
Description Logics for Conceptual Data Modeling in UML

Diego Calvanese, Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

ESSLLI 2003

Vienna, August 18–22, 2003

Part 2

Description Logics

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 1



What are Description Logics?

In modeling an application domain we typically need to represent a situation in

terms of

• objects

• classes

• relations (or associations)

and to reason about the representation

Description Logics are logics specifically designed to represent and reason on

• objects

• classes – called concepts in DLs

• (binary) relations – called roles in DLs

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 2

Origins of Description Logics

Knowledge Representation is a subfield of Artificial Intelligence

Early days KR formalisms (late ’70s, early ’80s):

• Semantic Networks: graph-based formalism, used to represent the

meaning of sentences

• Frame Systems: frames used to represent prototypical situations,

antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological Languages)

developed starting in the mid ’80s, with the aim of providing semantics and

inference techniques to knowledge representation systems

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 3



Current applications of DLs

DLs have evolved from being used “just” in KR

Found applications in:

• Databases:

– schema design, schema evolution

– query optimization

– integration of heterogeneous data sources, data warehousing

• Conceptual modeling

• Foundation for the semantic web (see ESSLLI’03 course by Horrocks &

Sattler next week)

• · · ·

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 4

Ingredients of a DL

A Description Logic is characterized by:

1. A description language: how to form concepts and roles
Human u Male u (∃child) u ∀child.(Doctor t Lawyer)

2. A mechanism to specify knowledge about concepts and roles (i.e., a TBox)
ggK = { Father ≡ Human u Male u (∃child),

HappyFather v Father u ∀child.(Doctor t Lawyer) }

3. A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(JOHN), child(JOHN, MARY) }

4. A set of inference services: how to reason on a given knowledge base
K |= HappyFather v ∃child.(Doctor t Lawyer)

K ∪ A |= (Doctor t Lawyer)(MARY)

Note: we will consider ABoxes only later, when needed; hence, for now, we
consider a knowledge base to be simply a TBox

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 5



Architecture of a DL system
Expressed in a
Description Logic

Terminological
knowledge (TBox)

Knowledge about
objects (ABox)

Father ≡ Human u Male u (∃child)

HappyFather v Father u

∀child.(Doctor t Lawyer)

HappyFather(JOHN)

child(JOHN, MARY)

Knowledge Base

Inference Engine

Applications

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 6

Description language

A description language is characterized by a set of constructs for building

complex concepts and roles starting from atomic ones:

• concepts represent classes: interpreted as sets of objects

• roles represent relations: interpreted as binary relations on objects

Semantics: in terms of interpretations I = (∆I, ·I), where

• ∆I is the interpretation domain

• ·I is the interpretation function, which maps

– each atomic concept A to a subset AI of ∆I

– each atomic role P to a subset P I of ∆I × ∆I

The interpretation function is extended to complex concepts and roles

according to their syntactic structure

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 7



Syntax and semantics of AL

AL is the basic language in the family of AL languages

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P child P I ⊆ ∆I × ∆I

atomic negation ¬A ¬Doctor ∆I \ AI

conjunction C u D Hum u Male CI ∩ DI

(unqual.) exist. res. ∃R ∃child { a | ∃b. (a, b) ∈ RI }

value restriction ∀R.C ∀child.Male {a | ∀b. (a, b) ∈ RI ⊃ b ∈ CI}

(C, D denote arbitrary concepts and R an arbitrary role)

Note: AL is not propositionally closed (no full negation)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 8

The AL family

Typically, additional constructs w.r.t. those of AL are needed:

Construct AL· Syntax Semantics

disjunction U C t D CI ∪ DI

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }

(full) negation C ¬C ∆I \ CI

number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }

restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }

qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }

restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }

inverse role I P − { (a, b) | (b, a) ∈ P I }

We also use: ⊥ for A u ¬A (hence ⊥I = ∅)

> for A t ¬A (hence >I = ∆I)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 9



The AL family – Examples

• Disjunction

∀child.(Doctor t Lawyer)

• Qualified existential restriction

∃child.Doctor

• Full negation

¬(Doctor t Lawyer)

• Number restrictions

(≥ 2 child) u (≤ 1 sibling)

• Qualified number restrictions

(≥ 2 child.Doctor) u (≤ 1 sibling.Male)

• Inverse role

∀child−.Doctor

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 10

Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 6= ∅

Basic reasoning tasks:

