
An Agent-Based Prototype for
Freight Trains Traffic Management

Alessio Cuppari(1) Pier Luigi Guida(1)

Maurizio Martelli(2) Viviana Mascardi(2) Floriano Zini(2)

(1) Sistemi Informativi, Divisione Infrastrutture - FS S.p.A
P.zza Croce Rossa 1, 00161 Roma, Italy

cuppari@disi.unige.it

pierluigi.guida@guidafs.inet.it

(2) D.I.S.I. - Università di Genova
Via Dodecaneso 35, 16146 Genova, Italy
{martelli,mascardi,zini}@disi.unige.it

Abstract. The increasing amount of train traffic highlights the neces-
sity of automated tools for decision support, mainly when the availabil-
ity of tracks is known on a day-by-day basis and no long-term schedules
can be made. The paper describes the use of CaseLP, a logic program-
ming based environment for developing multi-agent system prototypes,
to face the management of freight trains traffic between the Italian sta-
tions of Milano and La Spezia. This real case-study, developed within the
framework of the EuROPE-TRIS Project [6], has been chosen for evalu-
ating the benefits of prototyping and testing a decision support system
following an agent-based approach. The choice of a logic programming
paradigm as the basis for the prototyping environment is motivated and
compared with other existing solutions.

1 Introduction

The increasing demand of short-term train schedules by Transport Operators
highlights the necessity of automated tools for train traffic decision support.
When the number of trains running on a railway line and the availability of
tracks are known on a day-by-day basis, decision support systems can help in
maximizing the demand granting and optimizing the traffic flow.

The railway line connecting Milano and La Spezia yards is strongly charac-
terized by short-term train scheduling: La Spezia train traffic flow depends on a
great number of variables, such as the average number of trains that La Spezia
yard will contain, the average train flow from the yard to the port terminals
and the number of loading authorizations already granted for a certain day. The
possibility of delivering a new train on the Milano - La Spezia line depends both
on local congestion indexes of railway sections and on global information about
the train traffic situation. Coordination and cooperation between the involved
entities is necessary to reach an agreement on granting the authorization to a
loading or the permission of delivering a train on the main railway line.

In this complex scenario the adoption of some decision support mechanism
can prove useful: the paper describes an agent-based approach for modeling the
application, developing a working prototype, testing and refining it against the
problem requirements. A real implementation of the prototype can be used as
an effective decision support tool.

The environment used to develop the freight train traffic management appli-
cation is CaseLP [12], a Complex Application Specification Environment based on
Logic Programming. CaseLP provides the user with tools for specifying, imple-
menting and testing multi-agent system (MAS) prototypes and with a method
for facing these three steps.

The structure of the paper is the following: Section 2 introduces our proto-
typing environment and the method for developing a working prototype. Section
3 introduces our case study and shows how it has been prototyped using CaseLP.
Finally, Section 4 presents some final considerations on related works and future
directions of our research.

2 CaseLP, a tool for multi-agent systems prototyping

CaseLP is a framework for rapid prototyping of agent-based software applica-
tions. It is built upon the logic programming language ECLiPSe [1]. The envi-
ronment provides both an iterative method for specification, implementation,
execution and testing of MAS-based prototypes, and a set of tools that are used
for this aim. The method allows the application developer to build the prototype
following a sequence of clear steps, refining it against the client’s requirements.

In CaseLP there are two kinds of agents, logical agents and interface agents.
The former ones provide control and coordination among MAS components
thanks to their complex reasoning capabilities. The latter ones provide an inter-
face between external modules and the agents in the MAS. The final prototype
can be built by combining existing software modules and new components. This
approach furthers software integration and reusing, two aspects that are highly
relevant for the success of new software engineering technologies.

CaseLP agents are characterized by a purely reactive, purely proactive or hy-
brid architecture. In the same MAS agents of different kinds (logical or interface)
and with different architectures may coexist, thus allowing a great flexibility in
the prototype definition. However, for the sake of this paper, only purely reactive
and proactive agents are considered.

