
13/04/12	
  

1	
  

Machine Learning: 
Algorithms and Applications 
 
Floriano Zini 
 
Free University of Bozen-Bolzano 
Faculty of Computer Science 
 
 
Academic Year 2011-2012 
 
Lecture 6: 2nd April 2012 
 
 
 
 

Evaluation of the ML 
system’s performance 



13/04/12	
  

2	
  

Evaluation of ML system performance 

� The evaluation of a ML system’s performance is typically 
conducted experimentally, rather than analytically 

• Analytical evaluation aims at proving a system is correct and 
complete (e.g., theorem prover in logics) 

• Unable to build a formal specification (definition) of the problem that 
a ML system is trying to solve (i.e., what correctness and 
completeness are) 

� We focus on the system performance evaluation that 
• is automatically done using a set of instances (i.e., a test set) 
• does not involve real users 

� Evaluation methods 
→  How to obtain a reliable evaluation of the system’s performance? 

� Evaluation metrics 
→  How to measure the system’s performance? 

Evaluation methods (1) 

Entire 
dataset 

Training 
set 

Test 
set 

Validation 
set 

Used to train the system  

Optional, and used to optimize 
the parameters of the system  

Used to evaluate the 
learned (trained) system  



13/04/12	
  

3	
  

Evaluation methods (2) 

� How to obtain a reliable estimate of the system’s 
performance? 

• Generally, the larger the training set the better the learned system 

• The larger the test set the more accurate the error estimate 

• Problem: (very) large datasets are not always available 

� The performance of the learned system depends not only on 
the learning algorithm but also on some other factors 

• Class distribution 

• Cost of misclassification 

• Size of the training set 

• Size of the test set 

Evaluation methods (3) 

� Hold-out 

� Stratified sampling 

� Repeated hold-out 

� Cross-validation 

• k-fold 
• Leave-one-out 

� Bootstrap sampling 



13/04/12	
  

4	
  

Hold-out (Splitting) 
� The entire dataset X is divided into two disjoint subsets 

• The training set  X_train – for training the system 
• The test set  X_test – for evaluating the trained system 
→  X = X_train ∪ X_test,  and typically  |X_train| >> |X_test| 

� Motivation 
� Every instance included in the test set X_test should not be 

used in the training phase 
� Every instance used in the training phase (i.e., included in 

X_train) should not be exploited in the test phase 
� The unseen test instances in X_test provides an unbiased 

estimate of the system’s predictive accuracy 

� A common splitting choice: 
�  |X_train|=(2/3)*|X|, |X_test|=(1/3)*|X| 

� Suitable when the entire dataset X is large 

Stratified sampling 

� For small or unbalanced datasets, samples in the training and 
test sets might not be representative 

�  For instance, (very) few, or no, instances of some classes 

� Goal: The class distribution in the training and test sets is 
approximately the same as that in the entire dataset X 

� Stratified sampling 
• A way of balancing the data 
• To ensure that each class is represented with approximately 
equal proportions in the training and test sets 

� Stratification does not make sense for numeric prediction 
systems (i.e., the system’s output is a real value, not a class 
label) 



13/04/12	
  

5	
  

Repeated hold-out 

� The hold-out evaluation method is applied 
repeatedly (i.e., several times) to produce different 
<X_train, X_test> pairs 

•  In each iteration, a certain proportion (e.g. 2/3) of the 
entire dataset X is randomly selected to construct the 
training set X_train (possibly with stratification) 

• The error rates made by the system in these iterations on 
the test set X_test are averaged to produce the overall 
error rate 

� Still not perfect 
• There is overlap (i.e., the same instances) among the 

different test sets used in the iterations 

Cross-validation 
� To avoid overlapping test sets 

� k-fold cross-validation 
• The entire dataset X is partitioned into k disjoint subsets 

(i.e., called folds) of (approximately) equal size 
• Each fold in turn is used as the test set and the remainder 

(i.e., (k-1) folds) as the training set 
• The k error rates (i.e., each corresponds to a fold used) are 

averaged to produce the overall error estimate 

� Common choice of k:  10 or 5 

� Often the k folds are stratified before the cross-
validation evaluation is performed 

� Suitable when the entire dataset X is not large 



13/04/12	
  

6	
  

Leave-one-out cross-validation 

� A special form of cross-validation 
• The number of folds is equal to the size of the dataset 
(i.e., k=|X|) 

• Each fold contains only one instance 

� Make the best use (i.e., the highest exploitation) of 
the dataset 

� Involve no random sub-sampling 

� Stratification does not make sense 
→  Because there is only one instance in the test set 

� Very computationally expensive 
� Suitable when the entire dataset X is very small 

