, y)← x E y and a DB B over Σ.

• A semi-path a1
r1→ a2 · · · ak

rk→ ak+1 in B is a sequence of nodes with:
– either ai

pi→ ai+1 in B, and ri = pi,
– or ai+1

pi→ ai in B, and ri = p−i .

• The answer Q(B) to Q over B is the set of pairs of nodes (a, b) s.t. there
is a semi-path a

r1→ · · · rk→ b in B, with r1 · · · rk ∈ L(E).

Example: Query Q2(x, y)← x (article·(reference + reference
−)∗·title) y

Database B:

article

...

o1

o71 o83o68

author
title

title

reference

book

bib

"Victor Vianu" "Regular ..."

o42o37o15

o75

...

...

...

referencereference reference
o58

author

o64

author

"Tova Milo"

...
book

...

o95

title

"Type Inference ..."
"XPath ..."

article

Q2(B)

o1 o75

o1 o83

o1 o95

...
...

D. Calvanese View-based Query Processing over Semistructured Data 13



Two-way regular path queries – Observations

Language-Theoretic Lemma 1 does not hold anymore.

Reason: sequences of direct and inverse edge labels may be “folded” away.

Example: Σ = {P}
Q1(x, y)← x P y

Q2(x, y)← x P ·P−·P y

We have that:

• Q1 ⊑ Q2: consider any path a
P→ b in a DB B

• but L(P ) * L(P ·P−·P ).

D. Calvanese View-based Query Processing over Semistructured Data 14



Foldings

Definition: Let u, v be words over Σ±. We say that v folds onto u, denoted
v ; u, if we can transform v into u by repeatedly:

• replacing each occurrence in v of p·p−·p with p, and
• replacing each occurrence in v of p−·p·p− with p−.

Example: rss−st ; rst

Pictorially:
r→ · s→ · s← · s→ · t→ ;

r→ · s→ · t→

Definition: Let E be a RE over Σ±.
Then fold(E) = {v | v ; u, for some u ∈ L(E)}

The notion of folding allows us to reduce containment of 2RPQs to a
language-theoretic problem.

D. Calvanese View-based Query Processing over Semistructured Data 15



Containment of 2RPQs

Consider two 2RPQs Q1(x, y)← x E1 y

Q2(x, y)← x E2 y

Language-Theoretic Lemma 2: Q1 ⊑ Q2 iff L(E1) ⊆ fold(E2)

Proof: by considering simple semi-paths a
r1→ · · · rk→ b in a DB, where

r1 · · · rk ∈ L(E1).

To decide L(E1) ⊆ fold(E2) we resort to two-way automata on words.

D. Calvanese View-based Query Processing over Semistructured Data 16



Two-way automata on words (2NFA)

A 2NFA is similar to a standard one-way automaton (1NFA)

A = (Σ, S, S0, δ, F )

but the transition function δ : S×Σ→ 2S×{−1,0,1} maps each state to a set of
pairs

• new state
• moving direction (left, don’t move, or right)

Theorem [Rabin&Scott, Shepherdson 1959]: 2NFAs accept regular languages

Given a 2NFA A with n states, one can construct a 1NFA with O(2n log n) states

accepting L(A).

D. Calvanese View-based Query Processing over Semistructured Data 17



2NFAs and foldings

Theorem: Let E be a RE over Σ±. There is a 2NFA ÃE such that

• L(ÃE) = fold(E)

• The number of states of ÃE is linear in the size of E

In the construction of ÃE we exploit the fact that 2NFAs can move backwards

on a word. E.g., to fold pp−p onto p, the 2NFA:

1. Moves forward on p.

2. Makes a step backward and expects to see p while staying in place (this

corresponds to moving according to p−, i.e., backward on p).

