View-based guery processing

Diego Calvanese
Faculty of Computer Science
Free University of Bolzano/Bozen

Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati
Dipartimento di Informatica e Sistemistica
Universit a di Roma “La Sapienza”

Georg Gottlob
Technische Universitat Wien, Vienna, Austria

Corso di dottorato — Dottorato in Ingegneria Informatica,
Universita di Roma “La Sapienza”, settembre — ottobre 2005

Schedule: Lectures 1-10

. Lecture 1,2 - Sept 5, 2005 - hr 14:00 [Lenzerini]
Introduction to view-based query processing

. Lecture 3,4 - Sept 9, 2005 - hr 10:30 [Gottlob]
Conjunctive query evaluation

. Lecture 5,6 - Sept 9, 2005 - hr 14:00 [Gottlob]
Data exchange

. Lecture 7,8 - Sept 19, 2005 - hr 14:00 [De Giacomo]
Data integration 1

. Lecture 9,10 - Sept 21, 2005 - hr 14:00 [Rosati]
Data integration 2

10.

Schedule: Lectures 11-20

. Lecture 11,12 - Sept 23, 2005 - hr 14:00 [Rosati]

Data integration 3

. Lecture 13,14 - Sept 26, 2005 - hr 14:00 [De Giacomo]

Data integration through ontologies

. Lecture 15,16 - Oct 13, 2005 - hr 14:00 [Calvanese]

View-based query processing over semistructured data 1

. Lecture 17,18 - Oct 14, 2005 - hr 14:00 [Calvanese]

View-based query processing over semistructured data 2

Lecture 19,20 - Oct 17, 2005 - hr 14:00 [Lenzerini]
Reasoning about views

N

> W

Lectures 1-2: Outline

. What is “view-based query processing”

Prerequisites for the course
Formalization of view-based query processing
Applications of view-based query processing

Outline of the rest of the course

Views

A view Is a pre-defined query

In a database management system, a view is defined at the
schema level, and then used in the system in several ways
(e.g., In queries)

When processing a query referring to a views, the “unfolding”
technique is generally adopted

Problems: view update, optimization, etc.

What is “view based guery processing”

e View based query processing addresses the issue of
processing a query by relying solely on a set of views, rather
than the raw data

e Relevant problem in

— database management,

— data integration,

— data exchange,

— data warehousing,

— access control,

— mobile computing,

— knowledge representation,
— the semantic web

View based query processing
The problem is characterized by several parameters:

1. Data model for expressing the schema
Integrity constraints in the schema
Language for view definition
Assumption on view definition

e sound, complete, or exact
e materialized or virtual

5. Assumption on domain

e open or closed
e finite or unrestricted

6. Languages for expressing queries
7. What does processing mean (answering, rewriting,

reasoning, etc.)

W

Example of “view based guery processing”

Consider the following view definition:

e v1(X) : —p(X,Y)
e 1Y) :—p(X,Y)

and assume that the view instance consists of {v;(a),v2(b)}.

Under the sound view assumption (open world assumption), we
only know that some p tuple has a In its first component, and
some p tuple has b in its second component.

Under the exact view assumption (closed world assumption) we
can conclude that all p tuples have « in their first component and b
as their second component, i.e. p contains exactly the tuple (a, b).

What does “processing” mean?

View-based query answering
View based query rewriting
View materialization

Reasoning on queries and views

— Query containment (view subsumption)
— View-based query containment

— View-losslessness

— Perfectness/exactness of rewriting

Query languages

e Relational data

— Relational algebra, relational calculus, (basic) SQL (no
ordering, aggregates, etc.), First Order Logic (FOL)

— Subsets of FOL (conjunctive queries, union of conjunctive
gueries)

— Datalog and its variants

e Semi-structured data
— Regular path queries
— Extensions to regular path queries

— Datalog and its variants

Query evaluation over a database

The database B is a finite FOL structure, the query ¢ is a formula,
and we want to compute the answers to ¢q over B

{t|BEqt),ie, teqB)}

Complexity

e combined complexity - complexity of the following problem:
given a database B, a query ¢, and a tuple t, check whether t
IS an answer to g over B.

e data complexity - for a fixed ¢, complexity of the following
problem: given a database B, and a tuple t, check whether t
IS an answer to ¢ over B.

Query evaluation over a set of databases

Let > be a specification for a set o of databases (finite or not),
constituted by two parts, >; and >.., called intensional and
extensional, respectively. The query ¢ Is again a formula, and we
want to compute the set of certain answers to ¢ over o (or, over X.)
{t|VBeo, teqgB)}

Complexity

e combined complexity - complexity of the following problem:

given a specification X for a set o of databases, a query g,

and a tuple t, check whether t is a certain answer to ¢ over X.
e data complexity - for a fixed query ¢ and >_;, complexity of the

following problem: given the extensional component ., of a
specification X for a set o of databases, and a tuple t, check

whether t is a certain answer to ¢ over X..