Bootstrap sampling (1) 
� Cross-validation uses sampling without replacement 
→  An instance, once selected, cannot be selected again for 

including in the training set 

� Bootstrap uses sampling with replacement to form 
the training set 
• Assume that the entire dataset X consists of n instances 
• Sample the dataset X  n times with replacement to form the 

training set X_train of n instances 
Ø From the set X, take one instance x randomly (but not remove x 

from the set X) 
Ø Put the instance x in the training set:  X_train = X_train ∪ {x} 
Ø Repeat this process n times 

• Use X_train as the training set 
• Use the instances in X that are not included in X_train to 

form the test set:  X_test = {z ∈ X; z ∉ X_train} 



13/04/12	
  

7	
  

Bootstrap sampling (2) 
�  In each step, an instance has a probability 

of          not being put in the training set 

� Hence, the probability that an instance is (after the bootstrap 
sampling process) not included in the test set is 

�  This means that 
• The training set (i.e., size of n) will contain approximately 63.2% of 

the instances in X  (Note: an instance in X may have more than 
one occurrence in X_train) 

• The test set (i.e., size <n) will contain approximately 36.8% of the 
instances in X  (Note: an instance in X may have at most one 
occurrence in X_test) 

� Bootstrap sampling is suitable for (very) small datasets 

⎟
⎠

⎞
⎜
⎝

⎛ −
n
11

368011 1 .e
n

n

≈≈⎟
⎠

⎞
⎜
⎝

⎛ − −

Validation set 
� The instances in the test set cannot be used in any way in the 

training (learning) of the system 
� In some learning problems, the training phase consists of two 

stages 
• In the first stage, build the learned system (i.e., learn the 

model) 
• In the second stage, optimize the parameter settings 

� The test set cannot be used for parameter tuning 
� In this case, the entire dataset X is divided into three subsets: 

a training set, a validation set, and a test set 
� The validation set is used to optimize the parameters used in 

the learning algorithm 
→  For a parameter, the value that produces the best accuracy 

on the validation set is used as the final value of that 
parameter 



13/04/12	
  

8	
  

Evaluation metrics 
� Predictive accuracy 
→ How accurate the learned system makes predictions on the test instances 

� Efficiency 
→  Time and (memory) resources needed for the training and test phases 

� Robustness 
→ How much the system is capable of handling noisy and value-missing 

instances 

� Scalability 
→ How much the system’s performance (e.g., speed) is sensitive to the size 

of the data 

� Interpretability 
→ How easily the system’s output and operation are understandable to 

human 

� Complexity 
→ How compact (simple) the learned model is 

Predictive accuracy 
� For classification task 

→  i.e., the system’s output is a nominal value 

• x:  A test instance in the test set X_test 

• o(x): The system’s output (i.e. predicted class) for x 

• c(x): The desired (true/actual) class for x 

� For regression task 
→ i.e., the system’s output is a real value 

• o(x): The system’s output (i.e. predicted real value) for x 

• d(x): The desired (true/actual) output for x 

Identical(a,b) = 1   if (a = b)
0  otherwise

!
"
#

$#

Error = Error(x)
x!X _ test
" ; )()()( xoxdxError −=

Accuracy = 1
X _ test

Identical o(x),c(x)( )
x!X _ test
" ;



13/04/12	
  

9	
  

Confusion matrix 

Class ci 

Classified 
by the system 

Positive Negative 

Desired 
(true) 
output 

Positive TPi FNi 

Negative 
FPi TNi 

� Also called Contingency Table 
� Can be used only for classification problems 

• TPi:  The number of 
ci-class instances correctly 
classified 

• FPi:  The number of non 
ci-class instances 
misclassified in ci 

• TNi:  The number of non 
ci-class instances not 
classified in ci 

• FNi:  The number of 
ci-class instances not 
classified in ci 

� Very often used in the evaluation of text 
classification/categorization systems 

� Precision w.r.t. class ci 

→ The number of ci-class instances 
correctly classified divided by the 
number of instances classified in ci 

� Recall w.r.t. class ci 

→ The number of ci-class instances 
correctly classified divided by the 
number of ci-class instances 

Precision and Recall (1) 

Precision(ci ) =
TPi

TPi +FPi

Recall(ci ) =
TPi

TPi +FNi



13/04/12	
  

10	
  

� How to compute the overall precision and recall for the entire 
set of classes C={ci}? 

� Macro-averaging 

� Micro-averaging 

� Macro-averaging gives equal weight to every class, while 
micro-averaging gives equal weight to every instance 

Precision and Recall (2) 

Precision =
TPi

i=1

C

!

TPi +FPi( )
i=1

C

!
Recall =

TPi
i=1

C

!

TPi +FNi( )
i=1

C

!