3. Moves forward again on p.

D. Calvanese View-based Query Processing over Semistructured Data 18



2NFAs and foldings – Example

Regular expression over Σ±: E = r·(p + q)·p−·p·q−∗

Word in L(E) viewed as a path in a DB: pr

r p q−

d1 d2

$

q

1NFA that accepts L(E)

q−s0 s1 s2 s3 s4

q

r
p

p− p

2NFA that accepts fold(E)

q−, 1s0 s1 s2 s3 s4

s←
2

r, 1

q, 1

sf

∗, 1
∗,−1

∗, 1· · · · · · · · ·

p, 1
p−, 1 p, 1

p, 0

D. Calvanese View-based Query Processing over Semistructured Data 19



2NFAs and foldings – Construction

Let E be a RE over Σ± and A = (Σ±, S, S0, δ, F ) a 1NFA with
L(A) = L(E).

We construct the 2NFA

ÃE = (Σ± ∪ {$}, S ∪ {sf} ∪ {s← | s ∈ S}, S0, δA, {sf})

where δA is defined as follows:

• (s←,−1) ∈ δA(s, ℓ), for each s ∈ S and ℓ ∈ Σ± ∪ {$}

• (s2, 1) ∈ δA(s1, r) and (s2, 0) ∈ δA(s←1 , r−), for each transition s2 ∈ δ(s1, r)

of E.

• (sf , 1) ∈ δA(s, ℓ), for each s ∈ F and ℓ ∈ Σ± ∪ {$}

We have that: w ∈ fold(E) iff w$ ∈ L(ÃE)

(We can also get rid of the $ at the end of words in L(ÃE).)

D. Calvanese View-based Query Processing over Semistructured Data 20



Containment of 2RPQs (cont’d)

Consider two 2RPQs Q1(x, y)← x E1 y

Q2(x, y)← x E2 y

Summing what we have seen till now, we have that

Q1 ⊑ Q2 iff

L(E1) ⊆ fold(E2) iff

L(E1) ⊆ L(ÃE2
)

To check L(E1) ⊆ L(ÃE2
) we have to look into the transformation of 2NFAs

to 1NFAs.

D. Calvanese View-based Query Processing over Semistructured Data 21



Transforming 2NFAs to 1NFAs

Theorem [Vardi 1988]: Let A = (Σ, S, S0, δ, F ) be a 2NFA.
There is a 1NFA Ac such that
• Ac accepts the complement of A, i.e., L(Ac) = Σ∗− L(A)

• Ac is exponential in A, i.e., ||Ac|| is 2O(||A||)

Proof: guess a subset-sequence counterexample.

a0 · · · ak−1 /∈ L(A) iff there is a sequence T0, . . . , Tk of subsets of S such
that:
• S0 ⊆ T0 and Tk ∩ F = ∅
• If s ∈ Ti and (t, +1) ∈ δ(s, ai), then t ∈ Ti+1, for 0 ≤ i < k

• If s ∈ Ti and (t, 0) ∈ δ(s, ai), then t ∈ Ti, for 0 ≤ i < k

• If s ∈ Ti and (t,−1) ∈ δ(s, ai), then t ∈ Ti−1, for 0 ≤ i < k

The 1NFA Ac guesses such a seQuence T0, . . . , Tk and checks that it
satisfies the 4 conditions above.

D. Calvanese View-based Query Processing over Semistructured Data 22



Containment of 2RPQs (finally done!)

Consider two 2RPQs Q1(x, y)← x E1 y

Q2(x, y)← x E2 y

Summing up, we have that

Q1 ⊑ Q2 iff

L(E1) ⊆ fold(E2) iff

L(E1) ⊆ L(ÃE2
) iff

L(E1) ∩ L(Ãc
E2

) = ∅ iff

L(AE1
× Ãc

E2
) = ∅

Theorem: Containment of 2RPQs is in PSPACE, hence PSPACE-complete.