The main problem: View based query answering

certain
answers
certQ,V

we are
interested in

View definition V
V, V, ... V

n

answers
to Q

View extension E

?______l

Database B

1
o 0
v
J Database schema
Rl RZ Rm

S —

Formalization of view based query answering

Given a schema X, a view over X is specified by
e one view symbol V' and

e one view definition V>, that is a query over X

An extension E for view V is a set of tuples (of the same arity as
V).

Given a set V of views {V7, ..., V,} over ¥, a V-extension £ is a
FOL structure over {V4,...,V,}, i.e., acollection {F,, ..., E,}
constituted by one extension FE; for each view V; in V. If V; is a
viewin)Y and £ = {FEy,..., E,} a V-extension, we write V;(£) to
denote L.

Formalization of view based query answering

Given a set V of views and a database B, we use V*(B) to
denote the V-extension {E£},. .., E,} such that V(E;) = V.*(B),
foreach V, € V.

We say that a V-extension £ is sound wrt a database B if
ECV*(B),ie.,if V(E) CV*(B)foreachV e V.

In other words, in a V-extension £ that is sound wrt a database B,
all the tuples in V(&) appear in V*(B), but V>(B) may contain
tuples not in V' (£). Therefore, sound view extensions are
extensions that conform to the open world assumption.

In the rest of the course, we always refer to the sound view
assumption.

Formalization of view based query answering

A schema >, a set V of views over X, a V-extension &£, and a
domain assumption 9, can be seen as specifying a set of
databases, I.e., all databases B that

e satisfy > and o,

e conformto V and &, I.e., s.t. V-extension £ is sound wrt B.

View-based query answering aims at computing the certain
answers of a query wrt such a set of databases: given a schema
., asetV of views over X2, a V-extension &£, and a domain
assumption 9, the certain answers (under domain assumption o)
to ¢ with respect to >, V and £ Is the set

certs(q,2,V,E) = {t |t € ¢(B),VB s.t. £ C V*(B) and B satisfies §}

The problem of view based query answering

The decision problem (under a predefined domain assumption o)
Is as follows. Given:

e schema X,

e set V of views over X,
e V-extension &,

e (uery q over 2,

e tuple t,

check whether t € certs(q, 2, V, E).

e combined complexity: wrt the size of all inputs

e data complexity: wrt the size of £ only

Application to access authorization

We have a schema). and a finite database B for >..

Authorization constraints are modeled by associating to each
user U a set V;; of views, representing the precise collection of
data that the user is allowed to know about the database.

Each user may ask queries over X to get data from B, but the
system should answer the query according the authorization
constraints.

Authorization-based access is nicely formalized by view-based
guery answering: when a user U poses a query q to the
database, the systems returns the set certs(q, X, Vi, Vi7 (B)),
where ¢ Is the “open and finite domain assumption”.

Application to access authorization: example

We have a schema X with jobAddress(x,y) (y is the job location
of z), and site(x,y) (y is a site of company x), and a database
saying that Bob works in SF, and SF is a location of Sony.

Suppose that U is allowed to know who is working for which
companies, but is not allowed to know in which addresses a
person works, or which are the sites of a company.

We associate { (z, z) | Jy jobAddress(x,y) A site(y, z)} to user U,
so U gets the empty answer to jobAddress(” Bob", =), but gets an
informative answer to { z | y jobAddress(” Bob",y) N site(y, z)}.

Application to data integration
Query

Global schema

/V
M apping

Source schema Source schema

£ 0
N s
Nl e

M. Lenzerini View-based query processing - Introduction

Formal framework for data integration
A data integration system 7 is a triple (G, S, M), where

e (Is the global schema

The global schema is a logical theory over an alphabet Ag

e S iIs the source schema
The source schema is constituted simply by an alphabet As
disjoint from Ag

e M Is the mapping between S and G

Different approaches to the specification of mapping

Semantics of a data integration system

We refer only to databases over a fixed infinite domain I of
constants.

Let C be a source database over I' (also called source model),
fixing the extension of the predicates of As (thus modeling the
data present in the sources).

The databases that satisfy 7 are the logical interpretations for Ag
(called global databases) that satisfy G under the “open and
unrestricted domain assumption” (OU), and satisfy M wrt C (what
does this mean depends on the nature of the mapping M). By
the above definition, 7 specifies a set of databases.

The mapping
How is the mapping M between S and G specified?

e Are the sources defined in terms of the global schema?

Approach called source-centric, or local-as-view, or LAV

e |s the global schema defined in terms of the sources?

Approach called global-schema-centric, or global-as-view, or
GAV

e A mixed approach?
Approach called GLAV

Example of data integration

Global schema : movie(Title, Year, Director)
european(Director)

review(Title, Critique)

Source 1 ri(Title, Year, Director) since 1960, euro directors
Source 2 ro(Title, Critique) since 1990
Query . Title and critique of movies in 1998

4D. movie(T, 1998, D) A review(T', R), written
{ (T, R) | movie(T,1998, D) A review(T, R) }

M. Lenzerini View-based query processing - Introduction 23

Semantics of LAV

In LAV (with sound sources), the mapping M is constituted by a
set of assertions:

s ~ Qg

one for each source element s in As, where ¢g IS a query over G
of the arity of s.

