## Lab 8: 21 May 2012

## Exercises on Clustering

1. Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: $\mathrm{A} 1=(2,10), \mathrm{A} 2=(2,5), \mathrm{A} 3=(8,4), \mathrm{A} 4=(5,8), \mathrm{A} 5=(7,5), \mathrm{A} 6=(6,4), \mathrm{A} 7=(1,2), \mathrm{A} 8=(4,9)$. Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch. At the end of this epoch show:
a. The new clusters (i.e. the examples belonging to each cluster);
b. The centers of the new clusters;
c. Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.
d. How many more iterations are needed to converge? Draw the result for each epoch.

## Solution

The Euclidean distances between the given points are in the following matrix:

|  | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A1 | 0 | $\sqrt{25}$ | $\sqrt{36}$ | $\sqrt{13}$ | $\sqrt{50}$ | $\sqrt{52}$ | $\sqrt{65}$ | $\sqrt{5}$ |
| A2 |  | 0 | $\sqrt{37}$ | $\sqrt{18}$ | $\sqrt{25}$ | $\sqrt{17}$ | $\sqrt{10}$ | $\sqrt{20}$ |
| A3 |  |  | 0 | $\sqrt{25}$ | $\sqrt{2}$ | $\sqrt{2}$ | $\sqrt{53}$ | $\sqrt{41}$ |
| A4 |  |  |  | 0 | $\sqrt{13}$ | $\sqrt{17}$ | $\sqrt{52}$ | $\sqrt{2}$ |
| A5 |  |  |  |  | 0 | $\sqrt{2}$ | $\sqrt{45}$ | $\sqrt{25}$ |
| A6 |  |  |  |  |  | 0 | $\sqrt{29}$ | $\sqrt{29}$ |
| A7 |  |  |  |  |  |  | 0 | $\sqrt{58}$ |
| A8 |  |  |  |  |  |  |  | 0 |

a.
seed $1=A 1=(2,10)$, seed $2=A 4=(5,8)$, seed $3=A 7=(1,2)$
epoch 1 - start:

A1:
$d(A 1$, seed 1$)=0$ as A1 is seed 1
$\mathrm{d}(\mathrm{A} 1$, seed 2$)=\sqrt{13}>0$
$\mathrm{d}(\mathrm{A} 1$, seed 3$)=\sqrt{65}>0$
$\rightarrow \mathrm{Al} \in$ cluster 1
A3:
$\mathrm{d}(\mathrm{A} 3$, seed 1$)=\sqrt{36}=6$
$\mathrm{d}(\mathrm{A} 3$, seed 2$)=\sqrt{25}=5 \quad \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 3$, seed 3$)=\sqrt{53}=7.28$
$\rightarrow \mathrm{A} 3 \in$ cluster 2

A2:
$\mathrm{d}(\mathrm{A} 2$, seed 1$)=\sqrt{25}=5$
$\mathrm{d}(\mathrm{A} 2$, seed 2$)=\sqrt{18}=4.24$
$\mathrm{d}(\mathrm{A} 2$, seed 3$)=\sqrt{10}=3.16 \quad \leftarrow$ smaller
$\rightarrow \mathrm{A} 2 \in$ cluster 3
A4:
$\mathrm{d}(\mathrm{A} 4$, seed 1$)=\sqrt{13}$
$d(A 4$, seed 2$)=0$ as A4 is seed 2
$\mathrm{d}(\mathrm{A} 4$, seed 3$)=\sqrt{52}>0$
$\rightarrow \mathrm{A} 4 \in$ cluster2

A5:
$\mathrm{d}(\mathrm{A} 5$, seed 1$)=\sqrt{50}=7.07$
$\mathrm{d}($ A5, seed 2$)=\sqrt{13}=3.60 \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 5$, seed 3$)=\sqrt{45}=6.70$
$\rightarrow \mathrm{A} 5 \in$ cluster2

## A7:

$\mathrm{d}(\mathrm{A} 7$, seed 1$)=\sqrt{65}>0$
$\mathrm{d}(\mathrm{A} 7$, seed2 $)=\sqrt{52}>0$
$\mathrm{d}(\mathrm{A} 7$, seed 3$)=0$ as A 7 is seed 3
$\rightarrow$ A7 $\in$ cluster 3