D. Calvanese View-based Query Processing over Semistructured Data 23



Containment of queries over semistructured data

Complexity of containment for various classes of queries over semistructured

data:

Language Complexity

RPQs PSPACE [PODS’99]

2RPQs PSPACE [PODS’00]

Tree-2RPQs PSPACE [DBPL’01]

Conjunctive-2RPQs EXPSPACE [KR’00]

Datalog in Unions of C2RPQs 2EXPTIME [ICDT’03]

D. Calvanese View-based Query Processing over Semistructured Data 24



VBQP over Semistructured Data – Outline

√
The semistructured data model and regular path queries (RPQs)

√
Containment of RPQs and 2RPQs

⇒ View-based query rewriting for RPQs and 2RPQs

4. View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 25



View-based query processing

Database schema
R1 R2 … Rm

…

Database B

View definition V
V1 V2 …    Vn

…

View extension E

Q

certain 
answers 
certQ,V

answers
to Q

we are 
interested in 

D. Calvanese View-based Query Processing over Semistructured Data 26



View-based query processing for SSD

We consider the setting where:

• The schema Σ is a set of binary predicates without constraints.

• Each view symbol in V is a binary predicate.

• Each view definition in VΣ is an RPQ/2RPQ over Σ.

• Each view extension in E is a binary relation.

• The query Q is an RPQ/2RPQ over Σ.

• Views are sound, complete, or exact views (will discuss mostly the case of
sound views).

• The domain is open.

Problem: Given a schema Σ, views V with definitions VΣ and extensions E , a
query Q over Σ, and a tuple ~t, decide whether ~t ∈ cert(Q, Σ,VΣ, E).

D. Calvanese View-based Query Processing over Semistructured Data 27



View-based query answering for SSD – Example

• Schema Σ = {article, reference, title, author, . . .}

• Set of views V = {V1, V2, V3}

• View definitions VΣ = {V Σ
1 , V Σ

2 , V Σ
3 }, with

V Σ
1 : V1(b, a) ← b (article) a

V Σ
2 : V2(p1, p2) ← p1 (reference

∗) p2

V Σ
3 : V3(p, t) ← p (title) t

• View extensions E = {E1, E2, E3}, where
– E1 stores for each bibliography its articles

– E2 stores for each publ. the ones it references directly or indirectly
– E3 stores for each publication its title

D. Calvanese View-based Query Processing over Semistructured Data 28



View-based query answering via rewriting

Rmax
Q,V

Database schema
R1 R2 … Rm

…

Database B

View definition V
V1 V2 …    Vn

…

View extension E

Q

certain 
answers 
certQ,V

answers
to Rmax

Q,V
answers

to Q
we are 

interested in 

Note: the class C of queries in which to express the rewriting is fixed a priori.

D. Calvanese View-based Query Processing over Semistructured Data 29



View-based query rewriting for SSD

Problem: Given a schema Σ, views V with definitions VΣ, a query Q over Σ,
and a class C of queries over V , compute the query R over V such that:

1. R is a query in C.

2. R is a sound rewriting, i.e., for every database B over Σ and every view
extension E that is sound wrt B (i.e., such that E ⊆ VΣ(B)), we have
R(E) ⊆ Q(B).

3. R is the maximal (wrt containment) query in C satisfying condition (2).

Such a query is called the C-maximal rewriting of Q wrt Σ and V , and is
denoted rewC(Q, Σ,V).

In the following, we assume that the class C of queries in which the rewriting is
expressed coincides with that of Q (i.e., is that of RPQs / 2RPQs), and we do
not mention it explicitly.

D. Calvanese View-based Query Processing over Semistructured Data 30



View-based query rewriting for 2RPQs – Example

Consider three views with definitions:

V1(b, a) ← b (article) a

V2(p1, p2) ← p1 (reference
∗) p2

V3(p, t) ← p (title) t

Query: Q(x, y)← x (article·(reference + reference
−)∗·title) y

• R(x, y)← x (v1·v2·v3) y is an RPQ rewriting of Q

• R(x, y)← x (v1·(v2 + v2
−)·v3) y is a 2RPQ rewriting of Q

• R(x, y)← x (v1·(v2 + v2
−)∗·v3) y is a 2RPQ-maximal rewriting of Q

that is also exact

D. Calvanese View-based Query Processing over Semistructured Data 31



Sound rewritings

Since RPQs and 2RPQs are monotone queries, the following characterizations
of a sound rewriting R of Q wrt Σ and V are equivalent:

• For every database B over Σ and every view extension E with
E ⊆ VΣ(B), we have that R(E) ⊆ Q(B).

