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Abstract

Computational Grids process large, computationally intensive prob-
lems on small data sets. In contrast, Data Grids process large computa-
tional problems that in turn require evaluating, mining and producing
large amounts of data. Replication, creating geographically disparate
identical copies of data, is regarded as one of the major optimisation
techniques for reducing data access costs.

In this paper, several replication algorithms are discussed. These
algorithms were studied using the Grid simulator: OptorSim. Optor-
Sim provides a modular framework within which optimisation strate-
gies can be studied under different Grid configurations. The goal is to
explore the stability and transient behaviour of selected optimisation
techniques. We detail the design and implementation of OptorSim and
analyse various replication algorithms based on different Grid work-
loads.

1 Introduction

Within the Grid community much work has been done on providing the basic
infrastructure for a typical Grid environment. Globus [3], Condor [1] and
recently the EU DataGrid [2] have contributed substantially to core Grid



middleware services that are available as the basis for further application
development. However, little effort has been made so far to optimise the use
of Grid resources.

A typical Grid job requires three types of resources: computing facil-
ities, data access and storage, and network connectivity. The Grid must
make scheduling decisions (i.e., decisions about which site is used for job ex-
ecution) for each job based on the current state of these resources (workload
and features of computing facilities, location of data, and network load).
Complete optimisation is achieved when the combined resource impact of
all jobs is minimised, allowing jobs to run as fast as possible.

File replication (i.e. spreading multiple copies of files across the Grid)
is an effective technique for reducing data access overhead. Since the Grid
is a highly dynamic environment, maintaining an optimal distribution of
replicas implies that the Grid optimisation service [6] must be able to modify
the geographic location of data files. This is achieved by triggering both
replication and deletion of data files. By reflecting the dynamic load on the
Grid, such replica management will affect the migration of particular files
toward sites that show increased frequency of file-access requests.

In order to study the complex nature of a typical Grid environment and
evaluate various replica optimisation algorithms, a Grid simulator (called
OptorSim) was developed. In this paper the design concepts of OptorSim are
discussed and preliminary results based on selected replication algorithms
are reported.

The paper is structured as follows. Section 2 describes the design of
the simulator OptorSim. Various replication algorithms are discussed in
Section 3. After setting the simulation configuration in Section 4, Section 5 is
dedicated to a description of simulation results. Section 6 highlights related
work. Finally, Section 7 concludes the paper and reports on future work.

2 Simulation Design

OptorSim is a simulation package written in Java™. It was developed to
mimic the structure of a real Data Grid and study the effectiveness of replica
optimisation algorithms within such an environment.

2.1 Architecture

One of the main design considerations for OptorSim is to model the interac-
tions of the individual Grid components of a running Data Grid as realisti-



cally as possible. Therefore, the simulation is based on the architecture of
the EU DataGrid project [15] as illustrated in Figure 1.
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Figure 1: Simulated DataGrid Architecture.

The simulation was constructed assuming that the Grid consists of sev-
eral sites, each of which may provide computational and data-storage re-
sources for submitted jobs. Each site consists of zero or more Computing
Elements and zero or more Storage Elements. Computing Elements run
jobs, which use the data in files stored on Storage Elements. A Resource
Broker controls the scheduling of jobs to Computing Elements. Sites with-
out Storage or Computing Elements act as network nodes or routers.

Since the Data Grid is a highly dynamic environment, the middleware
should be able to cope with the changes in the status of resources when
performing resource allocation. In particular, the Grid optimisation service
should avoid making a priori irrevocable decisions at job scheduling time
about which file replicas will be used to access data for a particular job.

Therefore, we see optimisation as an ongoing activity, which is performed
at two points in time during the life-time of a job [6]:

1. The first optimisation phase occurs when the Computing Element
where the job should run is chosen.

2. In the second phase optimal Dynamic Replica Selection is achieved
during the run time of a job; in this phase creation of replicas can be
triggered by the optimisation algorithm.



In this paper we consider only optimisation that occurs after a job has
been scheduled to a Computing Element. This allows us to focus on the
performance of replication algorithms under simple conditions. The more
complex scenario of optimising both job scheduling and data access will be
part of future work.

In the EU DataGrid project, the grid optimisation service is called the
Replica Optimiser and it is embedded into a component called the Replica
Manager [12]. The Replica Optimiser makes decisions about data movement
associated with jobs between sites and creation or deletion of replicas. The
properties of the Replica Optimiser are discussed in Section 3.