All the agents share some main components: an updatable set of beliefs defin-
ing the agent’s state, a mail-box for incoming messages and a fixed set of rules
that defines the behavior. Reactive behavior is given by event-condition-action
rules, whereas proactive behavior is given by means of condition-action rules.
Reactive interface agents embed an interpreter for accessing external software.
Agents communicate via point-to-point asynchronous message passing. Agents’
goals are not explicitly represented in their state: what the agents aim at is im-
plicitly coded into the reactive or proactive behavior they are given. This means
that agents reason about how they can achieve some hard-wired goal and not

about which goal is more convenient for them in a certain situation. In some
sense, they have a constrained, problem-oriented autonomy.

The proposed prototyping method is fully described in [5]. Below, a 5-steps
simplified version of it is presented. The final goal is an environment that provides
automatic tools to perform each step. Already available tools are described in
Section 2.2.

2.1 Prototyping method

The first stage in any prototyping method is the requirements gathering. To
begin with, the client may describe the application features and the requirements
of the final prototype in natural language, and after this phase a more formal
prototyping method can be used. The method can be summarized as follows:

1. Static description of the application architecture. In this step the
developer defines:
– the classes of agents that the application needs: their kind, architecture,

interpreters (for interface agents) and required and provided services;
– the instances of each class that will form the MAS;
– the interconnections between agents, that is, how a service provided by

an agent is linked to a service required by another agent. Some agents
can export services to “entities”, either humans or other agencies, that
are external to the MAS under construction. Furthermore, agents in the
MAS can import external services.

2. Description of communication between agents. Each provided or re-
quested service needs a specific conversation between the agent that provides
the service and the one that requires it. This step allows to specify the se-
quence of exchanged messages, as well as their content. Some conversation
can start some other (sub)conversation. For example, imagine agent a, re-
quested for a service by agent b, that has to require an accessory service
to agent c, in order to reply to agent b. Such situations are properly cap-
tured defining a relation sc (sub-conversation) between conversations. The
conversation model of the MAS includes the set of all conversations and the
relation sc.

3. Description of initial state and behavior. This step sets the initial
beliefs of the agents in the MAS. Furthermore, each reactive agent is given
a behavior expressed by event-condition-actions reactive rules. This step
takes into consideration the conversation model defined in step 2. For each
message (event) received by an agent, the appropriate behavior is given.
Each rule tells the agent what to do when a particular message is received
and condition is satisfied. For proactive agents, behavior is given instead by
condition-action rules: depending on its internal state, the agent performs
the appropriate actions.

4. Prototype implementation. In this step the MAS prototype is built: each
agent is implemented as an ECLiPSe module. This module is obtained from
the specification given in the previous steps. This step allows integration of
external software modules.

5. Execution and testing. The obtained prototype is tested using the CaseLP
Simulator. The developer can choose which events (communication events or
state updates) have to be visualized. The CaseLP Visualizer permits both
on-line and off-line visualization of the MAS execution.

2.2 Prototyping tools

MAS-adl: a simple architectural description language. In the first step
of the method MAS-adl, a simple, customized, architectural description language
[11] for MAS, is adopted. The syntax for MAS-adl is sketched below:

AgentClassDef ::= agentclass AgentClassName {ClassDef}
ClassDef ::= LogicalAgentDef | InterfaceAgentDef
LogicalAgentDef ::= kind: logical; architecture: reactive | proactive;

RequiredAndProvidedServices

InterfaceAgentDef ::= kind: interface; architecture: reactive;

interpreters: InterpretersList; RequiredAndProvidedServices

RequiredAndProvidedServices ::= requires ServicesList; provides ServicesList;

import ServicesList; export ServicesList;

AgentInstancesDef ::= agentInstances {AgentInstDefList }
AgentInstDef ::= NumberOfInstances AgentName AgentClassName

LinksDef ::= link { LinkList}
Link ::= OneToOneLink | OneToManyLink | ManyToOneLink

OneToOneLink ::= AgentNameAndService ← AgentNameAndService

OneToManyLink ::= AgentNameAndServiceList ← AgentNameAndService

ManyToOneLink ::= AgentNameAndService ← AgentNameAndServiceList

AgentNameAndService ::= AgentName.Service | AgentName*.Service

MAS-adl describes three main constructs: AgentClassDef defines the classes of
agents used in the MAS under construction; AgentInstancesDef defines the in-
stances of classes previously defined i.e., the agents that constitute the MAS;
LinksDef defines the directed links between instances of agents, from a service
provided by an agent to a service required by another agent. Obviously, links for
exported or imported services are not defined. AgentClassName and AgentName
are strings of characters. InterpretersList is a list of interpreters, each for any
external domain to which the agent is interfaced. The interpretation approach
to software integration [9] has been followed. Service is one of the services that
have been individuated for the application, as defined in its ontology1.

