
Data Integration through Ontologies

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Universit à di Roma “La Sapienza”

View-based query processing

Diego Calvanese, Giuseppe De Giacomo, Georg Gottlob, Maurizio Lenzerini,

Riccardo Rosati

PhD Course at DIS, UNIROMA1

September-October 2005

Data integration through Ontologies: outline

• Introduction to data integration through ontologies

• Ontologies: conceptual schema languages, description logics

• Query answering in description logics

• Data complexity tradeoff: a concrete interpretation

• Quonto

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 1

Data integration

Global schema

Sources

Query Answer(Q)

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 2

Logical transparency

Basic ingredients for achieving logical transparency:

• The global schema provides a conceptual view that is independent from the

sources

• The global schema is described with a semantically rich formalism

• The mappings are the crucial tools for realizing the independence of the global

schema from the sources

• Obviously, the formalism for specifying the mapping is also a crucial point

All the above aspects are not appropriately dealt with by current tools. This means

that data integration cannot be simply addressed on a tool basis.

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 3

Logical transparency using an ontology

Basic ingredients for achieving logical transparency:

• The global schema provides a conceptual view -an ontology- that is

independent from the sources

• The global schema is described with a semantically rich formalism -an

ontology language-

• The mappings are the crucial tools for realizing the independence of the global

schema from the sources

• Obviously, the formalism for specifying the mapping is also a crucial point

All the above aspects are not appropriately dealt with by current tools. This means

that data integration cannot be simply addressed on a tool basis.

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 4

Data integration through an ontology

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 5

Formal framework for data integration

A data integration system I is a triple 〈G,S,M〉, where

• G is the global schema -now is an ontology-

The global schema is a logical theory over an alphabetAG

• S is the source schema

The source schema is constituted simply by an alphabetAS disjoint fromAG

• M is the mapping between S and G Different approaches to the specification of

mapping

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 6

Semantics of a data integration system (as before)

Which are the databases that satisfy I , i.e., which are the logical models of I?

The databases that satisfy I are logical interpretations forAG (called global

databases). We refer only to databases over a fixed infinite domain Γ of constants.

Let C be a source database over Γ (also called source model), fixing the extension

of the predicates ofAS (thus modeling the data present in the sources).

The set of models of (i.e., databases forAG that satisfy) I relative to C is:

semC(I) = { B | B is a G-model (i.e., a global database that is legal wrt G)

and is anM-model wrt C (i.e., satisfiesM wrt C) }

What it means to satisfyM wrt C depends on the nature of the mappingM.

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 7

Semantics of queries to I (as before)

A query q of arity n is a formula with n free variables.

IfD is a database, then qD denotes the extension of q inD (i.e., the set of n-tuples

that are valuations in Γ for the free variables of q that make q true inD).

If q is a query of arity n posed to a data integration system I (i.e., a formula overAG
with n free variables), then the set of certain answers to q wrt I and C is

cert(q, I, C) = {(c1, . . . , cn) ∈ qB | ∀B ∈ semC(I)}.

Note: query answering is logical implication.

Note: complexity will be mainly measured wrt the size of the source database C, and

will refer to the problem of deciding whether ~c ∈ cert(q, I, C), for a given ~c.

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 8

The mapping

How is the mappingM between S and G specified?

• Are the sources defined in terms of the global schema?

Approach called source-centric , or local-as-view , or LAV

• Is the global schema defined in terms of the sources?

Approach called global-schema-centric , or global-as-view , or GAV

• A mixed approach?

Approach called GLAV

Note: Also, we also must take into account mismatch between objects in the ontology

and values in the sources!!! (For lack of time we will not consider it here.)

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 9

Data integration through Ontologies: outline

• Introduction to data integration through ontologies

• Ontologies: conceptual schema languages, description logics

• Query answering in description logics

• Data complexity tradeoff: a concrete interpretation

• Quonto

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 10

Ontologies

• Ontologies are formal specifications of a conceptualization of a particular

domain

• Envisioned to play a major role in supporting information sharing across

networks by making explicit the semantics of information at various sites

• Pioneered in Computer Science by researchers in Artificial Intelligence, where

they have become a popular research topic at the beginning of the 1990s (see,

e.g., WordNet and CYC). More recently, the notion of ontology has spread across

several other research fields such as intelligent information integration,

cooperative information systems, information retrieval, knowledge management.

• Married with Description Logics , they are advocated as the key technology for

realizing the Semantic Web . Standardization efforts have started within W3C:

RDFS, OWL

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 11

Ontologies

• Ontologies are used to represent information at the conceptual level ...