2.2 Internals

In the simulation each Computing Element is represented by a thread. Job
submission to the Computing Elements is managed by another thread: the
Resource Broker. The execution flow of these threads is shown in Figure 2.
The Resource Broker ensures every Computing Element is continuously run-
ning a job by frequently attempting to distribute jobs to all the Computing
Elements. When the Resource Broker finds an idle Computing Element, it
selects a job to run on it according to the policy of the Computing Element,
i.e. what type of jobs it will run and how often it will run each job.

At any time, a Computing Element will be running at most one job. As
soon as the job finishes, another is assigned by the Resource Broker. So, al-
though there is no explicit job scheduling algorithm, all Computing Elements
process jobs for the duration of the simulation but are never overloaded.

2.2.1 Simulation Input

As input OptorSim uses two configuration files. One file describes the net-
work topology (network links between Grid sites and available bandwidth
for each defined link) and the components of each site (number of Comput-
ing and Storage Elements, as well as their sizes). The second configuration
file contains information on the simulated jobs, in particular the logical file
names of the files they need to access while executing. Two types of refer-
ences may be used for a file: a logical file name (LFN) and a physical file
name (PFN). An LFN is an abstract reference to a file that is independent
of both where the file is stored and how many replicas exist. A PFN refers
to a specific replica of some LFN, located at a definite site. Each LFN has
related PFNs corresponding to each replica in the Grid.
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Figure 2: Execution flows of the Resource Broker and Computing Element
threads.

2.2.2 Access Patterns

A job will typically request a set of LFNs for data access. The order in
which those files are requested is determined by the access pattern. The
following access patterns were considered (examples of which are shown in
Figure 3): sequential (the set of LFNs is ordered, forming a list of successive
requests), random (files are selected randomly from a set with a flat proba-
bility distribution), unitary random walk (set is ordered and successive file
requests are exactly one element away from the previous file request, direc-
tion is random) and Gaussian random walk (as with unitary random walk,
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Figure 3: Example access patterns for a job containing 10 files: (a) sequen-
tial, (b) random, (c) unitary random walk, (d) Gaussian random walk.

but files are selected from a Gaussian distribution centred on the previous
file request).

Using the sequential access pattern every file in the job will be accessed
in the order stated in the job definition. For all other access patterns any
file in the job can be accessed zero or many times. However, the number of
file requests always corresponds to the number of files requests in the job
description. For example, Figure 3(c) shows a unitary random walk access
pattern. In this case, the job requests 10 files so 10 requests were made in
total. The first file was randomly selected as the sixth in the list of possible



files. The next file had an equal probability of being file 5 or file 7. As 5 was
chosen, the next file had an equal probability of being file 4 or file 6 etc. In
this example, the job requested file 3 four times whereas files 1, 7, 8, 9, and
10 were never requested.

2.2.3 Optimisation Function

When a file is requested by a job, the LFN is used to locate the best repl-
ica via the Replica Optimiser function getBestFile(LFN, destinationStorage-
Element), where destinationStorageElement is the Storage Element to which
the replica may be copied. It is assumed the Computing Element on which
the job is running and requested Storage Element, i.e. the destination Stor-
age Element, are located at the same site.

The function getBestFile() checks the Replica Catalogue for copies of
the file. The Replica Catalogue is a Grid middleware service [11] currently
implemented within the simulation as a table of LFNs and all corresponding
PFNs. By examining the available bandwidth between destinationStorage-
FElement and all sites on which a replica of the file is stored, getBestFile()
chooses the PFN that will be accessed fastest and hence decrease the job
running time.

The simulated version of getBestFile() partially fulfills the functionality
as described in [6]. It is a blocking call that may cause replication to a
Storage Element located in the site where the job is running. After any
replication has completed, the PFN of the best available replica is returned
to the job. If replication has not occurred, the best replica is located on a
remote site and is accessed by the job using remote I/0.

Both the replication time (if replication occurs) and the file access time
(if from a remote site) are dependent on the network characteristics over
the duration of the connection. At any time, the bandwidth available to
a transfer is limited by the lowest bandwidth along the transfer path. For
transfers utilising a common network element, the bandwidth of that element
is shared so each transfer receives an equal share.