1. Concept satisfiability: does C admit a model?

2. Concept subsumption: does CI ⊆ DI hold for all interpretations I?
(written C v D)

Subsumption used to build the

concept hierarchy:
WomanMan

Human

Father

HappyFather

(1) and (2) are mutually reducible if DL is propositionally closed

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 11



Reasoning on concept expressions – Technique

Techniques are based on tableau algorithms: for satisfiability of C0

1. Aims at building a tree representing a model of C0

• nodes represent objects of ∆I , labeled with subconcepts of C0

• edges represent role successorship between objects

2. Concepts are first put in negation normal form (negation is pushed inside)

3. Tree initialized with single root node, labeled with {C0}

4. Rules (one for each construct) add new nodes or concepts to the label

• deterministic rules: for u, ∀P .C, ∃P .C, (≥ k P )

• non-deterministic rules: for t, (≤ k P )

5. Stops when:

• no more rule can be applied, or

• a clash (obvious contradiction) is detected

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 12

Reasoning on concept expressions – Technique (Cont’d)

Properties of tableaux algorithms (must be proved for the various cases):

1. Termination: since quantifier depth decreases going down the tree

2. Soundness: if there is a way of terminating without a clash, then C0 is

satisfiable

• construct from the tree a model of C0

3. Completeness: if C0 is satisfiable, there is a way of applying the rules so

that the algorithm terminates without a clash

• if I is a model of T , then there is a rule s.t. I is also a model of the tree

obtained by applying the rule to T

Tableaux algorithms provide optimal decision procedures for concept

satisfiability (and subsumption)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 13



Reasoning on concept expressions – Complexity

Complexity of concept satisfiability

PTIME AL, ALN

NP-complete ALU , ALUN

coNP-complete ALE

PSPACE-complete ALC, ALCN , ALCI, ALCQI

Observations:

• two sources of complexity

– union (U ) of type NP

– existential quantification (E) of type coNP

When they are combined, the complexity jumps to PSPACE

• number restrictions (N ) do not add to the complexity

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 14

Structural properties vs. asserted properties

We have seen how to build complex concept expressions, which allow to

denote classes with a complex structure

However, in order to represent complex domains one needs the ability to

assert properties of classes and relationships between them (e.g., as done in

UML class diagrams)

The assertion of properties is done in DLs by means of knowledge bases

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 15



DL knowledge bases

A DL knowledge base consists of a set of inclusion assertions on concepts:

C v D

• when C is an atomic concept, the assertion is called primitive
• C ≡ D is an abbreviation for C v D, D v C

Example:
K = { Father ≡ Human u Male u (∃child),

HappyFather v Father u ∀child.(Doctor t Lawyer) }

Semantics: An interpretation I is a model of a knowledge base K if

CI ⊆ DI for every assertion C v D in K

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 16

Reasoning on DL knowledge bases

Basic reasoning tasks:

1. Knowledge base satisfiability

Given K, does it admit a model?

2. Concept satisfiability w.r.t. a KB — denoted K 6|= C ≡ ⊥

Given C and K, do they admit a common model?

3. Logical implication — denoted K |= C v D

Given C, D, and K, does CI ⊆ DI hold for all models I of K?

Again, logical implication allows for classifying the concepts in the KB w.r.t. the

knowledge expressed by the KB

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 17



Relationship among reasoning tasks

The reasoning tasks are mutually reducible to each other, provided the

description language is propositionally closed:

(1) to (3) K satisfiable iff not K |= > v ⊥ iff K 6|= > ≡ ⊥

(i.e., > satisfiable w.r.t. K)

(3) to (2) K |= C v D iff not K 6|= C u ¬D ≡ ⊥

(i.e., C u ¬D unsatisfiable w.r.t. K)

(2) to (1) K 6|= C ≡ ⊥ iff K ∪ { > v ∃Pnew u ∀Pnew .C } satisfiable

(where Pnew is a new atomic role)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 18

Relationship with First Order Logic

Most DLs are well-behaved fragments of First Order Logic

To translate ALC to FOL:

1. Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P

2. Translate complex concepts as follows, using translation functions tx, for
any variable x:

tx(A) = A(x)

tx(C u D) = tx(C) ∧ tx(D)

tx(C t D) = tx(C) ∨ tx(D)

tx(∃P .C) = ∃y. P (x, y) ∧ ty(C) with y a new variable

tx(∀P .C) = ∀y. P (x, y) ⊃ ty(C) with y a new variable

3. Translate a knowledge base K =
⋃

i{ Ci v Di } as a FOL theory

ΓK =
⋃

i{ ∀x. tx(Ci) ⊃ tx(Di) }

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 19



Relationship with First Order Logic (Cont’d)

