
View-based query processing

Diego Calvanese
Faculty of Computer Science

Free University of Bolzano/Bozen

Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Universit à di Roma “La Sapienza”

Georg Gottlob
Technische Universitat Wien, Vienna, Austria

Corso di dottorato – Dottorato in Ingegneria Informatica,

Università di Roma “La Sapienza”, settembre – ottobre 2005



Schedule: Lectures 1-10

1. Lecture 1,2 - Sept 5, 2005 - hr 14:00 [Lenzerini]
Introduction to view-based query processing

2. Lecture 3,4 - Sept 9, 2005 - hr 10:30 [Gottlob]
Conjunctive query evaluation

3. Lecture 5,6 - Sept 9, 2005 - hr 14:00 [Gottlob]
Data exchange

4. Lecture 7,8 - Sept 19, 2005 - hr 14:00 [De Giacomo]
Data integration 1

5. Lecture 9,10 - Sept 21, 2005 - hr 14:00 [Rosati]
Data integration 2

M. Lenzerini View-based query processing - Introduction 1



Schedule: Lectures 11-20

6. Lecture 11,12 - Sept 23, 2005 - hr 14:00 [Rosati]
Data integration 3

7. Lecture 13,14 - Sept 26, 2005 - hr 14:00 [De Giacomo]
Data integration through ontologies

8. Lecture 15,16 - Oct 13, 2005 - hr 14:00 [Calvanese]
View-based query processing over semistructured data 1

9. Lecture 17,18 - Oct 14, 2005 - hr 14:00 [Calvanese]
View-based query processing over semistructured data 2

10. Lecture 19,20 - Oct 17, 2005 - hr 14:00 [Lenzerini]
Reasoning about views

M. Lenzerini View-based query processing - Introduction 2



Lectures 1-2: Outline

1. What is “view-based query processing”

2. Prerequisites for the course

3. Formalization of view-based query processing

4. Applications of view-based query processing

5. Outline of the rest of the course

M. Lenzerini View-based query processing - Introduction 3



Views

• A view is a pre-defined query

• In a database management system, a view is defined at the

schema level, and then used in the system in several ways

(e.g., in queries)

• When processing a query referring to a views, the “unfolding”

technique is generally adopted

• Problems: view update, optimization, etc.

M. Lenzerini View-based query processing - Introduction 4



What is “view based query processing”

• View based query processing addresses the issue of
processing a query by relying solely on a set of views, rather
than the raw data

• Relevant problem in

– database management,
– data integration,
– data exchange,
– data warehousing,
– access control,
– mobile computing,
– knowledge representation,
– the semantic web

M. Lenzerini View-based query processing - Introduction 5



View based query processing

The problem is characterized by several parameters:

1. Data model for expressing the schema
2. Integrity constraints in the schema
3. Language for view definition
4. Assumption on view definition

• sound, complete, or exact
• materialized or virtual

5. Assumption on domain
• open or closed
• finite or unrestricted

6. Languages for expressing queries
7. What does processing mean (answering, rewriting,

reasoning, etc.)

M. Lenzerini View-based query processing - Introduction 6



Example of “view based query processing”

Consider the following view definition:

• v1(X) : − p(X, Y )
• v2(Y ) : − p(X, Y )

and assume that the view instance consists of {v1(a), v2(b)}.
Under the sound view assumption (open world assumption), we

only know that some p tuple has a in its first component, and

some p tuple has b in its second component.

Under the exact view assumption (closed world assumption) we

can conclude that all p tuples have a in their first component and b

as their second component, i.e. p contains exactly the tuple (a, b).

M. Lenzerini View-based query processing - Introduction 7



What does “processing” mean?

• View-based query answering

• View based query rewriting

• View materialization

• Reasoning on queries and views

– Query containment (view subsumption)

– View-based query containment

– View-losslessness

– Perfectness/exactness of rewriting

M. Lenzerini View-based query processing - Introduction 8



Query languages

• Relational data

– Relational algebra, relational calculus, (basic) SQL (no
ordering, aggregates, etc.), First Order Logic (FOL)

– Subsets of FOL (conjunctive queries, union of conjunctive
queries)

– Datalog and its variants

• Semi-structured data

– Regular path queries

– Extensions to regular path queries

– Datalog and its variants

M. Lenzerini View-based query processing - Introduction 9



Query evaluation over a database

The database B is a finite FOL structure, the query q is a formula,
and we want to compute the answers to q over B

{ ~t | B |= q(~t), i.e., ~t ∈ q(B) }

Complexity

• combined complexity - complexity of the following problem:
given a database B, a query q, and a tuple ~t, check whether ~t

is an answer to q over B.