Currently OptorSim does not model the job execution, i.e. the processing
of the files by the Computing Element, but only the file transfers required
by the job. This is because the processing of the files does not directly affect
the replica optimisation process. However, as part of our future work, we
will extend OptorSim to simulate both Computing Elements and additional
network traffic.



2.2.4 Statistics

OptorSim provides various execution statistics such as job duration and the
progression of job duration over the course of the simulation. OptorSim also
provides a histogram management package and a GUI that is dynamically
updated during job execution (Figure 4).

Figure 4: Screen-shot of the OptorSim GUI.

2.2.5 Modular Design Approach

OptorSim is designed in a modular way which makes it easy to plug in various
access pattern generators for workload simulation (see Figure 5) and various
optimisation algorithms (see Figure 6). Currently OptorSim provides the
access patterns as discussed in this section. The optimisation algorithms of
OptorSim are detailed in Section 3.

3 Optimisation Algorithms

Replica optimisation algorithms are the core of the Replica Optimiser. Over
the duration of a submitted job, PFNs for each LFN are requested by calling
getBestFile(). Optimisation algorithms implement getBestFile() so that it
may copy the requested file from the remote site to a Storage Element on the
same site as the requesting Computing Element if the optimisation algorithm
deems it to be worthwhile. If all Storage Elements on this site are full then
a file must be deleted for the replication to succeed.
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The strategy used to decide whether to replicate and if so which file
should be deleted differentiates optimisation algorithms. In the following,
we briefly present three simple algorithms (two of which are based on tradi-
tional cache replacement algorithms) and a more sophisticated one in greater
detail. These algorithms have been implemented into OptorSim.



3.1 Simple Algorithms
3.1.1 No replication

This algorithm never replicates a file. The distribution of initial file replicas
is decided at the beginning of the simulation and does not change during
its execution. This algorithm returns the PFN with the fastest access time.
Since the network load varies during the simulation, the optimal PFN may
change.

3.1.2 Unconditional replication, oldest file deleted

This algorithm always replicates a file to the site where the job is executing.
If there is no space to accommodate the replication, the oldest file in the
Storage Element is deleted.

3.1.3 Unconditional replication, least accessed file deleted

This algorithms behaves as the previous method, except the least accessed
file in the past time interval ét is deleted.

3.2 An Economic Approach

This section presents a replication strategy based on an economic model for
Grid resource optimisation. A general description of this economic approach
can be found in [9].

The economic model we propose includes actors (autonomous goal-seeking
entities) and the resources in the Grid. Optimisation is achieved via inter-
action of the actors in the model, whose goals are maximising the profits
and minimising the costs of data resource management. Data files represent
the goods in the market. They are purchased by Computing Elements for
jobs and by Storage Elements in order to make an investment that will im-
prove their revenues in the future. They are sold by Storage Elements to
Computing Elements and to other Storage Elements. Computing Elements
try to minimise file purchase cost, while Storage Elements have the goal of
maximising profits.

This economic model is utilised in deciding if replication should occur
and in the selection of the expendable file(s) when creating space for a new
replica. This mechanism is described in the following section.
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3.2.1 Replication Decision

Within our economic model the Replica Optimiser needs to make an in-
formed decision about whether it should replicate a file to a local Storage
Element. This decision is based on whether the replication (with associ-
ated file transfer and file deletion) will result in maximising the profit of the
Storage Element.

In order to make this decision, in [9] we propose that the Replica Opti-
miser keeps track of the file requests it receives and uses this history as input
to an evaluation function. This functions returns the predicted revenue that
a Storage Element will earn for a file over a time window in the future based
on the income it has recently earned for that and similar files. While eval-
uating a file that is not locally stored, the function takes into consideration
the cost of local replication of the file.

Currently in OptorSim we use a simplified version of the evaluation func-
tion E(f,r,n). It returns the predicted number of times a file f will be
requested in the next n requests based on the past r requests in the history.

After any new file request is received by the Replica Optimiser (say, for
file f), the prediction function F is calculated for f and every file in the
storage. If there is no file in the Storage Element that has a value less than
the value of f then no replication occurs. Otherwise, the least valuable file
is selected for deletion and a new replica of f is created on the Storage
Element. If multiple files on the Storage Element share the minimum value,
the file having the earliest last access time is deleted.