Given source database C, a database B for G satisfies M wrt C If

for each s € S:

s(C) € og®

—

In other words, the assertion means VX (s(X) — ¢g(X)).

LAV — example

Global schema : movie(Title, Year, Director)
european(Director)
review(Title, Critique)

LAV: associated to source relations we have views over the global
schema

rn(T,Y,D) ~ {(T,Y,D) | movie(T,Y, D) A european(D) AY > 1960}
r2 (T, R) ~ {(T,R) | movie(T,Y, D) Areview(T,R) ANY > 1990}

M. Lenzerini View-based query processing - Introduction 25

Formalizing LAV as view-based query answering

Given a LAV data integration system 7 = (G, S, M), and a source
database C for Z, we define:

e Schema X: global schema G of 7
e Views V. one view for each source in §

e View definition for view V': the query that M associates to
source V'

e View extension &: source database C

It is easy to see that the answers to a query ¢ posed to Z wrt C
are exactly certoy(q, 2, V, E).

Semantics of GAV

In GAV (with sound sources), the mapping M is constituted by a
set of assertions:

g ~ s

one for each element ¢ in Ag, where ¢s is a query over S of the
arity of g.

Given source database C, a database B for G satisfies M wrt C If
for each g € G:

@ D s

In other words, the assertion means VX (¢s(X) — g(X)).

GAV — example

Global schema : movie(Title, Year, Director)
european(Director)

review(Title, Critique)

GAV: associated to relations in the global schema we have views
over the sources

movie(T,Y,D) ~ {(T,Y,D)|r(T,Y,D)}
european(D) ~ {(D)|n(T,Y,D)}
review(T, R) ~ {(T,R)|r(T,R) }

M. Lenzerini View-based query processing - Introduction

28

Formalizing GAV as view-based query answering

Given a GAV data integration system 7 = (G, S, M), and a
source database C for Z, we define:

e Schema X: global schema G of 7

e Views V: one view V'’ for each symbol V' in G comparing in
the mapping M

e View definition for view V’: simply V

e View extension &: for each V7, the extension of V' is the
result of evaluating the query that M associates to VV over C

It is easy to see that the answers to a query ¢ posed to Z wrt C
are exactly certoy(q, 2, V,).

Beyond GAV and LAV: GLAV

In GLAV (with sound sources), the mapping M is constituted by a
set of assertions:

Ps ~ Qg

where ¢s IS a query over S, and ¢g Is a query over G of the arity
Ps-

Given source database C, a database 5 that is legal wrt G
satisfies M wrt C if for each assertion in M:

ps¢ C oGP

In other words, the assertion means VX (¢s(X) — ¢g(X)).

Example of GLAV

Global schema: Work(Person, Project), Area(Project, Field)

Source 1: HasJob(Person, Field)
Source 2: Teach(Professor, Course), In(Course, Field)
Source 3: Get(Researcher, Grant), For(Grant, Project)

GLAV mapping:

{ (r,f)| HasJob(r, f) } ~ L (r, f) | Work(r,p) N Area(p, f) }
{ (r,f) | Teach(r,c) N In(c,f)} ~ {(r,f)|Work(r,p) N Area(p, f) }
{ (r,p) | Get(r,g) N For(g,p) } ~ {(r,p)| Work(r,p) }

M. Lenzerini View-based query processing - Introduction 31

Formalizing GLAV as view-based query answering

Given a GLAV data integration system Z = (G,S, M), and a
source database C for Z, we define:

e Schema X: global schema G of 7
e Views V. one view m for each mapping assertion m in M
e View definition for view m: the query over G contained in m

e View extension &: for each m, the extension of m Is the result
of evaluating the query over S contained in m over C

It is easy to see that the answers to a query ¢ posed to Z wrt C
are exactly certoy(q, >, V,).

Application to data exchange

The data exchange problem can be informally described as
follows.

We have a source S characterized by a schema G5 and a finite
database Bg, a target characterized by a schema G, and a
mapping from G to Gr.

The problem is to transfer data from the source to the target
according to the mapping. More precisely, we want to materialize
In the target a finite database By that satisfies G+ and that
reflects at best the data coming from the source through the

mapping.

Formalizing data exchange as view-based query
answering

Given a data exchange setting with source S, target 1" and
mapping M, we define:
e Schema X.: schema G
e Views V. one view m for each mapping assertion m in M
e View definition for view m: the query over GGy contained in m
e View extension &: for each m, the extension of m Is the result
of evaluating the query over G4 contained in m over Bg

It is easy to see that a finite database B reflects at best the data
coming from the source through the mapping if for all query ¢ over
Gr, q(Br) = certr(q, %, V,), where [stands for the “finite

domain assumption”.

Outline of the rest of the course

Lecture 3,4: Conjunctive query evaluation

Lecture 5,6: Data exchange

Lecture 7,8: Data integration 1

Lecture 9,10: Data integration 2

Lecture 11,12: Data integration 3

Lecture 13,14: Data integration through ontologies
Lecture 15,16: View-based query processing over
semistructured data 1

Lecture 17,18: View-based query processing over
semistructured data 2

Lecture 19,20: Reasoning about views