• data complexity - for a fixed q, complexity of the following
problem: given a database B, and a tuple ~t, check whether ~t

is an answer to q over B.

M. Lenzerini View-based query processing - Introduction 10



Query evaluation over a set of databases

Let Σ be a specification for a set σ of databases (finite or not),
constituted by two parts, Σi and Σe, called intensional and
extensional, respectively. The query q is again a formula, and we
want to compute the set of certain answers to q over σ (or, over Σ)

{ ~t | ∀B ∈ σ, ~t ∈ q(B) }
Complexity

• combined complexity - complexity of the following problem:
given a specification Σ for a set σ of databases, a query q,
and a tuple ~t, check whether ~t is a certain answer to q over Σ.

• data complexity - for a fixed query q and Σi, complexity of the
following problem: given the extensional component Σe of a
specification Σ for a set σ of databases, and a tuple ~t, check
whether ~t is a certain answer to q over Σ.

M. Lenzerini View-based query processing - Introduction 11



The main problem: View based query answering

Database schema
R1 R2 … Rm

…

Database B

View definition V
V1 V2 …    Vn

…

View extension E

Q

certain 
answers 
certQ,V

answers
to Q

we are 
interested in 

M. Lenzerini View-based query processing - Introduction 12



Formalization of view based query answering

Given a schema Σ, a view over Σ is specified by

• one view symbol V and

• one view definition V Σ, that is a query over Σ

An extension E for view V is a set of tuples (of the same arity as

V Σ).

Given a set V of views {V1, . . . , Vn} over Σ, a V-extension E is a

FOL structure over {V1, . . . , Vn}, i.e., a collection {E1, . . . , En}
constituted by one extension Ei for each view Vi in V . If Vi is a

view in V and E = {E1, . . . , En} a V-extension, we write Vi(E) to

denote Ei.

M. Lenzerini View-based query processing - Introduction 13



Formalization of view based query answering

Given a set V of views and a database B, we use VΣ(B) to
denote the V-extension {E1, . . . , En} such that V (Ei) = V Σ

i (B),
for each Vi ∈ V .

We say that a V-extension E is sound wrt a database B if
E ⊆ VΣ(B), i.e., if V (E) ⊆ V Σ(B) for each V ∈ V .

In other words, in a V-extension E that is sound wrt a database B,
all the tuples in V (E) appear in VΣ(B), but VΣ(B) may contain
tuples not in V (E). Therefore, sound view extensions are
extensions that conform to the open world assumption.

In the rest of the course, we always refer to the sound view
assumption.

M. Lenzerini View-based query processing - Introduction 14



Formalization of view based query answering
A schema Σ, a set V of views over Σ, a V-extension E , and a
domain assumption δ, can be seen as specifying a set of
databases, i.e., all databases B that

• satisfy Σ and δ,
• conform to V and E , i.e., s.t. V-extension E is sound wrt B.

View-based query answering aims at computing the certain
answers of a query wrt such a set of databases: given a schema
Σ, a set V of views over Σ, a V-extension E , and a domain
assumption δ, the certain answers (under domain assumption δ)
to q with respect to Σ, V and E is the set

certδ(q, Σ,V , E) = {~t |~t ∈ q(B), ∀B s.t. E ⊆ VΣ(B) and B satisfies δ}

M. Lenzerini View-based query processing - Introduction 15



The problem of view based query answering

The decision problem (under a predefined domain assumption δ)
is as follows. Given:

• schema Σ,

• set V of views over Σ,

• V-extension E ,

• query q over Σ,

• tuple ~t,

check whether ~t ∈ certδ(q, Σ,V , E).

• combined complexity: wrt the size of all inputs

• data complexity: wrt the size of E only

M. Lenzerini View-based query processing - Introduction 16



Application to access authorization

We have a schema Σ and a finite database B for Σ.

Authorization constraints are modeled by associating to each
user U a set VU of views, representing the precise collection of
data that the user is allowed to know about the database.

Each user may ask queries over Σ to get data from B, but the
system should answer the query according the authorization
constraints.