• ... in terms of classes/concepts/entities and relationships between them

• Observe that such a form of representation is almost universally recognized as

the most prominent in Computer Science

– UML class diagrams in Software Engineering

– ER diagrams in databases and information systems

– Frame systems in AI

• Ontologies are typically expressed in logic :

– First Order Logic

– Description Logics : a specialized formalism (typically a fragment of FOL) for

expressing knowledge in terms of classes and relationships

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 12

UML - FOL - Description Logics

Lets gain an intuitive understanding of the relationships among the above formalisms.

Slides from:

ESSLLI’03 Course on

Description Logics for Conceptual Data Modeling in UML

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 13

Requirements: We are interested in building a software application to manage

filmed scenes for realizing a movie, by following the so-called “Hollywood Approach”.

Every scene is identified by a code (a string) and it is described by a text in natural

language.

Every scene is filmed from different positions (at least one), each of this is called a

setup . Every setup is characterized by a code (a string) and a text in natural language

where the photographic parameters are noted (e.g., aperture, exposure, focal length,

filters, etc.). Note that a setup is related to a single scene.

For every setup, several takes may be filmed (at least one). Every take is

characterized by a (positive) natural number, a real number representing the number

of meters of film that have been used for shooting the take, and the code (a string) of

the reel where the film is stored. Note that a take is associated to a single setup.

Scenes are divided into internals that are filmed in a theater, and externals that

are filmed in a location and can either be “day scene” or “night scene”. Locations are

characterized by a code (a string) and the address of the location, and a text

describing them in natural language.

Write a precise specification of this domain using any formalism you like.

Calvanese & De Giacomo DLs for Conceptual Data Modeling in UML 2

Calvanese & De Giacomo DLs for Conceptual Data Modeling in UML 5

Alphabet:
Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y),

Axioms:

∀x, y. (Scene(x) ∧ code(x, y)) ⊃ String(y)

∀x, y. (Scene(x) ∧ description(x, y)) ⊃ Text(y)

∀x, y. (Setup(x) ∧ code(x, y)) ⊃ String(y)

∀x, y. (Setup(x) ∧ photographic pars(x, y)) ⊃ Text(y)

∀x, y. (Take(x) ∧ nbr(x, y)) ⊃ Integer(y)

∀x, y. (Take(x) ∧ filmed meters(x, y)) ⊃ Real(y)

∀x, y. (Take(x) ∧ reel(x, y)) ⊃ String(y)

∀x, y. (Internal(x) ∧ theater(x, y)) ⊃ String(y)

∀x, y. (External(x) ∧ night scene(x, y)) ⊃ Boolean(y)

∀x, y. (Location(x) ∧ name(x, y)) ⊃ String(y)

∀x, y. (Location(x) ∧ address(x, y)) ⊃ String(y)

∀x, y. (Location(x) ∧ description(x, y)) ⊃ Text(y)

∀x. Scene(x) ⊃ (1 ≤]{y | code(x, y)} ≤ 1)

· · ·

∀x, y. stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)

∀x, y. tk of stp(x, y) ⊃ Take(x) ∧ Setup(y)

∀x, y. located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤]{y | stp for scn(x, y)} ≤ 1

∀y. Scene(y) ⊃ 1 ≤]{x | stp for scn(x, y)}
∀x. Take(x) ⊃ 1 ≤]{y | tk of stp(x, y)} ≤ 1

∀x. Setup(y) ⊃ 1 ≤]{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤]{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)

∀x. External(x) ⊃ Scene(x)

∀x. Internal(x) ⊃ ¬External(x)

∀x. Scene(x) ⊃ Internal(x) ∨ External(x)

Calvanese & De Giacomo DLs for Conceptual Data Modeling in UML 3

Encoding of classes and attributes

Scene v ∀code.String u ∃code u (≤ 1 code)
Scene v ∀description.Text u ∃description u (≤ 1 description)

Internal v ∀theater.String u ∃theater u (≤ 1 theater)
External v ∀night scene.Boolean u ∃night scene u (≤ 1 night scene)

Take v ∀nbr.Integer u ∃nbr u (≤ 1 nbr)
Take v ∀filmed meters.Real u ∃filmed meters u (≤ 1 filmed meters)
Take v ∀reel.String u ∃reel u (≤ 1 reel)

Setup v ∀code.String u ∃code u (≤ 1 code)
Setup v ∀photographic pars.Text u ∃photographic pars u (≤ 1 photographic pars)

Location v ∀name.String u ∃name u (≤ 1 name)
Location v ∀address.String u ∃address u (≤ 1 address)
Location v ∀description.Text u ∃description u (≤ 1 description)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Parts 2+3 77