The evaluation function E(f,r,n) is defined by the equation

n

E(f,r,n) :Zpl(f)’ (1)

i=1

with the following argument. Assuming that requests for files containing
similar data are clustered in spatial and time locality, the request history
can be described as a random walk (see Figure 7) in the space of integer
file identifiers'. In the random walk, the identifier of the next requested file
is obtained from the current identifier by the addition of a step, the value
of which is given by some probability distribution. Assuming a symmetric
binomial distribution of the steps, the random variable f, representing the
file identifier requested at a generic step of the random walk, has also a sym-
metric binomial distribution. Thus, the probability of receiving a request

'We assume a mapping between file names and identifiers that preserve file content
similarity.
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Figure 7: File access history as a random-walk in space { f} of file identifiers.

for file f at step ¢ of the random walk is given by the equation

nilf) = 535 (id( f 2_“?-“5) ) -f<is @
where f is the mean value of the binomial distribution, S is the maximum
value for every single step in the random walk, and id(f) is a unique file
identifier. Then, the most probable number of times file f will be requested
during the next n requests is given by (1).

A time interval §t describes how far back the history goes and thus
determines the number r of previous requests which are considered in the
prediction function. We assume that the mean arrival rate of requests is
constant. Once dt has been decided, n is obtained by

n= TE (3)

where 6t is the future interval for which we intend to do the prediction.

The value for S in (2) depends on the value of r. In fact, it can be
estimated on the basis of the past, taking into account the variance of the
distribution of the last r file requests. The mean value f is obtained from
the recent values in the random walk of the file identifiers. In particular, f is
calculated as the weighted average of the last r file requests, where weights
decrease over past time.

12



4 Simulation Configuration

4.1 Grid Configuration

The study of optimisation algorithms was carried out using a model of EU
DataGrid Testbed 1 sites and their associated network geometry as illus-
trated in Figure 8. Within this model, each site was allocated storage re-
sources proportional to their actual hardware allocations. Each Testbed site,
excluding CERN, was assigned a Computing and Storage Element. CERN
was allocated a Storage Element to hold all of the master files? but was
not assigned a Computing Element. Routers, as previously stated, were de-
scribed by creating a site without Computing or Storage Elements. The size
of the Storage Elements for each Testbed site are given in Table 1.

155M CERN

Lyon
Mila

Testbed site

H]]] Router

Torino

Catania

Figure 8: The EU DataGrid Testbed 1 sites and the approximate network
geometry. The numbers indicate the bandwidth between two sites in Mbits/s
(M) or Gbit/s (G).

2 A master file contains the original copy of some data sample and cannot be deleted.
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Site Name || Bologna | Catania | CERN | Imperial College | Lyon
Size (GB) 30 30 10000 80 50

Site Name || Milano | NIKHEF | NorduGrid | Padova | RAL | Torino
Size (GB) 50 70 63 50 50 50

Table 1: A list of Storage Element resources allocated to the Testbed 1 sites,
from which the results in this paper were generated. The size of Storage
Elements are in GigaBytes.

4.2 Job Configuration

Initially, all files were placed on the CERN Storage Element. Jobs were
based on the CDF use-case as described in [13]. There were six job types,
with no overlap between the set of files each job accessed. The total size of
the file accessed by any job type were estimated in [13] and are summarised
in Table 2. Each set of files was assumed to be composed of 1GByte files.

There will be some distribution of jobs each site performs. In the simula-
tion, we modelled this distribution such that each site ran an equal number
of jobs of each type except for a preferred job type, which ran twice as often.
This job type was chosen for each site based on storage considerations; for
the replication algorithms to be effective, the local storage on each site had
to be able to hold all the files for the preferred job type.

Data Sample Total Size (GB)
Central J/v 10
High p; leptons 2
Inclusive electrons 50
Inclusive muons 14
High E; photons 58
Z% — bb 6

Table 2: Estimated sizes of CDF secondary data sets (from [13]).

14
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5 Results

In this section we first show the behaviour of various jobs over the run time
of the simulation. Next, we study the impact of different access patterns
(work loads) on the performance of the optimisation algorithms presented
in Section 3.

The left histogram in Figure 9 shows a typical spread of job duration
for a single job type at a selected Computing Element over the course of a
simulation run. There were one thousand jobs under consideration, evalu-
ating the economic model’s performance with the sequential access pattern.
The large spike near zero is due to the job requesting files that are available
on the local site, hence no time-consuming file transfers need to take place.
The longer durations are due to the job requesting some files not present at
the local site. The spread is due to the network load, which can vary over
time, affecting the file transfer times.