Reasoning services:

C is consistent iff its translation tx(C) is satisfiable

C v D iff tx(C) ⊃ tx(D) is valid

C is consistent w.r.t. K iff ΓK ∪ { ∃x. tx(C) } is satisfiable

K |= C v D iff ΓK |= ∀x. (tx(C) ⊃ tx(D))

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 20

Relationship with First Order Logic – Exercise

Translate the following ALC concepts into FOL formulas:

1. Father u ∀child.(Doctor t Manager)

2. ∃manages.(Company u ∃employs.Doctor)

3. Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃w. (employs(y, w) ∧ Doctor(w))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨

∃w. (manages(y, w)∧(Company(w)∧∃z. (employs(w, z)∧Doctor(z))))))

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 21



DLs as fragments of First Order Logic

The above translation shows us that DLs are a fragment of First Order Logic

In particular, we can translate complex concepts using just two translation
functions tx and ty (thus reusing the same variables):

tx(A) = A(x) ty(A) = A(y)

tx(C u D) = tx(C) ∧ tx(D) ty(C u D) = ty(C) ∧ ty(D)

tx(C t D) = tx(C) ∨ tx(D) ty(C t D) = ty(C) ∨ ty(D)

tx(∃P .C) = ∃y. P (x, y) ∧ ty(C) ty(∃P .C) = ∃x. P (y, x) ∧ tx(C)

tx(∀P .C) = ∀y. P (x, y) ⊃ ty(C) ty(∀P .C) = ∀x. P (y, x) ⊃ tx(C)

; ALC is a fragment of L2, i.e., FOL with 2 variables, known to be decidable
(NEXPTIME-complete)

Note: FOL with 2 variables is more expressive than ALC (tradeoff expressive
power vs. complexity of reasoning)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 22

DLs as fragments of First Order Logic – Exercise

Translate the following ALC concepts into L2 formulas (i.e., into FOL formulas

that use only variables x and y):

1. Father u ∀child.(Doctor t Manager)

2. ∃manages.(Company u ∃employs.Doctor)

3. Father u ∀child.(Doctor t ∃manages.(Company u ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃x. (employs(y, x) ∧ Doctor(x))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨

∃x. (manages(y, x) ∧ (Company(x) ∧ ∃y. (employs(x, y) ∧ Doctor(y))))))

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 23



DLs as fragments of First Order Logic (Cont’d)

Translation can be extended to other constructs:

• For inverse roles, swap the variables in the role predicate, i.e.,

tx(∃P −.C) = ∃y. P (y, x) ∧ ty(C) with y a new variable

tx(∀P −.C) = ∀y. P (y, x) ⊃ ty(C) with y a new variable

; ALCI is still a fragment of L2

• For number restrictions, two variables do not suffice;

but, ALCQI is a fragment of C2 (i.e, L2+counting quantifiers)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 24

Relationship with Modal and Dynamic Logics

In understanding the computational properties of DLs a correspondence with

Modal logics and in particular with Propositional Dynamic Logics (PDLs) has

been proved essential

PDLs are logics specifically designed for reasoning about programs

PDLs have been widely studied in computer science, especially from the point

of view of computational properties:

• tree model property

• small model property

• automata based reasoning techniques

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 25



Relationship with Modal Logics

ALC is a syntactic variant of Km (i.e., multi-modal K):

C u D ⇔ C ∧ D ∃P .C ⇔ 3P C

C t D ⇔ C ∨ D ∀P .C ⇔ 2P C

¬C ⇔ ¬C

• no correspondence for inverse roles

• no correspondence for number restrictions

; Concept consistency, subsumption in ALC ⇔ satisfiability, validity in Km

To encode inclusion assertions, axioms are used

; Logical implication in DLs corresponds to “global logical implication” in

Modal Logics

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 26

Relationship with Propositional Dynamic Logics

ALC and ALCI can be encoded in Propositional Dynamic Logics (PDLs)

C u D ⇔ C ∧ D ∃R.C ⇔ 〈R〉C

C t D ⇔ C ∨ D ∀R.C ⇔ [R]C

¬C ⇔ ¬C

Universal modality (or better “master modality”) can be expressed in PDLs

using reflexive-transitive closure:

• for ALC / PDL: u = (P1 ∪ · · · ∪ Pm)∗

• for ALCI / conversePDL: u = (P1 ∪ · · · ∪ Pm ∪ P
−
1 ∪ · · · ∪ P −

m
)∗

Universal modality allows for internalizing assertions:

C v D ⇔ [u](C ⊃ D)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 27



Relationship with Propositional Dynamic Logics (Cont’d)

; Concept satisfiability w.r.t. a KB (resp., logical implication) reduce to PDL

(un)satisfiability:

⋃

i{ Ci v Di } 6|= C ≡ ⊥ ⇔ C ∧
∧

i[u](Ci ⊃ Di) satisfiable
⋃

i{ Ci v Di } |= C v D ⇔ C ∧ ¬D ∧
∧

i[u](Ci ⊃ Di) unsatisfiable

Correspondence also extended to other constructs, e.g., number restrictions:

• polynomial encoding when numbers are represented in unary

• technique more involved when numbers are represented in binary

Note: there are DLs with non first-order constructs, such as various forms of

fixpoint constructs. Such DLs still have a correspondence with variants of PDLs

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 28

Consequences of correspondence with PDLs

• PDL, conversePDL, DPDL, converseDPDL are EXPTIME-complete

; Logical implication in ALCQI is in EXPTIME

• PDLs enjoy the tree-model property: every satisfiable formula admits a

model that has the structure of a (in general infinite) tree of linearly

bounded width

; A satisfiable ALCQI knowledge base has a tree model

• PDLs admit optimal reasoning algorithms based on (two-way alternating)

automata on infinite trees

; Automata-based algorithms are optimal for ALCQI logical implication

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 29



DL reasoning systems

Systems are available for reasoning on DL knowledge bases:
• FaCT [University of Manchester]
• Racer [University of Hamburg]

Some remarks on these systems:

• the state-of-the-art DL reasoning systems are based on tableaux
techniques and not on automata techniques
+ easier to implement
− not computationally optimal (NEXPTIME, 2NEXPTIME)

• the systems are highly optimized

• despite the high computational complexity, the performance is surprisingly
good in real world applications:
– knowledge bases with thousands of concepts and hundreds of axioms
– outperform specialized modal logics reasoners

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 30

Identification constraints

Identification constraints (aka keys) are well-studied in

• relational databases

• conceptual data models (Entity-Relationship model, UML class diagrams)

Examples of keys:

• a student is identified by its id,

i.e., no two students have the same id

• a company is identified by its telephone number,

i.e., given a telephone number there is a unique company which owns it

(although a company may own more than one telephone number)

• a person is identified by its name and surname,

i.e., no two persons have the same name and surname

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 31



Keys in ALCQI

Limited forms of keys can be expressed in ALCQI using number restrictions

Examples:

• a student is identified by its id

StudentId v ∀hasId−.Student u (≤ 1 hasId−)

and has a unique id, i.e., the student identifies the id

Student v ∀hasId.StudentId u (= 1 hasId)

• a company is identified by its telephone number

> v (≤ 1 telephone−.Company)

In ALCQI only unary keys can be expressed

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 32

Keys in ALCQIkey

ALCQIkey KBs extend ALCQI KBs by key assertions:

(key C | R1, . . . , Rh)

A key assertion acts as a constraint, rather than denoting a set of objects

Semantics of a key assertion:

no two instances of C agree on the participation to R1, . . . , Rh

. . .

a bC C

o1

Rh RhR1R1

oh

=⇒ a = b

Example: a person is identified by its name and surname

(key Person | name, surname)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 33



Reasoning in ALCQIkey

Important observations:
• ALCQI knowledge bases have the tree-model property
• On tree-models, non-unary keys are trivially satisfied

Theorem: let K be a set of inclusion assertions, and

F be a set of non-unary key assertions

K ∪ F satisfiable iff K satisfiable

Since logical implication of inclusion assertions and concept satisfiability w.r.t.
a KB can be reduced to KB satisfiability, we also have:

C satisfiable w.r.t. K ∪ F iff C satisfiable w.r.t. K

K ∪ F |= C v D iff K |= C v D

; Key assertions do not interact with reasoning on inclusion assertions

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 34

Logical implication of keys in ALCQIkey

To check K ∪ F |= (key C | R1, . . . Rh), reduce it to unsatisfiability of

K ∪ F ∪ A, where A is an ABox violating the key assertion:

. . .

a bC C

o1

Rh RhR1R1

oh

To check satisfiability of K ∪ F ∪ A, it is sufficient to check the key assertions

in F on the objects of the ABox:

1. guess a saturation As of A, i.e., a way of completing the knowledge about

objects in A regarding concepts and roles in F (As is polynomial)

2. check that As satisfies F (polynomial)

3. check that K ∪ A ∪ As is satisfiable (exponential)

; Logical implication in ALCQIkey is EXPTIME-complete

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 35



Reasoning on DL knowledge bases – Lower bounds

We have seen that reasoning on DL knowledge bases can be done in

EXPTIME (e.g., by exploiting automata based techniques)

Are such techniques optimal for DL reasoning?