Tools for conversation model. The second step of the method describes the
conversation model of the MAS. The agent communication language is a subset
of KQML[13]. The conversation model is defined by choosing, for each service,

1 All agents share a single domain ontology. Due to space constraints, in the case study
in Section 3, it will be left implicit.

the sequence of messages (conversation), as well as their performative and the
content of each message. The content language is a set of ECLiPSe terms that
are part of the application ontology. A relation sc defines which conversations
eventually start during other conversations. Let c1 = {m1, . . . ,mk} be a con-
versation composed by messages m1, . . . ,mk and let c2 be another conversation.
c1scmic2 denotes that c2 must start after message mi in c1 has been handled by
the receiving agent. c1sc?mic2 denotes that c2 eventually starts after message mi

has been handled by the receiving agent. In the latter case, the decision about
starting c2 is up to the receiving agent.

ACLPL. The third step of the given method defines agents behavior and their
initial state. The code for an agent is structured in three parts. They express re-
spectively the initial set the agent’s beliefs, the set of reactive or proactive rules
defining its behavior and a set of auxiliary procedures. The language used in this
step is ACLPL, whose syntax, limited to agent behaviour, is sketched below.

Behavior ::= behavior ReactiveRulesList | ProactiveRulesList endbehaviour
ReactiveRulesList ::= ReactiveRule | ReactiveRule; ReactiveRulesList
ReactiveRule ::= on message Msg check Condition do ActionsList

Msg ::= Performative { content: Content; sender: Sender; receiver: Receiver; }
Condition ::= StateCondition and AuxiliaryCondition

StateCondition ::= true | Goal
AuxiliaryCondition ::= true | Goal
Goal ::= A | A and Goal | A or Goal

ProactiveRulesList ::= ProactiveRule | ProactiveRule; ProactiveRulesList
ProactiveRule ::= check Condition do ActionsList

Action ::= assert state(Belief) | retract state(Belief) | send(Msg, Receiver) |
send(Msg, Receiver, high priority)

The initial state of an agent is a (possibly empty) set of beliefs. A belief is
an atomic ground formula. A reactive rule is fired by a message taken from the
agent’s mail-box, and if the condition is satisfied, corresponding actions are ex-
ecuted. Condition is actually formed by two distinct conditions. The former is
about the agent state, and expresses what the agent has to believe in order to
execute a sequence of actions. The latter is an auxiliary condition, and is actu-
ally a set of calls to auxiliary procedures. If these calls succeed, the auxiliary
condition is satisfied and the sequence of actions is then executed. Single actions
can be either state updates or messages sending. An auxiliary procedure is either
an ECLiPSe clause defined in the agent code, or a built-in ECLiPSe procedure.
assert state and retract state perform the update of the set of agent beliefs. Their
semantics assure that the previous state is restored if the execution of some ac-
tions fails. The same happens with send: a message is effectively sent only if the
execution of the actions succeeds.

It has to be noted that the same behavior can be re-used for all the agent in
a same class, even if they have different initial states. In such a way, it can be
defined only once.

Architectural task control. When the prototype is being implemented, in
step 4 of the method, each agent is given a particular task control. According
to its architecture, reactive or proactive, a different meta-interpreter is used as
execution engine of the code of the agent. The task control can include sev-
eral execution policies, for example selection of which fired rules are actually
executed.

CaseLP Simulator and Visualizer. Execution and visualization of the MAS
are performed in step 5 of the method by the CaseLP Simulator and Visualizer.
Visualization provides documentation about events that happen at the agent
level during MAS execution. According to the developer needs, the code of the
agents is automatically instrumented. Instrumentation adds probes to agents
code; events related to state changes and/or exchanged messages can be recorded
and collected for on-line and/or off-line visualization.