Authorization-based access is nicely formalized by view-based
query answering: when a user U poses a query q to the
database, the systems returns the set certδ(q, Σ,VU ,VΣ

U (B)),
where δ is the “open and finite domain assumption”.

M. Lenzerini View-based query processing - Introduction 17



Application to access authorization: example

We have a schema Σ with jobAddress(x, y) (y is the job location

of x), and site(x, y) (y is a site of company x), and a database

saying that Bob works in SF, and SF is a location of Sony.

Suppose that U is allowed to know who is working for which

companies, but is not allowed to know in which addresses a

person works, or which are the sites of a company.

We associate { (x, z) | ∃y jobAddress(x, y) ∧ site(y, z)} to user U ,

so U gets the empty answer to jobAddress(′′Bob′′, z), but gets an

informative answer to { z | ∃y jobAddress(′′Bob′′, y) ∧ site(y, z)}.

M. Lenzerini View-based query processing - Introduction 18



Application to data integration

Source 1 Source 2

Global  schema

Mapping

Query

R1 C1 D1
T1R1 C1 D1
T1

c1 d1 t1c1 d1 t1

c2 d2 t2c2 d2 t2

Source schema Source schema

M. Lenzerini View-based query processing - Introduction 19



Formal framework for data integration

A data integration system I is a triple 〈G,S,M〉, where

• G is the global schema

The global schema is a logical theory over an alphabet AG

• S is the source schema

The source schema is constituted simply by an alphabet AS
disjoint from AG

• M is the mapping between S and G
Different approaches to the specification of mapping

M. Lenzerini View-based query processing - Introduction 20



Semantics of a data integration system

We refer only to databases over a fixed infinite domain Γ of

constants.

Let C be a source database over Γ (also called source model),

fixing the extension of the predicates of AS (thus modeling the

data present in the sources).

The databases that satisfy I are the logical interpretations for AG
(called global databases) that satisfy G under the “open and

unrestricted domain assumption” (OU), and satisfy M wrt C (what

does this mean depends on the nature of the mapping M). By

the above definition, I specifies a set of databases.

M. Lenzerini View-based query processing - Introduction 21



The mapping

How is the mapping M between S and G specified?

• Are the sources defined in terms of the global schema?

Approach called source-centric, or local-as-view, or LAV

• Is the global schema defined in terms of the sources?

Approach called global-schema-centric, or global-as-view, or

GAV

• A mixed approach?

Approach called GLAV

M. Lenzerini View-based query processing - Introduction 22



Example of data integration

Global schema : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

Source 1 : r1(Title,Year ,Director) since 1960, euro directors

Source 2 : r2(Title, Critique) since 1990

Query : Title and critique of movies in 1998

∃D. movie(T , 1998, D) ∧ review(T , R), written

{ (T, R) | movie(T, 1998, D) ∧ review(T, R) }

M. Lenzerini View-based query processing - Introduction 23



Semantics of LAV

In LAV (with sound sources), the mapping M is constituted by a

set of assertions:

s ; φG

one for each source element s in AS , where φG is a query over G
of the arity of s.

Given source database C, a database B for G satisfies M wrt C if

for each s ∈ S:

s(C) ⊆ φGB

In other words, the assertion means ∀~x (s(~x) → φG(~x)).

M. Lenzerini View-based query processing - Introduction 24



LAV – example

Global schema : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

LAV: associated to source relations we have views over the global

schema

r1(T, Y, D) ; {(T, Y, D) | movie(T, Y, D) ∧ european(D) ∧ Y ≥ 1960}
r2(T,R) ; {(T, R) | movie(T, Y, D) ∧ review(T, R) ∧ Y ≥ 1990}

M. Lenzerini View-based query processing - Introduction 25



Formalizing LAV as view-based query answering

Given a LAV data integration system I = 〈G,S,M〉, and a source

database C for I, we define:

• Schema Σ: global schema G of I
• Views V : one view for each source in S
• View definition for view V : the query that M associates to

source V

• View extension E : source database C
It is easy to see that the answers to a query q posed to I wrt C
are exactly certOU(q, Σ,V , E).

M. Lenzerini View-based query processing - Introduction 26



Semantics of GAV

In GAV (with sound sources), the mapping M is constituted by a

set of assertions:

g ; φS

one for each element g in AG, where φS is a query over S of the

arity of g.