Encoding of hierarchies

Internal v Scene

External v Scene

Scene v Internal t External

Internal v ¬External

Encoding of associations

> v ∀stp for scn.Setup u ∀stp for scn−.Scene

Scene v (≥ 1 stp for scn)
Setup v (≥ 1 stp for scn−) u (≤ 1 stp for scn−)
> v ∀tk of stp.Take u ∀tk of stp−.Setup

Setup v (≥ 1 tk of stp)
Take v (≥ 1 tk of stp−) u (≤ 1 tk of stp−)
> v ∀located.Location u ∀located−.External

External v (≥ 1 located) u (≤ 1 located)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Parts 2+3 78

What are description logics

Description Logics are logics ...

• ... specifically designed to represent knowledge in terms of:

– objects

– classes – called concepts in DLs

– (binary) relations – typically binary relations aka roles in DLs

• ... and to reason automatically on such a representation – Thoroughly studied

from the computational point of view

Excellent formal tool for class-based knowledge representation and reasoning

(but not for expressing queries!)

Advocated by the Semantic Web community as “the” formalism for expressing

ontologies – W3C OWL

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 14

Data integration through Ontologies: outline

• Introduction to data integration through ontologies

• Ontologies: conceptual schema languages, description logics

• Query answering in description logics

• Data complexity tradeoff: a concrete interpretation

• Quonto

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 15

Data integration through an DL-based ontology
Query: CQ over ontology; Ontology: expressed in a DL

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 16

View-based query answering in (expressive) DL

If we use an expressive description logics such as OWL to express the ontology, is

view based query answering (of conjunctive queries) decidable?

YES it can be done in 2EXPTIME in combined complexity [CDL-AAAI00]!

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 17

View-based query answering in full UML class diagrams

If we use UML class diagrams to express the ontology, do we get better bounds?

NO, the only technique known is that of [CDL’AAAI00], hence 2EXPTIME in

combined complexity!

Is there any hope of improvement?

NO, not substantial: logical inference (of assertions) and satisfiability of UML class

diagrams is EXPTIME-hard (and since the can be coded in expressive DLs

EXPTIME-complete) [BCD-AIJ05]! Query answering is a service build on top of

logical inference so its going to be harder.

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 18

Data integration through Ontologies: outline

• Introduction to data integration through ontologies

• Ontologies: conceptual schema languages, description logics

• Query answering in description logics

• Data complexity tradeoff: a concrete interpretation

• Quonto

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 19

But what about data complexity?

Slides form:

2005 Description logics Workshop paper:

Data Complexity of Query Answering in Description Logics

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 20

Data Complexity of Query Answering

in Description Logics

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,

Maurizio Lenzerini2, Riccardo Rosati2

1 Free University of Bolzano
2 Universit à di Roma “La Sapienza”

2005 International Workshop on Description Logics (DL 2005)

Edinburgh, U.K., July 26–28, 2005

Motivations

• Ontologies, often are being used as a conceptual view over data
repositories (e.g., in Enterprise Application Integration, Data Integration,

Semantic Web)

• DLs are considered the fundamental formal tool for expressing ontologies

(e.g., OWL)

• Typical reasoning tasks in DLs are classification, subsumption, instance
checking (all based on logical inference)

• When ontologies are used for accessing data, the fundamental task is
query answering (still based on logical inference)

The line of research this work belongs to is query answering over ontologies

used to access data

D. Calvanese et. al Data Complexity of Query Answering in DLs 1

Query answering

Considered in several contexts, for example:

• Databases
– data are completely specified (CWA), and typically large

– schema not used at run-time (gives only alphabet for queries)
– queries are complex expressions (e.g., SPJ SQL queries)

; query answering amounts to query evaluation

• Knowledge bases, e.g., in DLs

– data (i.e., ABox) are incomplete (but its size is not considered critical)
– schema (i.e., TBox) is used for query answering (constrains the

possible models)
– queries are atomic (a concept or role name)

; query answering amounts to logical inference

D. Calvanese et. al Data Complexity of Query Answering in DLs 2

Query answering over ontologies

We consider query answering in the following setting:
• data (i.e., ABox A) are incomplete and assumed to be large (their size

dominates the size of the schema)
• schema (i.e., TBox T) constrains the possible models

• query q is a complex expressions (conjunctive query)

We want to compute cert(q, T , A) = {~c | T ∪ A |= q(~c)}

T

A

Logical inference

cert(q, T , A)

q

D. Calvanese et. al Data Complexity of Query Answering in DLs 3

Query answering: focus on data

T

A

Logical inference

cert(q, T , A)

q

D. Calvanese et. al Data Complexity of Query Answering in DLs 4

Query answering: focus on data

rq,T

A

Perfect

(under OWA)
Query

(under CWA)

evaluation

reformulation

cert(q, T , A)

q

T

The critical point in query evaluation is the cost in the size of A (viewed as a
database) ; we have to look at data complexity

