

Floriano Zini

Free University of Bozen-Bolzano Faculty of Computer Science

Academic Year 2011-2012

Lecture 6: 2nd April 2012

Evaluation methods (2)

 How to obtain a reliable estimate of the system's performance?

- Generally, the larger the training set the better the learned system
- The larger the test set the more accurate the error estimate
- Problem: (very) large datasets are not always available

• The performance of the learned system *depends not only on the learning algorithm* but also on some other factors

- Class distribution
- Cost of misclassification
- Size of the training set
- Size of the test set

Evaluation methods (3)

- •Hold-out
- Stratified sampling
- Repeated hold-out
- •Cross-validation
 - k-fold
 - Leave-one-out
- Bootstrap sampling

Hold-out (Splitting)

• The entire dataset X is divided into two **disjoint** subsets

- The training set X_train for training the system
- The test set X_test for evaluating the trained system
- \rightarrow X = X_train \cup X_test, and typically |X_train| >> |X_test|

Motivation

- Every instance included in the test set X_test should not be used in the training phase
- Every instance used in the training phase (i.e., included in *X_train*) should not be exploited in the test phase
- The unseen test instances in *X_test* provides an unbiased estimate of the system's predictive accuracy
- A common splitting choice:
 - |*X*_train|=(2/3)*|*X*|, |*X*_test|=(1/3)*|*X*|
- Suitable when the entire dataset X is large

Stratified sampling

• For small or unbalanced datasets, samples in the training and test sets might not be representative

• For instance, (very) few, or no, instances of some classes

- Goal: The class distribution in the training and test sets is approximately the same as that in the entire dataset *X*
- Stratified sampling
 - A way of balancing the data
 - To ensure that each class is represented with approximately equal proportions in the training and test sets
- Stratification does not make sense for numeric prediction systems (i.e., the system's output is a real value, not a class label)

Repeated hold-out

 The hold-out evaluation method is applied repeatedly (i.e., several times) to produce different <X_train, X_test> pairs

- In each iteration, a certain proportion (e.g. 2/3) of the entire dataset *X* is **randomly selected** to construct the training set X_train (possibly with stratification)
- The error rates made by the system in these iterations on the test set X_test are *averaged* to produce the overall error rate

• Still not perfect

• There is overlap (i.e., the same instances) among the different test sets used in the iterations

Cross-validation

• To avoid overlapping test sets

• k-fold cross-validation

- The entire dataset *X* is partitioned into *k* **disjoint** subsets (i.e., called *folds*) of (approximately) equal size
- Each fold in turn is used as the test set and the remainder (i.e., (*k*-1) folds) as the training set
- The *k* error rates (i.e., each corresponds to a fold used) are averaged to produce the overall error estimate
- Common choice of k: 10 or 5
- Often the *k* folds are stratified before the cross-validation evaluation is performed
- Suitable when the entire dataset X is not large

Leave-one-out cross-validation

•A special form of cross-validation

- The number of folds is equal to the size of the dataset (i.e., *k*=|*X*|)
- Each fold contains only one instance
- Make the best use (i.e., the highest exploitation) of the dataset
- Involve no random sub-sampling
- Stratification does not make sense
 - \rightarrow Because there is only one instance in the test set
- Very computationally expensive
 - Suitable when the entire dataset X is very small

- o Cross-validation uses sampling without replacement
 → An instance, once selected, cannot be selected again for including in the training set
- Bootstrap uses sampling with replacement to form the training set
 - Assume that the entire dataset *X* consists of *n* instances
 - Sample the dataset *X n* times with replacement to form the training set *X_train* of *n* instances
 - > From the set X, take one instance x randomly (but not remove x from the set X)
 - > Put the instance x in the training set: $X_{train} = X_{train} \cup \{x\}$ > Repeat this process n times
 - Use X_train as the training set
 - Use the instances in *X* that are **not included** in *X*_train to form the test set: $X_test = \{z \in X; z \notin X_train\}$

Bootstrap sampling (2)

• In each step, an instance has a probability of $\left(1-\frac{1}{n}\right)$ not being put in the training set

• Hence, the probability that an instance is (after the bootstrap sampling process) not included in the test set is

$$\left|-\frac{1}{n}\right|^n \approx e^{-1} \approx 0.368$$

- This means that
 - The training set (i.e., size of *n*) will contain approximately 63.2% of the instances in *X* (<u>Note</u>: an instance in *X* may have **more than one occurrence** in *X*_train)
 - The test set (i.e., size <n) will contain approximately 36.8% of the instances in X (<u>Note</u>: an instance in X may have **at most one occurrence** in X_test)
- Bootstrap sampling is suitable for (very) small datasets

Validation set

- The instances in the test set cannot be used in any way in the training (learning) of the system
- In some learning problems, the training phase consists of two stages
 - In the first stage, build the learned system (i.e., learn the model)
 - In the second stage, optimize the parameter settings
- The test set cannot be used for parameter tuning
- In this case, the entire dataset *X* is divided into three subsets: a *training* set, a *validation* set, and a *test* set
- The validation set is used to optimize the parameters used in the learning algorithm
 - → For a parameter, the value that produces the best accuracy on the validation set is used as the final value of that parameter

Evaluation metrics

Predictive accuracy

 \rightarrow How accurate the learned system makes predictions on the test instances <code>oEfficiency</code>

 \rightarrow Time and (memory) resources needed for the training and test phases

Robustness

 \rightarrow How much the system is capable of handling noisy and value-missing instances

Scalability

 \rightarrow How much the system's performance (e.g., speed) is sensitive to the size of the data

oInterpretability

 \rightarrow How easily the system's output and operation are understandable to human

Complexity

 \rightarrow How compact (simple) the learned model is

$Error = \sum_{x \in X} Error(x); \qquad Error(x) = |d(x) - o(x)|$

•o(x): The system's output (i.e. predicted real value) for x

•d(x): The desired (true/actual) output for x

- Possibly noisy data
- Long training time is accepted
- Short classification/prediction time is required
- oHuman readability of result is not (very) important

Application examples

Image processing

• E.g., image matching, classification, or segmentation

• Financial systems

• E.g., stock market analysis, credit card authorization, and securities trading

• Pattern recognition

• E.g., speech recognition and understanding, character (letter or number) recognition, face recognition, and handwriting analysis

Medicine

• E.g., electrocardiographic signal analysis and understanding, diagnosis of various diseases, and medical image processing