The CaseLP Simulator is based on a round-robin scheduler that activates
in turn all the agent in the MAS. In order to execute the MAS, the system
user initializes some agent mail-boxes, and then simulation starts. During the
simulation, views related to instrumented agents are shown. At the end of the
simulation a more complete trace of all the instrumented events can be visual-
ized. Instrumentation is completely independent from execution. This will not
influence a possible future change of the execution support.

3 The case-study: freight trains traffic management

This section describes a prototype developed to study the freight trains traffic
management along the railway line connecting the Italian stations of Milano
and La Spezia. This demonstrator aims to be a base-line for a decision support
system for Train Dispatching to be supplied to the Traffic Co-ordinator in Milano
(COIM) and the Production Deputy in La Spezia (yard operative manager).
The case-study has been developed within the framework of the EuROPE-TRIS
Project [6], as a result of the co-operation between the Information Systems
Division of Italian Railways and the Computer Science Department of Genova
University.

3.1 Problem description

Line model. The railway line connecting Milano and La Spezia is formed by
three main sections, named S1, S2, S3. Sections are delimited by nodes, respec-
tively Voghera, Arquata and Genova, that are accessed by minor lines serving
several container terminals (see Figure 1).

Fig. 1. Railway line connecting Milano and La Spezia.

System actors. The following real entities operate in this scenario: T[v,a,g]x

is a container terminal operating inside the railway network. It is connected to
the node [V oghera,Arquata,Genova] via a minor line. COIM is the line traffic
manager, responsible for train dispatching on the overall line. Production Deputy
of La Spezia (PD) manages trains arrival, recovery and departure operations in
La Spezia yards. Section Traffic Co-ordinator (STCi) is responsible for train
dispatching on line section Si.

Management of wagons loading authorization (LA) requests. The load-
ing operation of train wagons directed to La Spezia is performed in a terminal,
and has to be authorized by PD in La Spezia. The requesting terminal sends
to COIM the LA request; the COIM updates the congestion index (number
of trains per Km) of the concerned section in the indicated date, assuming the
granting of the LA. If the new index is greater than the maximum limit, the
COIM tells the terminal the request has been refused; otherwise, the COIM
transmits the request to the PD.

PD grants or refuses a LA request based on: average number of trains that
La Spezia yard will contain at wagons arrival date; average train flow from the
yard to the port terminals; number of LAs already granted for the requested
date.

Train dispatching authorization. A terminal asks its STC for dispatching
a train along the main railway. The generic STCi knows the congestion index
of his section. The decision concerning the running of the train is based on the
comparison between such index and a maximum limit value: if this value is not
overcome, the train is sent and the congestion index of section Si is updated.
Otherwise, the decision is delegated to COIM, that is asked by STCi. COIM
knows the congestion indexes of all the line sections; the decision rule is based on
the comparison between the average of these indexes and a reference parameter:
only if this value is not overcome, the train is sent and the congestion index of
section Si is updated.

Model Assumptions. In order to realize the prototype, some assumptions
have been made. Furthermore, some constraints related to actual structure of
the railway has been taken into consideration. The system time-frame (day) is
divided into four time bands, each elapsing six hours. Train progress between
two different nodes is managed at the end of each band. Infrastructures in La
Spezia are limited. The prototype considers only one yard, having the capacity
(i.e., number of tracks) of all the real yards of La Spezia. Average wagon flow
from La Spezia yards to the port terminals is considered, as well as train arrival
forecasts in La Spezia. It is assumed that each node has infinite capacity i.e., it
can contain an infinite number of trains.

3.2 Prototype realization

An agent based approach certainly suits the realization of a prototype for the
problem described above. This description can be seen as an informal modeling
of the services that the prototype has to provide, as well as a suggestion about
the architectural structure of the MAS. In the following, we show how the CaseLP
method has been used for the realization of a working prototype.