Depends on language L for rq,T , which in turn depends on language for T

Special cases of interest:
• L is contained in FO (i.e., SQL) ; Query evaluation via a DBMS engine

• L is NLOGSPACE-hard ; Query evaluation requires linear recursion
• L is PTIME-hard ; Query evaluation requires recursion (e.g., Datalog)

• L is coNP-hard ; Query evaluation requires power of Disjunctive Datalog

D. Calvanese et. al Data Complexity of Query Answering in DLs 4

Previous work on data complexity in DLs

Much of the previous work deals with instance checking (i.e., atomic queries):

[Donini & al. JLC’94] Data and combined complexity for DLs up to ALC

[Hustadt & al. IJCAI’05] Data complexity for very expressive DLs via a
reduction to Disjunctive Datalog. Identify also polynomial cases.

Complexity of answering conjunctive queries has been addressed in:

[Levy & Rousset AIJ’98] coNP upper bound for ALCNR knowledge bases
(CARIN setting)

[— & al. AAAI’00] EXPTIME upper bound for DLR knowledge bases (via
reduction to PDL)

[— & al. AAAI’05] Polynomial upper bound for DL-Lite knowledge base (using
techniques drawn from databases with constraints)

D. Calvanese et. al Data Complexity of Query Answering in DLs 5

The setting of this work

We have studied data complexity of answering conjunctive queries (CQs) for
various DLs containing a subset of the following constructs:

• TBox inclusion assertions: B ⊑ C, with:

B → A | ¬A | B1 ⊓ B2 | ∃R | ∀R.A | ∃R.A

C → A | ⊥ | A1 ⊔ A2 | ∃R | ∀R.A | ∃R.C

R → P | P −

• TBox functionality assertions: (funct R)

• ABox membership assertions: A(o), P (o1, o2)

with o, o1, o2 constants

D. Calvanese et. al Data Complexity of Query Answering in DLs 6

Summary of results on data complexity

B C R (funct R) Data complexity

A | ∃R | B1 ⊓ B2 A | ⊥ | ∃R P | P − allowed in LOGSPACE

A | ∃R | B1 ⊓ B2 A | ⊥ | ∃R.C P | P − not allowed in LOGSPACE

A | ∃P .A A P not allowed NLOGSPACE-hard

A A | ∀P .A P not allowed NLOGSPACE-hard

A A | ∃P .A P allowed NLOGSPACE-hard

A | ∃P .A | B1 ⊓ B2 A P not allowed PTIME-hard

A | B1 ⊓ B2 A | ∀P .A P not allowed PTIME-hard

A | B1 ⊓ B2 A | ∃P .A P allowed PTIME-hard

A | ¬A A P not allowed coNP-hard

A A | A1 ⊔ A2 P not allowed coNP-hard

A | ∀P .A A P not allowed coNP-hard

D. Calvanese et. al Data Complexity of Query Answering in DLs 7

Cases in LOGSPACE

Answering CQs is in LOGSPACE wrt data complexity for:

1.

B → A | ∃R | B1 ⊓ B2

C → A | ⊥ | ∃R

R → P | P −

(funct R) allowed

2.

B → A | ∃R | B1 ⊓ B2

C → A | ⊥ | ∃R.C
R → P | P −

(funct R) not allowed

Note: Case 1 extends DL-Lite with concept conjunction on the lhs of inclusions

We exploit this result for query answering using DBMS technology:
1. The ABox is stored in a relational database

2. The input CQ q is reformulated as a union rq,T of CQs
3. rq,T is evaluated directly over the ABox using DBMS technology

Note: The technique scales up to millions of tuples in the ABox

; See QUONTO demo

D. Calvanese et. al Data Complexity of Query Answering in DLs 8

NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking
(and hence query answering) NLOGSPACE-hard:

1.

B → A | ∃P .A
C → A

R → P

(funct R) not allowed P

s

d

A

A

A

A

A

P

P
P

P
P

Hardness proof is by a reduction from reachability in directed graphs:

• TBox T contains a single inclusion assertion ∃P .A ⊑ A

• ABox A encodes the graph using P and asserts A(d)

Result:

(T , A) |= A(s) iff d is reachable from s in G

D. Calvanese et. al Data Complexity of Query Answering in DLs 9

NLOGSPACE-hard cases

Instance checking (and hence query answering) is NLOGSPACE-hard in data
complexity for:

1.