What is the intrinsic complexity of reasoning on DL knowledge bases?

Theorem: Logical implication in ALC (and hence concept satisfiability w.r.t. an

ALC KB) is EXPTIME-hard

We look at a proof based on encoding the two player corridor tiling problem

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 36

EXPTIME-hardness of ALC (1)

Two player corridor tiling game:

• Tiling system T : finite set of tile types ...

10 k2 3 4

•

n1 2 3 4

1

2

3

...

...

...

... A corridor tiling is a tiling

of a corridor of width n

with tiles of T respecting

adjacency conditions

• ∀lice and ∃lias alternatively place a tile, row by row, from left to right,
respecting adjacency conditions

• ∃lias wins if
– he can place a special “winning tile” in the second position of a row, or
– he can play in such a way that ∀lice can no longer place a tile

(i.e., ∃lias loses if he cannot place a tile, or if the game goes on forever)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 37



EXPTIME-hardness of ALC (2)

Two player corridor tiling problem

Given:

• a tiling system expressed as T = (k, H, V ), where

– 0, 1, . . . , k are the tile types, with k being the winning tile

– H ⊆ [0..k] × [0..k] is the horizontal adjacency relation

– V ⊆ [0..k] × [0..k] is the vertical adjacency relation

• an initial row of tiles t1t2 · · · tn of length n

does ∃lias have a winning strategy?

I.e., for every move ∀lice makes, is there a move ∃lias can counter with in such

a way that he wins?

Two player corridor tiling is EXPTIME-complete

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 38

EXPTIME-hardness of ALC (3)

Encoding of two player corridor tiling in ALC:

• The intention is to represent each placed tile by an object;
the object carries the information about the last n moves made

• We introduce an atomic role next connecting individuals representing
successive tiles

• We introduce the following atomic concepts:
– Rt

i
, one for each i ∈ [1..n] and each t ∈ [0..k], denoting that the last

tile placed in column i has been tile t

– Qi, for i ∈ [1..n], denoting that the next tile will be placed in column i

– A, denoting that it is ∀lice’s turn to place the next tile
– W , denoting that ∃lias wins

• We construct an ALC knowledge base KT as follows

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 39



EXPTIME-hardness of ALC (4)

We introduce in KT the following inclusion assertions to ensure that tilings are
correctly represented:

• To encode that each column has exactly one tile last placed into it:

> v R0
i

t · · · t Rk
i

for i ∈ [1..n]

Rt
i

v ¬Rt′

i
for i ∈ [1..n], t, t′ ∈ [0..k], t 6= t′

• To encode that each move occurs in exactly one column in the corridor:

> v Q1 t · · · t Qn

Qi v ¬Qj for i, j ∈ [1..n], i 6= j

• To encode that the tiles are placed in the correct left-to-right order:

Qi v ∀next .Qi+1 for i ∈ [1..n−1]

Qn v ∀next .Q1

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 40

EXPTIME-hardness of ALC (5)

We introduce in KT the following inclusion assertions to encode the adjacency

conditions:

• To encode the vertical adjacency relation V :

Qi u Rt
i

v ∀next .(
⊔

t′|(t,t′)∈V Rt′

i
) for i ∈ [1..n], t ∈ [0..k]

• To encode the horizontal adjacency relation H:

Qi u Rt
i−1 v ∀next .(

⊔

t′|(t,t′)∈H Rt′

i
) for i ∈ [2..n], t ∈ [0..k]

• To encode that in columns where no move is made nothing changes:

¬Qi u Rt
i

v ∀next .Rt
i

for i ∈ [1..n], t ∈ [0..k]

¬Qi u ¬Rt
i

v ∀next .¬Rt
i

for i ∈ [1..n], t ∈ [0..k]

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 41



EXPTIME-hardness of ALC (6)

We introduce in KT the following inclusion assertions to encode the game:

• To encode the existence of all possible moves in the game tree, provided
∃lias hasn’t already won:

¬Rk
2 u Qi u Rt

i−1 u Rt′

i
v u

t′′ | (t,t′′)∈H ∧ (t′,t′′)∈V
∃next .Rt′′

i

for i ∈ [2..n], t, t′ ∈ [0..k]

• To encode the alternation of moves:

A v ∀next .¬A

¬A v ∀next .A

• To encode the winning of ∃lias:

W ≡ (A u Rk
2) t (A u ∀next .W ) t (¬A u ∃next .W )

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 42

EXPTIME-hardness of ALC (7)

Observations:
• if ∃lias cannot move when it is his turn, then W is false for the object

representing that tile
• if ∀lice can force the game to go on forever, then there will be models of

KT in which W is false

Theorem

∃lias has a winning strategy for tiling system T with initial row t1 · · · tn

iff
KT |= A u Q1 u Rt1

1 u · · · u Rtn

n
v W

The size of KT is polynomial in T and n

; Logical implication in ALC is EXPTIME-hard
; Concept satisfiability w.r.t. an ALC KB is EXPTIME-hard

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 43



Reasoning on DL knowledge bases – Lower bounds (Cont’d)

The lower bound for logical implication in DLs can be strengthened

Theorem: concept satisfiability w.r.t. an AL KB and logical implication in AL

are EXPTIME-hard

Proof: by reducing concept satisfiability w.r.t. an ALC KB in various steps to
concept satisfiability w.r.t. an AL KB:

1. Reduce to satisfiability of an atomic concept w.r.t. a KB with primitive
inclusion assertions only

2. Eliminate nesting of constructs in right hand side by introducing new
assertions

3. Encode away qualified existential quantification

4. Encode away disjunction

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 44

1. Simplify assertions and concept

Reduce to satisfiability of an atomic concept w.r.t. a KB K with primitive

inclusion assertions only:

C satisfiable w.r.t.
⋃

i{ Ci v Di}

iff

AT u C satisfiable w.r.t. { AT v ui(¬Ci t Di) u uP ∀P .AT }

iff

AC satisfiable w.r.t.







AT v ui(¬Ci t Di) u uP ∀P .AT ,

AC v AT u C







with AT and AC new atomic concepts

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 45



2. Eliminate nesting of constructs in right hand side

Proceed as follows:

1. Push negation inside

2. Replace assertions as follows:

A v C1 u C2 ⇒ A v C1, A v C2

A v C1 t C2 ⇒ A v A1 t A2, A1 v C1, A2 v C2

A v ∀P .C ⇒ A v ∀P .A1, A1 v C

A v ∃P .C ⇒ A v ∃P .A1, A1 v C

with A1, A2 new atomic concepts for each replacement

Let K′ be obtained from K by (1) and (2) above. We have

AC satisfiable w.r.t. K iff AC satisfiable w.r.t. K′

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 46

3. Encode away qualified existential quantification

Proceed as follows:

1. For each ∃P .A appearing in K, introduce a new atomic role PA

2. Replace assertions as follows:

A v ∃P .A′ ⇒ A v ∃PA′ u ∀PA′.A′

A v ∀P .A′ ⇒ A v ∀P .A′ u uPAi
∀PAi

.A′

Let K′′ be obtained from K′ by (1) and (2) above. We have

AC satisfiable w.r.t. K′ iff AC satisfiable w.r.t. K′′

; Concept satisfiability w.r.t. a (primitive) ALU KB is EXPTIME-hard

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 47



4. Encode away disjunction

Replace assertions as follows:

A1 v A2 t A3 ⇒ ¬A2 u ¬A3 v ¬A1

The two assertions are logically equivalent

; Concept satisfiability w.r.t. an AL KB is EXPTIME-hard

Concept satisfiability w.r.t. an AL KB can be reduced to logical implication in

AL:

C satisfiable w.r.t. K iff not K |= C v ⊥

; Logical implication in AL is EXPTIME-hard

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 48

Summary on Description Logics

• Description Logics are logics for class-based modeling:

– can be seen as a fragment of FOL with nice computational properties

– tight relationship with Modal Logics and Propositional Dynamic Logics

• For reasoning over concept expressions, tableaux algorithms are optimal

• For most (decidable) DLs, reasoning over KBs is EXPTIME-complete:

– tight upper bounds by automata based techniques

– implemented systems exploit tableaux techniques, are suboptimal, but

perform well in practice

• Techniques can be extended to deal also with key constraints

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 2 49