• For every database B over Σ and every view extension E with
E = VΣ(B), we have that R(E) ⊆ Q(B).

• For every database B over Σ, we have that R(VΣ(B)) ⊆ Q(B).

Observe: The following two ways of computing R(VΣ(B)) are equivalent:

• First evaluate the view definitions VΣ over B, and then evaluate R over the
obtained view extension.

• First expand in R the view symbols V with the corresponding definitions
VΣ, and then evaluate the resulting query over B.

D. Calvanese View-based Query Processing over Semistructured Data 32



Expansion of an RPQ / 2RPQ

We call a query over Σ a Σ-query, and a query over V a V-query.

Consider:
• a set of views V = {V1, . . . , Vk}
• a set of view definitions (RPQs or 2RPQs) VΣ = {V Σ

1 , . . . , V Σ
k
},

with V Σ
i

: Vi(x, y)← x Ei y

• a V-query (RPQ or 2RPQ) R : R(x, y)← x ER y

Definition: The expansion R[V7→VΣ] of R wrt VΣ is the Σ-query obtained from
R by replacing in ER:
• each occurrence of a view symbol Vi with Ei.
• each occurrence of an inverse view symbol V −i with inv(Ei), where

inv(p) = p− inv(e1 + e2) = inv(e1) + inv(e2)

inv(p−) = p inv(e1·e2) = inv(e2)·inv(e2)

inv(e∗) = inv(e)∗

D. Calvanese View-based Query Processing over Semistructured Data 33



Checking rewritings via expansion

Hence, to check whether a rewriting R of Q wrt Σ and VΣ is sound, we can:

1. Compute R[V7→VΣ] by expanding each direct (resp., inverse) view symbol

V (resp., V −) in R with the corresponding definition V Σ (resp., inv(V Σ)).

2. Check whether R[V7→VΣ] ⊑ Q (notice that both are Σ-queries).

D. Calvanese View-based Query Processing over Semistructured Data 34



Counterexample method for rewriting of RPQs

Due to Language-Theoretic Lemma 1, we can treat RPQs simply as regular
expressions.

Consider a candidate rewriting: R = u1 · · ·uk ∈ V∗

• R is a bad rewriting of Q if R[V7→VΣ] 6⊑ Q

• R is a bad rewriting of Q if there are witnesses w1, . . . , wk ∈ Σ∗ such
that w1 · · ·wk 6⊑ Q, where wi ∈ L(V Σ

j
) if ui = Vj.

Example: Q = abcd, V = {V1, V2}, V Σ
1 = ab, V Σ

2 = cd

• bad rewriting: V2V1, with witnesses cd and ab

• good rewriting: V1V2

D. Calvanese View-based Query Processing over Semistructured Data 35



Rewriting of RPQs

Construction is based on 1NFAs:

1. Construct a 1DFA AQ = (Σ, S, s0, δ, F ) for Q ; exponential blowup

2. Construct the 1NFA Ab = (V, S, s0, δ′, S − F ), where
sj ∈ δ′(si, V ) iff there exists a word w ∈ L(V Σ) s.t. sj ∈ δ∗(si, w)

Note:
• AQ and Abad have the same states, but complementary final states.
• Abad accepts a word u1 · · ·uk ∈ V∗ iff it is a bad rewriting of Q.

The words w used in the definition of δ′ act as witnesses.
; linear blowup

3. Complement Abad to get a 1NFA Arew for good rewritings.
; exponential blowup

The construction yields the maximal path rewriting.

It is represented by a 1DFA. ; The maximal path rewriting is an RPQ.