B → A | ∃P .A
C → A

R → P

(funct R) not allowed

2.

B → A

C → A | ∀P .A
R → P

(funct R) not allowed

3.

B → A

C → A | ∃P .A
R → P

(funct R) allowed

1. Reduction from reachability in directed graphs
2. Follows from 1. by replacing ∃P .A1 ⊑ A2 with A1 ⊑ ∀P −.A2

3. Proved by simulating ∃P .A1 ⊑ A2 via A1 ⊑ ∃P −.A2 and (funct P −)

D. Calvanese et. al Data Complexity of Query Answering in DLs 10

PTIME-hard cases

Are obtained from previous cases by adding B1 ⊓ B2 to lhs of inclusions

Instance checking (and hence query answering) is PTIME-hard in data

complexity for:

1.

B → A | ∃P .A | B1 ⊓ B2

C → A

R → P

(funct R) not allowed

2.

B → A | B1 ⊓ B2

C → A | ∀P .A
R → P

(funct R) not allowed

3.

B → A | B1 ⊓ B2

C → A | ∃P .A
R → P

(funct R) allowed

1. Proved via reduction from Path System Accessibility
2. and 3. follow from 1. as in the NLOGSPACE case

D. Calvanese et. al Data Complexity of Query Answering in DLs 11

Path System Accessibility

Instance of Path System Accessibility: PS = (N, E, S, t) with
• N a set of nodes

• E ⊆ N × N × N an accessibility relation
• S ⊆ N a set of source nodes

• t ∈ N a terminal node

Accessibility of nodes is defined inductively:
• each n ∈ S is accessible

• if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given PS , checking whether t is accessible, is PTIME-complete

D. Calvanese et. al Data Complexity of Query Answering in DLs 12

Reduction from Path System Accessibility

Given an instance PS = (N, E, S, t), we construct

• TBox T consisting of the inclusion assertions

∃P1.A ⊑ B1

∃P2.A ⊑ B2

B1 ⊓ B2 ⊑ A

∃P3.A ⊑ A

• ABox A encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s

e1 = (n, . , .)

e2 = (n, s1, s2)

e3 = (n, . , .)

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(T , A) |= A(t) iff t is accessible in PS

D. Calvanese et. al Data Complexity of Query Answering in DLs 13

coNP-hard cases

Are obtained when we can use in the query two concepts that cover the whole
domain. This forces reasoning by cases on the data

Query answering is coNP-hard in data complexity for:

1.

B → A | ¬A

C → A

R → P

(funct R) not allowed

2.

B → A

C → A | A1 ⊔ A2

R → P

(funct R) not allowed

3.

B → A | ∀P .A
C → A

R → P

(funct R) not allowed

All three cases are proved by adapting the proof of coNP-hardeness of

instance checking for ALE by [Donini & al. JLC 1994]

D. Calvanese et. al Data Complexity of Query Answering in DLs 14

Conclusions

We have studied the various levels of data complexity for the problem of
answering conjunctive queries over a DL knowledge base:

• DL-Lite + ⊓ on lhs stays in LOGSPACE ; relational technology

• with ∃R.A on lhs, we are NLOGSPACE-hard ; linear recursion needed

• with ∃R.A + ⊓ on lhs, we are PTIME-hard ; full recursion needed

• with forms of covering, we are coNP-hard ; Disjunctive Datalog needed

Ongoing work

• Devise tight complexity bounds for the various cases

• Rewriting technique for the cases where recursion is needed

• Data complexity of conjunctive query answering for very expressive DLs.
We have now a coNP upper bound for SHIQ knowledge bases

D. Calvanese et. al Data Complexity of Query Answering in DLs 15

Data integration through Ontologies: outline

• Introduction to data integration through ontologies

• Ontologies: conceptual schema languages, description logics

• Query answering in description logics

• Data complexity tradeoff: a concrete interpretation

• Quonto

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 21

Quonto

• Quonto is a system that performs reasoning, and in particular query answering

over ontologies .

• It is based on DL-lite i.e., the maximal expressive description logic that admits

reformulation into FOL (QA is in LOGSPACE).

• It uses variants of the reformulation techniques shown in previous lectures by

Rosati for dealing with constraints in the relational case.

• Allows for performing sound and complete reasoning (including QA, validation of

constraints, etc) over ontologies, and it does this essentially at the same

computational cost of a relational DBMS

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 22

Quonto Demo

Link:

http://............../QUONTOJSP/web/index.jsp

De Giacomo DIS, UNIROMA1, PhD 2005 View-based query processing 23