A6:
$\mathrm{d}(\mathrm{A} 6$, seed 1$)=\sqrt{52}=7.21$
$\mathrm{d}(\mathrm{A} 6$, seed 2$)=\sqrt{17}=4.12 \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 6$, seed 3$)=\sqrt{29}=5.38$
$\rightarrow \mathrm{A} 6 \in$ cluster 2

A8:
$d(A 8$, seed 1$)=\sqrt{5}$
$\mathrm{d}(\mathrm{A} 8$, seed 2$)=\sqrt{2} \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 8$, seed 3$)=\sqrt{58}$
A8 $\in$ cluster 2
end of epoch1
new clusters: 1: $\{\mathrm{A} 1\}, 2:\{\mathrm{A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8\}, 3:\{\mathrm{A} 2, \mathrm{~A} 7\}$
b) centers of the new clusters:
$\mathrm{C} 1=(2,10), \mathrm{C} 2=((8+5+7+6+4) / 5,(4+8+5+4+9) / 5)=(6,6), \mathrm{C} 3=((2+1) / 2,(5+2) / 2)=(1.5,3.5)$
c)



d)

We would need two more epochs. After the $2^{\text {nd }}$ epoch the results would be:
1: \{A1, A8\}, 2: \{A3, A4, A5, A6\}, 3: \{A2, A7\}
with centers $\mathrm{C} 1=(3,9.5), \mathrm{C} 2=(6.5,5.25)$ and $\mathrm{C} 3=(1.5,3.5)$.
After the $3^{\text {rd }}$ epoch, the results would be:
1: $\{\mathrm{A} 1, \mathrm{~A} 4, \mathrm{~A} 8\}, 2:\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}, 3:\{\mathrm{A} 2, \mathrm{~A} 7\}$
with centers $\mathrm{C} 1=(3.66,9), \mathrm{C} 2=(7,4.33)$ and $\mathrm{C} 3=(1.5,3.5)$.


2. Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms.

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | 1 | 4 | 5 |
| B |  | 0 | 2 | 6 |
| C |  |  | 0 | 3 |
| D |  |  |  | 0 |

## Solution

1. Single link: distance between two clusters is the shortest distance between a pair of elements from the two clusters.

We apply the algorithm presented in lecture 10 (ml_2012_lecture_10.pdf), page 4.
At the beginning, each point $A, B, C$, and $D$ is a cluster $\rightarrow c 1=\{A\}, c 2=\{B\}, c 3=\{C\}, c 4=\{D\}$
Iteration 1
The shortest distance is $\mathrm{d}(\mathrm{c} 1, \mathrm{c} 2)=1 \rightarrow \mathrm{c} 1$ and c 2 are merged $\rightarrow$ the clusters are $\mathrm{c} 3=\{\mathrm{C}\}, \mathrm{c} 4=\{\mathrm{D}\}$, $\mathrm{c} 5=\{\mathrm{A}, \mathrm{B}\}$
The distances from the new cluster to the others are $\mathrm{d}(\mathrm{c} 5, \mathrm{c} 3)=2, \mathrm{~d}(\mathrm{c} 5, \mathrm{c} 4)=5$
Iteration 2
The shortest distance is $\mathrm{d}(\mathrm{c} 5, \mathrm{c} 3)=2 \rightarrow \mathrm{c} 5$ and c 3 are merged $\rightarrow$ the clusters are $\mathrm{c} 6=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$, $\mathrm{c} 4=\{\mathrm{D}\}$
The distances from the new cluster to the others are: $\mathrm{d}(\mathrm{c} 6, \mathrm{c} 4)=3$

## Iteration 3

c 6 and c 4 are merged $\rightarrow$ the final cluster is $\mathrm{c} 7=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$


The dendrogram is
2. Complete link: The distance between two clusters is the distance of two furthest data points in the two clusters
We apply the algorithm presented in lecture 10 (ml_2012_lecture_10.pdf) page 4.
At the beginning, each point $A, B, C$, and $D$ is a cluster $\rightarrow c 1=\{A\}, c 2=\{B\}, c 3=\{C\}, c 4=\{D\}$