D. Calvanese View-based Query Processing over Semistructured Data 36



Rewriting of RPQs – Example

Query: Q = a·(b·a + c)∗

Views: V = {V1, V2, V3}, with V Σ
1 = a, V Σ

2 = a·c∗·b, V Σ
3 = c

V2

V1 V1
V3

V1,
V2,

V1,

V3
V2 V3

V2

ArewAq

b a

a, b, c

c

a

b, c

Abad

V3

D. Calvanese View-based Query Processing over Semistructured Data 37



Rewriting of RPQs – Complexity

Checking nonemptiness of the maximal path-rewriting of an RPQ Query wrt a
set of RPQ views is EXPSPACE-complete.

Proof:

• The 1DFA Arew is of double exponential size.

• We can check for its non-emptiness on the fly in NLOGSPACE in the

number of its states, i.e., in EXPSPACE in the size of Q

• The matching lower-bound is by a reduction from an EXPSPACE-hard

tiling problem.

There exists an RPQ Query Q and RPQ views V over an alphabet Σ such that

the smallest 1NFA for the rewriting rew(Q, Σ,V) is of double exponential size.

D. Calvanese View-based Query Processing over Semistructured Data 38



Exact rewritings

Definition: A rewriting R of an RPQ Q wrt Σ and VΣ is exact if Q ⊑ R[V7→VΣ].

Note: since R is a rewriting, we also have R[V7→VΣ] ⊑ Q.

To verify whether R is an exact rewriting of Q wrt Σ and VΣ:

1. Construct a 1NFA B over Σ accepting R[V7→VΣ].

It suffices to replace each Vi edge in R with a 1NFA for V Σ
i

.

2. Check whether L(AQ) ⊆ L(B), i.e.,

• complement B to obtain an 1NFA B,

• check whether L(AQ) ∩ L(B) = ∅, i.e., whether L(AQ×B) = ∅.

B may be of triply exponential size in Q but we can check its emptyness
on-the-fly in 2EXPSPACE.

D. Calvanese View-based Query Processing over Semistructured Data 39



Rewriting of RPQs – Results

Theorem:

• Nonemptiness of the maximal rewriting is EXPSPACE-complete.

• The maximal rewriting may be of double exponential size.

• Existence of an exact rewriting is 2EXPSPACE-complete.

D. Calvanese View-based Query Processing over Semistructured Data 40



Rewriting of 2RPQs

• The query and the view definitions are 2RPQs over Σ.

• We look for rewritings that are a 2RPQ over V .

• We consider again candidate rewritings and try to characterize bad
rewritings.

Candidate rewriting: R = u1 · · ·uk ∈ V±∗

• To check whether a rewriting is bad, we need to expand both direct and
inverse view symbols.

• R is a bad rewriting of Q if R[V7→VΣ] 6⊑ Q

• R is a bad rewriting of Q if there are witnesses w1, . . . , wk ∈ Σ±
∗ such

that w1 · · ·wk 6⊑ Q, where
– wi ∈ L(V Σ

j
) if ui = Vj.

– wi ∈ L(inv(V Σ
j

)) if ui = V −j .

D. Calvanese View-based Query Processing over Semistructured Data 41



Counterexample method for rewriting of 2RPQs

We consider counterexample words, which are obtained from a bad rewriting
by inserting after each symbol u its witness w.

Definition: Counterexample word u1w1 · · ·ukwk

1. wi ∈ L(V Σ
j

) if ui = Vj.

2. wi ∈ L(inv(V Σ
j

)) if ui = V −j .
3. w1 · · ·wk 6⊑ Q.

Example: Q = abcd, V = {V1, V2}, V Σ
1 = ab, V Σ

2 = cd

• bad rewriting: V2V1, with witnesses w1 = cd, w2 = ab

• counterexample word: V2 cd V1 ab

Checking counterexample words with 2NFAs
• Check (1) and (2) with 2NFAs for V Σ

j
.

• Use folding technique to construct 2NFA to check w1 · · ·wk ⊑ Q.
• Complement resulting 2NFA.