The variation of job duration over the simulation is shown in the right
histogram in Figure 9 for the same job type and Computing Element as
above. There is clearly a large variation in the job duration due to the
factors already mentioned, but the general trend is for jobs to be executed
more quickly over time, indicating the movement toward a more optimal
replica configuration.

Further tests were conducted simulating 10000 jobs using each of the

15
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Figure 10: Integrated running times for 10000 jobs using each access pattern
and replica optimisation algorithm.

four optimisation algorithms:
1. No replication
2. Unconditional replication, oldest file deleted
3. Unconditional replication, least accessed file deleted
4. Economic Model

For each replication algorithm, each of the following four file access pat-
terns (as defined in Section 2.2) was tested.

1. Sequential
2. Random
3. Unitary random walk

4. Gaussian random walk

Figure 10 shows the total time to complete 10000 jobs for each of the
four access patterns using the four optimisation algorithms.

With no optimisation, the jobs take much longer than even the simplest
optimisation algorithm as all the files for every job have to be transferred
from CERN every time a job is run.
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The three algorithms where replication is conducted all show a marked
reduction in the time to execute 10000 jobs. They show similar performance
for Random, Unitary random walk and Gaussian random walk.

For sequential access patterns, the total job execution time is at least
10% faster using the Economic Model algorithm than the other algorithms.
This result was expected as the Economic Model assumes a sequential access
pattern in its estimation of file values.

The performance of the Economic Model algorithm is roughly equal to
that of the others for non-sequential access patterns. These access patterns
result in a poorer estimation of the future file values, but the prediction
function discussed in Section 3.2.1 can be adjusted to match the observed
distribution, if needed. This will be part of our future work.

6 Related Work

Recently there has been great interest in modelling Data Grid environments.
A simulator for modelling complex data access patterns of concurrent users
in a distributed system is found in [14]. These studies were mainly conducted
within the setting of scientific experiments such as the LHC, which finally
resulted in the creation of the EU DataGrid Project [2].

MicroGrid [19] is a simulation tool for designing and evaluating Grid
middleware, applications and network services for the computational Grid.
Currently, this simulator does not take data management issues into consid-
eration. Further Grid simulators are presented in [10, 5].

In [18] an approach is proposed for automatically creating replicas in
a typical decentralised Peer-to-Peer network. The goal is to create a cer-
tain number of replicas on a given site in order to guarantee some minimal
availability requirements.

In Nimrod-G [8, 4] an economic model for job scheduling is introduced
in where “Grid credits” are assigned to users that are proportional to their
level of priority. In this model, optimisation is achieved at the scheduling
stage of a job. However, our approach differs by including both optimal
replica selection and automated replica creation in addition to scheduling-
stage optimisation.

Various replication and caching strategies within a simulated Grid en-
vironment are discussed in [16] and their combination with scheduling al-
gorithms is studied in [17]. The replication algorithms proposed are based
on the assumption that popular files in one site are also popular in other
sites. Replication from one site to another is triggered when the popular-

17



ity of a file overcomes a threshold and the destination site is chosen either
randomly or by selecting the least loaded site. We take a complementary
approach. Our replication algorithms are used by Grid sites when they need
data locally and are based on the assumption that in computational Grids
there are areas (so called “data hot-spots”) where particular sets of data
are highly requested. Our algorithms have been designed to move data files
toward “data hot-spots”.

7 Conclusions and Future Work

In this paper we described the design and implementation of the Grid simu-
lator OptorSim. In particular, OptorSim allows the analysis of various repli-
cation algorithms. The goal is to evaluate the impact of the choice of an
algorithm on the throughput of typical Grid jobs. We have chosen a simple
remote access heuristic and two traditional cache replacement algorithms
(oldest file deletion and least accessed file deletion). We then compared
these algorithms to a novel algorithm based on an economic model.

We based our analysis on several Grid scenarios with various work loads.
Results obtained from OptorSim suggest that the economic model performs
at least as well as traditional methods. In addition, there are specific realistic
cases where the economic model shows marked performance improvements.

In [7] we present an extended version of our economic model that includes
an auction protocol. This is used to perform optimal replica selection and
to achieve automatic replication to third-party sites. Future work will in-
clude the extensive testing of this additional functionality and evaluating
the accuracy to which it migrates files to match demand.
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