## Iteration 1

The shortest distance is $d(c 1, c 2)=1 \rightarrow c 1$ and $c 2$ are merged $\rightarrow$ the clusters are $c 3=\{C\}, c 4=\{D\}$, $\mathrm{c} 5=\{\mathrm{A}, \mathrm{B}\}$
The distances from the new cluster to the others are: $d(c 5, c 3)=4, d(c 5, c 4)=6$
Iteration 2
The shortest distance is $\mathrm{d}(\mathrm{c} 3, \mathrm{c} 4)=3 \rightarrow \mathrm{c} 3$ and c 4 are merged $\rightarrow$ the clusters are $\mathrm{c} 6=\{\mathrm{C}, \mathrm{D}\}$, $\mathrm{c} 5=\{\mathrm{A}, \mathrm{B}\}$
The distances from the new cluster to the others are: $d(c 6, c 5)=6$

## Iteration 3

$c 6$ and c 5 are merged $\rightarrow$ the final cluster is $\mathrm{c} 7=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
The dendrogram is

3. Use single-link complete-link, average-link, and centroid agglomerative clustering, to cluster the following 8 examples: $\mathrm{A} 1=(2,10), \mathrm{A} 2=(2,5), \mathrm{A} 3=(8,4), \mathrm{A} 4=(5,8), \mathrm{A} 5=(7,5), \mathrm{A} 6=(6,4), \mathrm{A} 7=(1,2)$, $\mathrm{A} 8=(4,9)$. Show the dendrograms.

## Solution

The solutions for single-link and complete-link are analogous to the previous one. The solutions for averagelink and centroid are also similar, what is changing is the calculation of the distances between clusters.

- For average link the distance is the average of all the distances between points belonging to the two clusters. For instance if $\mathrm{c} 1=\{\mathrm{A}, \mathrm{B}\}$ and $\mathrm{c} 2=\{\mathrm{C}, \mathrm{D}\}$,
$\operatorname{dist}(\mathrm{c} 1, \mathrm{c} 2)=(\operatorname{dist}(\mathrm{A}, \mathrm{B})+\operatorname{dist}(\mathrm{A}, \mathrm{D})+\operatorname{dist}(\mathrm{B}, \mathrm{C})+\operatorname{dist}(\mathrm{B}, \mathrm{D})) / 4$
- For centroid the distance between two cluster is the distance between their centroids.

4. Consider a data set in two dimensions with five data points at: $\{(1,0),(-1,0),(0,1),(3,0),(3,1)\}$. Run two iterations of k-means by hand with initial points at $(-1,0)$ and $(3,1)$. What are the assignments at each iteration and what are the centroids? Has the algorithm converged?

## Solution

The solution is analogous to the solution of Exercise 1.
5. How can we make k-means robust to outliers? Explain the two methods we have seen.

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf), pages 15-16.
6. Explain the main similarities and differences between k-means and hierarchical clustering.

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf) and lecture 10 (ml_2012_lecture_10.pdf).
7. Give two examples of real-world applications of clustering.

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf), page 9.
8. Which are the stopping criteria for the k-means algorithm?

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf), page 12.
9. Is the result of k-means clustering sensitive to the choice of the initial seeds? How? Make an example.

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf), page 17.
10. Which is a good algorithm for finding clusters of arbitrary shape? Is finding these clusters always a good idea? When it is not?

## Solution

Refer to lecture 9 (ml_2012_lecture_09.pdf), page 21 and to lecture 10 ( ml _2012_lecture_10.pdf), page 5 .
11.Explain the general algorithm for agglomerative hierarchical clustering.

## Solution

Refer to lecture 10 (ml_2012_lecture_10.pdf), pages 3-4.
12.Explain the single-link and the complete-link methods for hierarchical clustering.

## Solution

Refer to lecture 10 (ml_2012_lecture_10.pdf), pages 5-6.
13. Make 2 examples of distance functions that can be used for numeric attributes.

## Solution

Refer to lecture 10 (ml_2012_lecture_10.pdf), pages 8-9.