; Complexity is exponential

D. Calvanese View-based Query Processing over Semistructured Data 42



From counterexamples to rewritings

To construct good rewritings:

1. Construct 1NFA A1 for counterexample words u1w1 · · ·ukwk.

; exponential

2. Project out witness words wi to get 1NFA A2 for bad rewritings u1 · · ·uk.
; linear

3. Complement A2 to get 1NFA for good rewritings.
; exponential

The construction yields the maximal two-way path rewriting

It is represented by a 1DFA. ; The maximal two-way path rewriting is a
2RPQ.

D. Calvanese View-based Query Processing over Semistructured Data 43



Rewriting of 2RPQs – Results

We get for 2RPQs the same upper (and lower) bounds as for RPQs.

Theorem:

• Nonemptiness of the maximal rewriting is EXPSPACE-complete.

• The maximal rewriting may be of double exponential size.

• Existence of an exact rewriting is 2EXPSPACE-complete.

D. Calvanese View-based Query Processing over Semistructured Data 44



VBQP over Semistructured Data – Outline

√
The semistructured data model and regular path queries (RPQs)

√
Containment of RPQs and 2RPQs

√
View-based query rewriting for RPQs and 2RPQs

⇒ View-based query answering for RPQs and 2RPQs via automata

5. View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 45



View-based query answering for RPQs / 2RPQs

Given:

• a set V of view symbols with a corresponding set VΣ of RPQ / 2RPQ view
definitions over a relational alphabet Σ

• a corresponding set E of view extensions

• a 2RPQ Q over Σ

• a pair (c, d) of objects

check whether (c, d) ∈ cert(Q, Σ,VΣ, E).

In other words, check whether for every database B over Σ such that the view
extension E is sound wrt B (i.e, E ⊆ V(B)), we have that (c, d) ∈ Q(B).

D. Calvanese View-based Query Processing over Semistructured Data 46



View-based query answering for 2RPQs – Idea

We search for a counterexample database, i.e., a database B such that E is
sound wrt B, but such that (c, d) is not in the answer to Q over B.

Technique:

1. Encode counterexample databases as finite words.

2. Construct a 2NFA that accepts such words.

3. Check for emptiness of the automaton.

D. Calvanese View-based Query Processing over Semistructured Data 47



Canonical counterexample databases

A database B is a counterexample to (c, d) ∈ cert(Q, Σ,V, E) if
• E ⊆ VΣ(B), i.e., the view extension E is sound wrt B,

• (c, d) /∈ Q(B).

Observations:

• It is sufficient to restrict the attention to counterexamples of a special form
(canonical databases)

p

d1 d3

d4

r
r

q

r
d2

d5

p q

p

Set of objects in the view extension E:

∆E = {d1, d2, d3, d4, d5, . . .}

• Each canonical database B can be represented as a word wB over

ΣA = Σ± ∪∆E ∪ {$} of the form

$ d1 w1 d2 $ d3 w2 d4 $ · · · $ d2m−1 wm d2m $

D. Calvanese View-based Query Processing over Semistructured Data 48



Canonical DBs and 2NFAs

B:

p

d1 d3

d4

r
r

q

r
d2

d5

p q

p

Q(x, y) ← x (r·(p + q)·p−·p·q−∗) y

Word representing B:

$ d1 r d2 $ d4 p−p d5 $ d4 q− d2 $ d3 rr d3 $ d2 pq− d3 $

To verify whether (di, dj) ∈ Q(B) we exploit that 2NFAs can:

• move on the word both forward and backward

• jump from one position in the word representing a node to any other position

representing the same node (search mode)

; We can construct a 2NFA A(Q,di,dj) that accepts wB iff (di, dj) ∈ Q(B)

D. Calvanese View-based Query Processing over Semistructured Data 49



View-based query answering for 2RPQs – Technique

To check whether (c, d) /∈ cert(Q, Σ,V, E), we construct a 1NFA AQA as the
intersection of:

• the 1NFA A0 that accepts ($·∆E·Σ±·Σ±∗·∆E)∗·$
• the 1NFAs corresponding to the various A(V Σ

i ,a,b)

(for each sound or exact view Vi, and for each pair (a, b) ∈ Ei)

• the 1NFAs corresponding to the complement of each AVi

(for each complete or exact view Vi, the 2NFA AVi
checks whether a pair of

objects other than those in Ei is in Vi(B))

• the 1NFA corresponding to the complement of A(Q,c,d)

; AQA accepts words representing counterexample DBs

We have that (c, d) /∈ cert(Q, Σ,V, E) iff AQA is nonempty.