Static description of the application architecture. Below the architec-
tural description of the case study, given by using MAS-adl, is depicted.

agentclass Terminal { agentclass Coim {

kind: logical; kind: logical;

architecture: reactive; architecture: reactive;

requires: loading_auth, requires: port_loading_auth,

disp_auth; sent_train_notification;

provides: nil;} provides: global_disp_auth,

loading_auth;}

agentclass ProdDep { agentclass Section {

kind: logical; kind: logical;

architecture: reactive; architecture: reactive;

requires: nil; requires: global_disp_auth,

provides: port_loading_auth;} system_time,

list_of_trains;

provides: disp_auth,

list_of_trains,

sent_train_notification;}

agentclass Timer { agentInstances {

kind: logical; 2 terminal Terminal;

architecture: proactive; 1 coim Coim;

requires: nil; 1 pr_deputy ProdDep;

provides: system_time;} 3 section Section;

1 timer Timer;}

link {

terminal*.loading_auth <- coim.loading_auth;

terminal*.disp_auth <- section1.disp_auth;

coim.port_loading_auth <- pr_deputy.port_loading_auth;

coim.sent_train_notification <- section*.sent_train_notification;

section*.global_disp_auth <- coim.global_disp_auth;

section*.system_time <- timer.system_time;

section2.list_of_trains <- section1.list_of_trains

section3.list_of_trains <- section2.list_of_trains;}

Five classes and eight instances of agents are defined. Four classes correspond
to the four system actors previously described and define logical reactive agents.
The fifth class defines logical agents that proactively check the system time
and inform section agents when a time band is elapsed, in such a way they
can manage train progress between sections. The prototype does non interact
with external entities, so export and import fields have been omitted. Services
and links specification reflect the informal description of the problem previously
illustrated. Furthermore, links define communication channels among agents.
All the service names are self explanatory, apart from sent train notification
and list of trains. The former allows a section agent to inform COIM about the
sending of a recovered train at the end of a time band. The latter permits a
section agent to inform the following agent about a list of trains entering its
section when the time band changes.

Description of communication between agents. A sample of the conver-
sation model of the MAS is shown below. For each previously defined link, a
conversation is given (only two of them are presented here). Furthermore, the
conversation model defines relation sc on conversations.

Conversation c1 (terminal*.loading_auth <-- coim.loading_auth)

1) Message: terminal --> coim

Performative: ask

Content: la_request(section(S),terminal(Term),train(Tr),date(D))

2) Message: coim --> terminal

Performative: reply

Content: request(la(section(S),terminal(Term),train(Tr),date(D)), Answer)

Conversation c2 (coim.port_loading_auth <-- pr_deputy.port_loading_auth)

1) Message: coim --> pr_deputy

Performative: ask

Content: la_request(section(S),terminal(Term),train(Tr),date(D))

2) Message: pr_deputy --> coim

Performative: reply

Content: request(la(section(S),terminal(Term),train(Tr), date(Date)), Answer)

Relation sc: c1 sc?_m1 c2

Agent initial state and behavior Finally, part of the ACLPL code for COIM
behavior is presented below. Some abbreviations are used for messages, the initial
state is not shown. The code for the other agents in the system has a similar
form.

on message ask(content(la_request(...)),sender(Terminal),)

check

congest_limit(Section, Date, Limit) and

new_congestion_index_la(Section, Date, Index) and

Index > Limit

do send(reply(content(request(la(...)),refused)),Terminal)

on message ask(content(la_request(...)),sender(Terminal),)

check

congest_limit(Section, Date, Limit) and

new_congestion_index_la(Section, Date, Index) and

Index <= Limit

do send(ask(content(la_request(...))),pr_deputy,high_priority)

on message ask(content(send_the_train(...)),sender(Section))

check

medium_limit(Medium_limit) and

congest_index(Section, Date, Hour, Index) and

count_medium_index(Section, Date, Hour, Index, Medium) and

(Medium >= Medium_limit and Response == refused or

Medium < Medium_limit and Response == granted)

do send(reply(content(permission(send_the_train(...),Response))),Section)

Execution and Testing. The final result of this project will be a decision
support system. Thus the test of the prototype has been carried out running the
system with various initial configurations and inputs. The resulting behavior
was satisfactory. However it is too lengthy, here, to describe and give details of
these runs. To give an idea of the used visualization tool Figure 2 is shown. It
presents off-line visualization of the execution of the MAS defined in the previous
steps. It shows how concurrent LA have been managed by the MAS. For each
instrumented agent, both exchanged messages and state updates are depicted.