Precision =
Precision(ci )

i=1

C

!
C Recall =

Recall(ci )
i=1

C

!
C

� A measure that combines the precision and recall 
estimates 

� F1-measure is the harmonic mean of the 
precision and recall estimates 

• F1-measure tends to be closer to the smaller one between the 
precision and recall estimates 

• F1-measure is high if both precision and recall is high 

F1-measure 

F1 =
2!Precision!Recall
Precision+ Recall

=
2

1
Precision

+
1

Recall



13/04/12	
  

11	
  

Model selection 

� Model selection criteria attempt to find a good 
compromise between 

• The complexity of the learned system (model) 

• The learned system’s predictive accuracy on the training set 

� Occam’s razor. A good model is a simple model that 
achieves high accuracy on the given data 

� Example 
• Classifier Sys1:  (very) simple, fits the training set relatively 
well 

• Classifier Sys2:  significantly complex, fits the training set 
perfectly 

→  Classifier Sys1 is preferred to classifier Sys2 

Neural Networks 



13/04/12	
  

12	
  

� Human brain 
�  Densely interconnected network of 1011 neurons each connected 

to 104 others (neuron switching time : approx. 10-3 sec.) 
�  Artificial neural network (ANN) 

�  Mimics the highly parallel information processing of human brain 

Introduction (1) 

Introduction (2) 

� ANNs incorporate the two fundamental 
components of biological neural nets 

1.  Neurons (nodes) 

2.  Synapses (weights) 

Transfer function 



13/04/12	
  

13	
  

Introduction (3) 
�  ANN is a structure (network) composed of many interconnected units 

(artificial neurons) 
�  ANN has the ability to learn, recall, and generalize from training data by 

assigning and adjusting the interconnection weights 
�  Each unit (neuron) 

�  Has an input/output (I/O) 
transfer function 

�  Implements a local 
computation (i.e., local function) 

�  The output of a unit is determined by 
�  Its (possibly external) inputs 
�  Its I/O transfer function 

�  The overall function is determined by 
�  The network topology 

�  The individual neuron characteristic 

�  The learning (training) strategy 

�  The training data 

Artificial neural networks – When? 

� Input is high-dimensional discrete or real-valued 
(e.g., raw sensor input) 

� Output is real-valued, discrete-valued or vector-
valued 

� Possibly noisy data 

� Long training time is accepted 

� Short classification/prediction time is required 

� Human readability of result is not (very) important 



13/04/12	
  

14	
  

Application examples 

� Image processing 
�  E.g., image matching, classification, or segmentation 

� Financial systems 
�  E.g., stock market analysis, credit card authorization, and securities 

trading 

� Pattern recognition 
�  E.g., speech recognition and understanding, character (letter or number) 

recognition, face recognition, and handwriting analysis 

� Medicine 
�  E.g., electrocardiographic signal analysis and understanding, diagnosis 

of various diseases, and medical image processing 

ALVINN 

� ANN learned to drive at up to 112 Km/h for 144 
Km on the highway 



13/04/12	
  

15	
  

Perceptron 

� A perceptron is the simplest type of ANN 

 

� x1,…,xn : inputs 
� w1,…,wn: weights 
� w0: threshold 
� x0=1: additional constant input 
� Learning a perceptron means choosing values for 

w0,…,wn 
� The hypothesis space is  

= sgn w•x( )

H = {w |w !"n+1}

Perceptron – Illustration 
The decision hyperplane 

w0+w1x1+w2x2=0 

Output=1 

Output=-1 

x1 

x2 

Linearly separable case like (a): Possible to classify by hyperplane 
Linearly inseparable case like (b): Impossible to classify 



13/04/12	
  

16	
  

AND function 
The AND function is implemented 
by a perceptron where 
w0=-0.8, w1=w2=0.5 

The decision hyperplane 
w0+w1x1+w2x2= 0 

-0.8 + 0.5 x1+ 0.5 x2= 0 

 

OR function 
The OR function is implemented by 
a perceptron where 
w0=-0.3, w1=w2=0.5 

The decision hyperplane 
w0+w1x1+w2x2= 0 

-0.3 + 0.5 x1+ 0.5 x2= 0 

 

x1 x2 Σwi*xi	

 output 

0 0 -0.3 -1 

0 1 0.2 1 

1 0 0.2 1 

1 1 0.7 1 

<Test Results> 



13/04/12	
  

17	
  

XOR function 

Exercise:  

The XOR function can be implementable by 

a two-layer network of perceptrons 

There is no decision hyperplane  

The XOR function is not implementable by a 

perceptron because positive and negative 

instances are not linearly separable 

x1! x2 = x1 " x2 + x1 " x2


