
Lab 5: 16th April 2012

Exercises on Neural Networks

1. What are the values of weights w0, w1, and w2 for the perceptron whose decision surface is illustrated in

the figure? Assume the surface crosses the x1 axis at -1 and the x2 axis at 2.

Solution	
The output of the perceptron is

! = !"#(!! + !!!! + !!!!)

The equation of the decision surface (the line) is

!! + !!!! + !!!! = 0

We know the coordinates of 2 points of this line: A=(-1,0) and B=(0,2). Therefore, the equation of the line is

 !!!!!!

!!!!!!!
= !!!!!!

!!!!!!!
 → !!!(!!)

!!(!!)
= !!!!

!!!
 → !! + 1 =

!!
!
 → 2 + 2!! − !! = 0

So 2, 2, -1 are possible values for the weights w0, w1, and w2, respectively. To check if their signs are correct,
consider a point on one side of the line, for instance the origin O=(0,0). The output of the perceptron for this
point has to be negative, but the output of the perceptron using the candidate weights is positive. Therefore,
we need to negate the previous values and conclude that !! = − 2,!! = −2,!! = 1.

2. (a) Design a two-input perceptron that implements the Boolean function A∧¬B. (b) Design the two-layer

network of perceptrons that implements A XOR B.

Solution	 (a)
The requested perceptron has 3 inputs: A, B, and the constant 1. The values of A and B are 1 (true) or -1
(false). The following table describes the output O of the perceptron:

A B O = A∧¬B
-1 -1 -1
-1 1 -1
1 -1 1
1 1 -1

One of the correct decision surfaces (any line that separates the positive point from the negative points would
be fine) is shown in the following picture.

The line crosses the A axis at 1 and the B axis -1. The equation of the line is

 !!!

!!!
= !!(!!)

!!(!!)
 → ! = ! + 1 → 1 − ! + ! = 0

So 1, -1, 1 are possible values for the weights w0, w1, and w2, respectively. Using this values the output of the
perceptron for A=1, B=-1 is negative. Therefore, we need to negate the weights and therefore we can
conclude that !! = −1,!! = 1,!! = −1.
	
Solution	 (b)
A XOR B cannot be calculated by a single perceptron, so we need to build a two-layer network of
perceptrons. The structure of the network can be derived by:

• Expressing A XOR B in terms of other logical connectives:
 A XOR B = (A∧¬B) ∨(¬A∧B)

• Defining the perceptrons P1 and P2 for (A∧¬B) and (¬A∧B)
• Composing the outputs of P1 and P2 into a perceptron P3 that implements o(P1) ∨ o(P2)

Perceptron P1 has been defined above. P2 can be defined similarly. P3 is defined in the course slides1. In the
end, the requested network is the following:

NB. The number close to each unit is the weight w0.

1 It is defined for 0/1 input values, but it can be easily modified for -1/+1 input values.

3. Consider two perceptrons A and B defined by the threshold expression w0+w1x1+w2x2>0. Perceptron A

has weight values w0=1, w1=2, w2=1 and perceptron B has weight values w0=0, w1=2, w2=1. Is
perceptron A more_general_than perceptron B? A is more_general_than B if and only if ∀ instance
<x1,x2>, B(<x1,x2>)=1 à A(<x1,x2>)=1.

Solution
B(<x1,x2>) = 1 à 2x1+x2 > 0 à 1+2x1+x2 > 0 à A(<x1,x2>) = 1

4. Derive a gradient descent training rule for a single unit with output o, where
 o=w0+w1x1+w1x1

2+…+wnxn+wnxn
2

Solution
The gradient descent training rule specifies how the weights are to be changed at each step of the learning
procedure so that the prediction error of the unit decreases the most. The derivation of the rule for a linear
unit is presented on pages 91-92 of the Mitchell, and on pages 4-6 of the course slides (ml_2012_lecture_07).
We can adapt that derivation and consider the output o.

!E
!wi

= outx "ox()
x#X
$!

!wi

outx " w0+w1x1x+w1x1x
2+…+wnxnx+wnxnx

2()() = outx "ox()
x#X
$ "xix " xix

2()

Therefore, the gradient descent training rule is

!E
!wi

= outx "ox()
x#X
$!

!wi

outx " w0+w1x1x+w1x1x
2+…+wnxnx+wnxnx

2()() = outx "ox()
x#X
$ "xix " xix

2()

5. Consider a two-layer feed-forward neural network that has the topology shown in the figure.
• X1 and X2 are the two inputs.
• Z1 and Z2 are the two hidden neurons.
• Y is the (single) output neuron.
• wi, i=1..4, are the weights of the connections from the inputs to the

hidden neurons.
• wj, j=5..6, are the weights of the connections from the hidden neurons to

the output neuron.

Explain the three phases (i.e., input signal forward, error signal backward, and weight update) of the first
training iteration of the Backpropagation algorithm for the current network, given the training example:
(X1=x1, X2=x2, Y=y). Please use the following notations for the explanation.

• Net1, Net2, and Net3 are the net inputs to the Z1, Z2, and Y neurons, respectively.
• o1, o2, and o3 are the output values for the Z1, Z2, and Y neurons, respectively.
• f is the activation function used for every neuron in the network, i.e., ok=f(Netk), k=1..3.
• E(w) = (y - o3)2 / 2 is the error function, where y is the desired network output.
• η is the learning rate
• δ1, δ2, and δ3 are the error signals for the Z1, Z2, and Y neurons, respectively.

Solution	
Propagate the input forward through the network

1. Input the instance (x1,x2) to the network and compute the network outputs o3
• Net1= w1x1+ w2x2 à o1=f(Net1)
• Net2= w3x1+ w4x2à o2=f(Net2)
• Net3= w5 f(Net1)+w6 f(Net2) à o3=f(w5 f(Net1)+w6 f(Net2))

Propagate the error backward through the network

• E(w) = (y - o3)2 / 2 = (y-f(w5 f(Net1)+w6 f(Net2)))2
2. Calculate the error term of out unit Y
• δ3=f’(f(w5 f(Net1)+w6 f(Net2)))*(y-f(w5 f(Net1)+w6 f(Net2)))
3. Calculate the error of the 2 hidden units
• δ2=f’(f(Net2)δ3 δ1=f’(f(Net1)δ3
4. Update the network weights
• w1ß w1+ ηδ1w1
• w2ß w2+ ηδ2w2
• w3ß w3+ ηδ1w3
• w4ß w4+ ηδ2w4
• w5ß w5+ ηδ3w5
• w6ß w6+ ηδ3w6

w2
w3

w6

w1 w4

w5

Y

Z2

X1 X2

Z1

6. In the Back-Propagation learning algorithm, what is the object of the learning? Does the Back-
Propagation learning algorithm guarantee to find the global optimum solution?

Solution	
The	 object	 is	 to	 learn	 the	 weights	 of	 the	 interconnections	 between	 the	 inputs	 and	 the	 hidden	 units	 and	
between	 the	 hidden	 units	 and	 the	 output	 units.	 The	 algorithms	 attempts	 to	 minimize	 the	 squared	 error	
between	 the	 network	 output	 values	 and	 the	 target	 values	 of	 these	 outputs.	
The	 learning algorithm does not guarantee to find the global optimum solution. It guarantees to find at least a
local minimum of the error function.