4 Discussion and future work

The tools and the methodology constituting CaseLP represent an agent-based
approach to software prototyping.

The potential of such an approach has been demonstrated by the adoption
of a MAS-based prototyping technology in the freight traffic management field.
The developed prototype has been successfully presented to Project Officers in
January, 21th, 1999, during the official Project Demonstration Phase [6]. During
the next stages of the Project it will be integrated with other tools developed in
the above mentioned project to give birth to an overall prototype.

Fig. 2. Case study: off-line trace of execution.

The prototyping approach represents a software engineering paradigm more
flexible than the classical waterfall model. As it is well-known, the waterfall model
lacks of support for requirements refining during the product development. In-
stead, the prototype serves as a mechanism for identifying software requirements
and its life-cycle leaves room for an iterative tuning of the initial choices. A soft-
ware prototype is generally a simplified and/or not very efficient version of an end
product which can be realized using more formal, even if less efficient, technolo-
gies. A logic-based formalisms has been adopted to develop a working prototype
of a complex application modeled as a multi-agent system. Obviously this choice
is not the only possible one, but it has some advantages over the adoption of
structured methods and object-oriented methods. In fact, as pointed out in [8],
structured methods are either data-oriented or action-oriented and so they can-
not capture the complexity of an agent-based system, where data (knowledge)
and behavior (action) are strictly tied. Object-oriented methods, though offering
important advantages as the differentiation between internal and external view
of an agent-based system, do not address issues of autonomy, reactivity and
proactiveness, and they fail to address interaction on a higher level.

The use of formal languages, in particular logic-based formal languages, seems
to lead to more encouraging results. Many existing approaches for developing
agent-based systems are based on logics.
Temporal Logic has proven useful for specifying agents which, on the basis of the
past, do the future. Concurrent METATEM is an example of this approach [7].
Deontic Logic [14] fits the needs of representing the actions an agent may, may
not, or must perform according to some conditions. This allows a quick and
high-level description of the agents’ state and behavior.
Linear Logic, as discussed in [5, 4], has connectives to express concurrency and
synchronization primitives, which are fundamental in a MAS setting.
Even if it is often necessary to extend the logical frameworks to cope with all
the MAS features, the benefits deriving from the use of formal languages, with

clear semantics and easy testing mechanisms, make these extensions worthwhile.
Moreover, since interpreters exist for most of these languages, or at least for
subsets of them, logic-based descriptions of MAS can be seen as executable spec-
ifications, and executable specifications are prototypes.

The paper focused on the adoption of Logic Programming (LP) [2] for devel-
oping MAS prototypes. Besides the already observed features common to all the
logic-based frameworks, other characteristics make LP suitable for our purposes.

MAS execution: the evolution of a MAS consists of non deterministic suc-
cession of events; from an abstract point of view an LP language is a non deter-
ministic language in which computation occurs via a search process.

Meta-reasoning capabilities: agents need to dynamically modify their be-
havior so as to adapt it to changes in the environment. Thus, the possibility
given by LP of viewing programs as data is very important in this setting. This
feature is useful also for integrating external heterogeneous software following
some “wrapping” or “interpretation” approach [9].

Rationality and reactiveness of agents: the declarative and the operational
interpretation of logic programs are strictly related to the main characteristics
of agents, i.e., rationality and reactiveness. A pure logic program can be viewed
as the specification of the rational component of an agent and the operational
view of logic programs can be used to model the reactive behavior of an agent.
The adoption of LP for combining reactivity and rationality is described in [10].

Since, as already remarked, traditional LP languages do not fulfill all re-
quirements arising during the MAS development, ECLiPSe has been extended
to tackle these issues. Classical concepts coming from the distributed software
engineering field [11], such as the ability of developing communicating modu-
lar software components and combining them in a structure by means of an
Architectural Description Language, have been taken into account.