Given source database C, a database B for G satisfies M wrt C if

for each g ∈ G:

gB ⊇ φSC

In other words, the assertion means ∀~x (φS(~x) → g(~x)).

M. Lenzerini View-based query processing - Introduction 27



GAV – example

Global schema : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

GAV: associated to relations in the global schema we have views

over the sources

movie(T, Y, D) ; { (T, Y,D) | r1(T, Y,D) }
european(D) ; { (D) | r1(T, Y,D) }
review(T, R) ; { (T,R) | r2(T,R) }

M. Lenzerini View-based query processing - Introduction 28



Formalizing GAV as view-based query answering

Given a GAV data integration system I = 〈G,S,M〉, and a
source database C for I, we define:

• Schema Σ: global schema G of I
• Views V : one view V ′ for each symbol V in G comparing in

the mapping M
• View definition for view V ′: simply V

• View extension E : for each V ′, the extension of V ′ is the
result of evaluating the query that M associates to V over C

It is easy to see that the answers to a query q posed to I wrt C
are exactly certOU(q, Σ,V , E).

M. Lenzerini View-based query processing - Introduction 29



Beyond GAV and LAV: GLAV

In GLAV (with sound sources), the mapping M is constituted by a
set of assertions:

φS ; φG

where φS is a query over S, and φG is a query over G of the arity
φS .

Given source database C, a database B that is legal wrt G
satisfies M wrt C if for each assertion in M:

φS
C ⊆ φGB

In other words, the assertion means ∀~x (φS(~x) → φG(~x)).

M. Lenzerini View-based query processing - Introduction 30



Example of GLAV

Global schema: Work(Person, Project), Area(Project, F ield)

Source 1: HasJob(Person, F ield)

Source 2: Teach(Professor, Course), In(Course, F ield)

Source 3: Get(Researcher,Grant), For(Grant, Project)

GLAV mapping:

{ (r, f) | HasJob(r, f) } ; { (r, f) | Work(r, p) ∧ Area(p, f) }
{ (r, f) | Teach(r, c) ∧ In(c, f) } ; { (r, f) | Work(r, p) ∧ Area(p, f) }
{ (r, p) | Get(r, g) ∧ For(g, p) } ; { (r, p) | Work(r, p) }

M. Lenzerini View-based query processing - Introduction 31



Formalizing GLAV as view-based query answering

Given a GLAV data integration system I = 〈G,S,M〉, and a

source database C for I, we define:

• Schema Σ: global schema G of I
• Views V : one view m for each mapping assertion m in M
• View definition for view m: the query over G contained in m

• View extension E : for each m, the extension of m is the result

of evaluating the query over S contained in m over C
It is easy to see that the answers to a query q posed to I wrt C
are exactly certOU(q, Σ,V , E).

M. Lenzerini View-based query processing - Introduction 32



Application to data exchange

The data exchange problem can be informally described as

follows.

We have a source S characterized by a schema GS and a finite

database BS, a target characterized by a schema GT , and a

mapping from GS to GT .

The problem is to transfer data from the source to the target

according to the mapping. More precisely, we want to materialize

in the target a finite database BT that satisfies GT and that

reflects at best the data coming from the source through the

mapping.

M. Lenzerini View-based query processing - Introduction 33



Formalizing data exchange as view-based query
answering

Given a data exchange setting with source S, target T and
mapping M , we define:

• Schema Σ: schema GT

• Views V : one view m for each mapping assertion m in M

• View definition for view m: the query over GT contained in m

• View extension E : for each m, the extension of m is the result
of evaluating the query over GS contained in m over BS

It is easy to see that a finite database BT reflects at best the data
coming from the source through the mapping if for all query q over
GT , q(BT ) = certF (q, Σ,V , E), where F stands for the “finite
domain assumption”.

M. Lenzerini View-based query processing - Introduction 34



Outline of the rest of the course

• Lecture 3,4: Conjunctive query evaluation

• Lecture 5,6: Data exchange

• Lecture 7,8: Data integration 1

• Lecture 9,10: Data integration 2

• Lecture 11,12: Data integration 3

• Lecture 13,14: Data integration through ontologies

• Lecture 15,16: View-based query processing over

semistructured data 1

• Lecture 17,18: View-based query processing over

semistructured data 2

• Lecture 19,20: Reasoning about views

M. Lenzerini View-based query processing - Introduction 35