D. Calvanese View-based Query Processing over Semistructured Data 50



Complexity of query answering

Can be measured in three different ways:

• Data complexity: as a function of the size of the view extension E

• Expression complexity: as a function of the size of the query Q and of the
view definitions V Σ

1 , . . . , V Σ
k

• Combined complexity: as a function of the size of both the view extension
E and the expressions Q, V Σ

1 , . . . , V Σ
k

D. Calvanese View-based Query Processing over Semistructured Data 51



View-based query answering for 2RPQs – Upper bounds

• All 2NFAs are of linear size in the size of Q, all views in V and the view

extensions E .
; The corresponding 1NFA would be exponential.

• However, we can avoid the explicit construction of AQA, and we can

construct it on the fly while checking for nonemptiness.

; View-based query answering for 2RPQs is in PSPACE wrt expression
complexity and combined complexity.

PSPACE-hardness follows immediately by reduction from universality of

regular languages.

What about data complexity, i.e., complexity in the size of the view extension E?

D. Calvanese View-based Query Processing over Semistructured Data 52



VBQP over Semistructured Data – Outline

√
The semistructured data model and regular path queries (RPQs)

√
Containment of RPQs and 2RPQs

√
View-based query rewriting for RPQs and 2RPQs

√
View-based query answering for RPQs and 2RPQs via automata

⇒ View-based query answering for RPQs and 2RPQs via CSP

D. Calvanese View-based Query Processing over Semistructured Data 53



View-based query answering for 2RPQs – Data complexity

• In the previous algorithm one cannot immediately single out the
contribution of E to the nonemptiness check of the automaton AQA.

• This can however be done by analyzing the transformation from 2NFA to

1NFA, and modifying the construction of the automata to avoid search
mode.

We look at an alternative way to analyze data complexity, derived from a tight

connection between view-based query answering under sound views and
constraint satisfaction (CSP).

; Better insight into view-based query answering for RPQs and 2RPQs.

; Several additional results on various forms of view-based query processing.

D. Calvanese View-based Query Processing over Semistructured Data 54



Constraint satisfaction problems

Let A and B be relational structures over the same alphabet.

A homomorphism h is a mapping from A to B such that for every relation R,
if (c1, . . . , cn) ∈ R(A), then (h(c1), . . . , h(cn)) ∈ R(B).

Non-uniform constraint satisfaction problem CSP(B): the set of relational
structures A such that there is a homomorphism from A to B.

Complexity:

• CSP(B) is in NP.

• There are structures B for which CSP(B) is NP-hard.

Example:
p

p

p

D. Calvanese View-based Query Processing over Semistructured Data 55



CSP and VBQA for 2RPQs – Constraint template

From Q and V , we can define a relational structure T = CTQ,V, called
constraint template of Q wrt V :

• The vocabulary of T is {R1, . . . , Rk} ∪ {Uini , Ufin}, where
– each Ri corresponds to a view Vi and denotes a binary predicate
– Uini and Ufin denote unary predicates

• Let Q be represented by a 1NFA (Σ±, S, S0, δ, F ):
– The domain ∆T of T is 2S, i.e., all sets of states of Q

– σ ∈ Uini(T ) iff S0 ⊆ σ

– σ ∈ Ufin(T ) iff σ ∩ F = ∅
– (σ1, σ2) ∈ Ri(T ) iff there exists a word p1 · · · pk ∈ L(V Σ

i
) and a

sequence T0, . . . , Tk of subsets of S such that:

1. T0 = σ1 and Tk = σ2

2. if s ∈ Ti and t ∈ δ(s, pi+1), then t ∈ Ti+1

3. if s ∈ Ti and t ∈ δ(s, p−i ), then t ∈ Ti−1

D. Calvanese View-based Query Processing over Semistructured Data 56



CSP and VBQA for 2RPQs – Constraint instance

Observations:

• Intuitively, the constraint template CTQ,V encodes how the states of Q

change when moving along a database according to the views.