The next extension of CaseLP will be the realization of an automatic ACLPL-
ECLiPSe translator. It would allow the prototype developer to give an architec-
tural description of the MAS, without worrying about implementative details.
In fact the final aim is to provide the prototype developer with a set of high-level
specification languages for describing agents and systems in a friendly fashion.
A semi-automatic translation mechanism from the linear logic language Ehhf
to ECLiPSe already exists, as described in [5], and it is planned to add Z to
the specification languages available in the environment. Z should help in defin-
ing complex data structures which cannot be represented in Ehhf where only
terms can be manipulated. For the implementation of a Z–ECLiPSe translator
the experience of the Pipedream project [15] will be fundamental. In this project
a Z specification is compiled into the logic-based language Mercury for anima-
tion purposes. Another important issue to consider is the integration of external
software: by now it is possible to integrate C, Tcl/Tk and the ECLiPSe Data
and Knowledge Base but it is planned to support other programming languages.
Moreover it is under study how to extend the interface agents’ capabilities to
make them real mediator agents, in the spirit of HERMES [16] and IMPACT [3]
approaches.

References

1. A. Abderrahamane, D. Chan, P. Dufresne, E. Falvey, H. Grant, A. Herold,
G. Macartney, M. Meier, D. Miller, S. Mudambi, B. Perez, E. van Rossum,
J. Schimpf, P. A. Tsahageas, and D. H. de Villeneuve. ECLiPSe 3.5 User Manual.
European Computer Research Center, Munich, 1995.

2. K. R. Apt. Introduction to Logic Programming, volume B of Handbook of Theo-
retical Computer Science. Elsevier, Amsterdam and The MIT Press, Cambridge,
1990.

3. K. Arisha, S. Kraus, P. Ozcan, R. Ross, and V.S. Subrahmanian. IMPACT: The In-
teractive Maryland Platform for Agents Collaborating Together. Technical report,
Department of Computer Science, University of Maryland, MD, 1997.

4. M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic Pro-
gramming & Multi-Agent Systems: a Synergic Combination for Applications and
Semantics. In The Logic Programming Paradigm: a 25-Year Perspective. Springer
Verlag, 1999.

5. M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Multi-Agent
Systems Development as a Software Engineering Enterprise. In G. Gupta, ed-
itor, Proc. of First International Workshop on Practical Aspects of Declarative
Langueges, Texas, 1999. Springer Verlag.

6. P. L. Guida (Project Coordinator). EuROPE–TRIS Project — 4th European
Union RDT Program Telematics Applications Programme. 1998. Transport (Rail)
Contract DGXIII - TR 1022 (TR), Specifications and System Design, Deliverable
D04.2.

7. M. Fisher. Concurrent METATEM – A Language for Modeling Reactive Systems.
In PARLE’93 Proceedings of Parallel Architectures and languages, Europe. Springer
Verlag, 1993. Lecture Notes in Computer Science.

8. M. Fisher, J. Mueller, M. Schroeder, G. Staniford, and G. Wagner. Methodological
Foundations for Agent-Based Systems. The Knowledge Engineering Review, 12(3),
1997.

9. M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of the
ACM, 37(7):49–53, 1994.

10. R. Kowalski and F. Sadri. Towards a Unified Agent Architecture that Com-
bines Rationality with Reactivity. In Proc. of International Workshop on Logic
in Databases, San Miniato, Italy, 1996. Springer Verlag.

11. J. Kramer. Distributed Software Engineering. In B. Fadini, editor, Proc. of the
16th International Conference on Software Engineeri ng, pages 253–266, Sorrento,
Italy, 1994. IEEE Computer Society Press.

12. M. Martelli, V. Mascardi, and F. Zini. Towards Multi-Agent Software Prototyping.
In Proc. of PAAM’98, London, UK, 1998.

13. J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an Agent Commu-
nication Language. In Intelligent Agents II. Springer Verlag, 1995. Lecture Notes
in Artificial Intelligence 1037.

14. J. J. C. Meyer and R. Wieringa (Eds.). Deontic Logic in Computer Science. Chich-
ester et al. Wiley & Sons, 1993.

15. L. Sterling, P. Ciancarini, and T. Turnidge. On the Animation of “not Exe-
cutable” Specifications by Prolog. International Journal of Software Engineering
and Knowledge Engineering, 6(1):63–87, 1996.

16. V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers,
R. Ross, and C. Ward. HERMES: Heterogeneous Reasoning and Mediator System,
1995.