• The existence of a word p1 · · · pk ∈ L(V Σ
i

) and of a sequence T0, . . . , Tk

of subsets of S satisfying conditions 1–3 can be checked in PSPACE.

• CTQ,V can be computed in time exponential in Q and polynomial in V.

From E and two objects c and d, we can define another relational structure

I = CI
c,d
E over the same vocabulary, called the constraint instance:

• The domain ∆I of I is ∆E ∪ {c, d}
• Ri(I) = Ei, for i ∈ {1, . . . , k}
• Uini(I) = {c}
• Ufin(I) = {d}

D. Calvanese View-based Query Processing over Semistructured Data 57



CSP and view-based query answering for 2RPQs

Theorem: (c, d) is not a certain answer to Q wrt V and E
if and only if

there is a homomorphism from CI
c,d
E to CTQ,V, i.e, CI

c,d
E ∈ CSP(CTQ,V)

; Characterization of view-based query answering for 2RPQs in terms of CSP

; View-based query answering for 2RPQs is in coNP wrt data complexity

D. Calvanese View-based Query Processing over Semistructured Data 58



Query answering for RPQs — Data complexity lower bound

coNP-hard wrt data compexity, by reduction from 3-coloring:

Views: Vs = Sr + Sg + Sb

VG = Rrg + Rgr + Rrb + Rbr + Rgb + Rbg

Vf = Fr + Fg + Fb

Query: Q =
∑

x6=y Sx·Fy +
∑

x6=y∨w6=z Sx·Ryw·Fy (color mismatch)

Only domain and view extensions depend on graph G = (N, E).

Domain: ∆E = N ∪ {c, d}
Extensions: Es = {(c, a) | a ∈ N}

EG = {(a, b), (b, a) | (a, b) ∈ E}
Ef = {(a, d) | a ∈ N}

Thm: G is 3-colorable iff (c, d) is not a certain answer to Q.

Vf

c

d

2

4

3

1

Vs

VG

Note: we have used only a query and views that are unions of simple paths.

D. Calvanese View-based Query Processing over Semistructured Data 59



Complexity of view-based query answering for RPQs / 2RPQs

Assumption on Assumption on Complexity

domain views data expression combined

all sound coNP coNP coNP

closed all exact coNP coNP coNP

arbitrary coNP coNP coNP

all sound coNP PSPACE PSPACE

open all exact coNP PSPACE PSPACE

arbitrary coNP PSPACE PSPACE

From [ICDE’00] for RPQs and [PODS’00, ICDT’05] for 2RPQs.

D. Calvanese View-based Query Processing over Semistructured Data 60



Consequence of complexity results

+ The view-based query answering algorithm provides a set of answers that

is sound and complete.

– A coNP data complexity does not allow for effective deployment of the

query answering algorithm.

Note that coNP-hardness holds already for queries and views that are

unions of simple paths (no reflexive-transitive closure).

; Adopt an indirect approach to view-based query answering, via query
rewriting.

D. Calvanese View-based Query Processing over Semistructured Data 61



Query answering by rewriting

To answer a query Q wrt V and E :
1. re-express Q in terms of the view symbols, i.e., compute a rewriting of Q.

2. directly evaluate the rewriting over E .

Comparison with direct approach to query answering:

+ We can consider rewritings in a class with polynomial data complexity
(e.g., 2RPQs) ; the data complexity for query answering is polynomial.

+/– We have traded expression complexity for data complexity.

– We may lose completeness (i.e., not obtain all certain answers).

We need to establish the “quality” of a rewriting:
• When does the (maximal) rewriting compute all certain answers?

• What do we gain or lose by considering rewritings in a given class?

D. Calvanese View-based Query Processing over Semistructured Data 62


