
Lab 5: 16th April 2012 
 

Exercises on Neural Networks 
 
 
1. What are the values of weights w0, w1, and w2 for the perceptron whose decision surface is illustrated in 

the figure? Assume the surface crosses the x1 axis at -1 and the x2 axis at 2.  
 

 
 
Solution	
  
The output of the perceptron is 
 

! = !"#(!! + !!!! + !!!!) 
 
The equation of the decision surface (the line) is 
 

!! + !!!! + !!!! = 0 
 
We know the coordinates of 2 points of this line: A=(-1,0) and B=(0,2). Therefore, the equation of the line is  
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So 2, 2, -1 are possible values for the weights w0, w1, and w2, respectively. To check if their signs are correct, 
consider a point on one side of the line, for instance the origin O=(0,0). The output of the perceptron for this 
point has to be negative, but the output of the perceptron using the candidate weights is positive. Therefore, 
we need to negate the previous values and conclude that !! = −  2,!! = −2,!! = 1. 
  



 
2. (a) Design a two-input perceptron that implements the Boolean function A∧¬B. (b) Design the two-layer 

network of perceptrons that implements A XOR B. 
 
Solution	
  (a) 
The requested perceptron has 3 inputs: A, B, and the constant 1. The values of A and B are 1 (true) or -1 
(false). The following table describes the output O of the perceptron: 
 

A B O = A∧¬B 
-1 -1 -1 
-1 1 -1 
1 -1 1 
1 1 -1 

 
One of the correct decision surfaces (any line that separates the positive point from the negative points would 
be fine) is shown in the following picture.  
 

 
 
The line crosses the A axis at 1 and the B axis -1. The equation of the line is 
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So 1, -1, 1 are possible values for the weights w0, w1, and w2, respectively. Using this values the output of the 
perceptron for A=1, B=-1 is negative. Therefore, we need to negate the weights and therefore we can 
conclude that !! = −1,!! = 1,!! = −1. 
	
  
Solution	
  (b) 
A XOR B cannot be calculated by a single perceptron, so we need to build a two-layer network of 
perceptrons. The structure of the network can be derived by: 

• Expressing A XOR B in terms of other logical connectives: 
  A XOR B = (A∧¬B) ∨(¬A∧B) 

• Defining the perceptrons P1 and P2 for (A∧¬B) and (¬A∧B) 
• Composing the outputs of P1 and P2 into a perceptron P3 that implements o(P1) ∨ o(P2) 

Perceptron P1 has been defined above. P2 can be defined similarly. P3 is defined in the course slides1. In the 
end, the requested network is the following: 
 

 
NB. The number close to each unit is the weight w0. 

                                                
1 It is defined for 0/1 input values, but it can be easily modified for -1/+1 input values.  



 
3. Consider two perceptrons A and B defined by the threshold expression w0+w1x1+w2x2>0. Perceptron A 

has weight values w0=1, w1=2, w2=1 and perceptron B has weight values w0=0, w1=2, w2=1. Is 
perceptron A more_general_than perceptron B? A is more_general_than B if and only if ∀ instance 
<x1,x2>, B(<x1,x2>)=1 à A(<x1,x2>)=1. 

 
Solution 
B(<x1,x2>) = 1 à 2x1+x2 > 0 à 1+2x1+x2 > 0 à A(<x1,x2>) = 1 
  



4. Derive a gradient descent training rule for a single unit with output o, where 
  o=w0+w1x1+w1x1

2+…+wnxn+wnxn
2 

 
Solution 
The gradient descent training rule specifies how the weights are to be changed at each step of the learning 
procedure so that the prediction error of the unit decreases the most. The derivation of the rule for a linear 
unit is presented on pages 91-92 of the Mitchell, and on pages 4-6 of the course slides (ml_2012_lecture_07). 
We can adapt that derivation and consider the output o.  
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Therefore, the gradient descent training rule is 
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5. Consider a two-layer feed-forward neural network that has the topology shown in the figure. 
• X1 and X2 are the two inputs. 
• Z1 and Z2 are the two hidden neurons. 
• Y is the (single) output neuron. 
• wi, i=1..4, are the weights of the connections from the inputs to the 

hidden neurons. 
• wj, j=5..6, are the weights of the connections from the hidden neurons to 

the output neuron. 

 

Explain the three phases (i.e., input signal forward, error signal backward, and weight update) of the first 
training iteration of the Backpropagation algorithm for the current network, given the training example: 
(X1=x1, X2=x2, Y=y). Please use the following notations for the explanation. 

• Net1, Net2, and Net3 are the net inputs to the Z1, Z2, and Y neurons, respectively. 
• o1, o2, and o3 are the output values for the Z1, Z2, and Y neurons, respectively. 
• f  is the activation function used for every neuron in the network, i.e., ok=f(Netk), k=1..3. 
• E(w) = (y - o3)2 / 2 is the error function, where y is the desired network output. 
• η  is the learning rate 
• δ1, δ2, and δ3 are the error signals for the Z1, Z2, and Y neurons, respectively. 

 
Solution	
  
Propagate the input forward through the network 

1. Input the instance (x1,x2) to the network and compute the network outputs o3 
• Net1= w1x1+ w2x2 à o1=f(Net1) 
• Net2= w3x1+ w4x2à o2=f(Net2) 
• Net3= w5 f(Net1)+w6 f(Net2) à o3=f(w5 f(Net1)+w6 f(Net2)) 

 
Propagate the error backward through the network  

• E(w) = (y - o3)2 / 2 = (y-f(w5 f(Net1)+w6 f(Net2)))2 
2. Calculate the error term of out unit Y 
• δ3=f’(f(w5 f(Net1)+w6 f(Net2)))*(y-f(w5 f(Net1)+w6 f(Net2))) 
3. Calculate the error of the 2 hidden units 
• δ2=f’(f(Net2)δ3   δ1=f’(f(Net1)δ3 
4. Update the network weights 
• w1ß w1+ ηδ1w1 
• w2ß w2+ ηδ2w2 
• w3ß w3+ ηδ1w3 
• w4ß w4+ ηδ2w4 
• w5ß w5+ ηδ3w5 
• w6ß w6+ ηδ3w6  
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6. In the Back-Propagation learning algorithm, what is the object of the learning? Does the Back-
Propagation learning algorithm guarantee to find the global optimum solution? 

 
Solution	
  
The	
  object	
  is	
  to	
  learn	
  the	
  weights	
  of	
  the	
  interconnections	
  between	
  the	
  inputs	
  and	
  the	
  hidden	
  units	
  and	
  
between	
  the	
  hidden	
  units	
  and	
  the	
  output	
  units.	
  The	
  algorithms	
  attempts	
  to	
  minimize	
  the	
  squared	
  error	
  
between	
  the	
  network	
  output	
  values	
  and	
  the	
  target	
  values	
  of	
  these	
  outputs.	
  
The	
  learning algorithm does not guarantee to find the global optimum solution. It guarantees to find at least a 
local minimum of the error function. 
 
 


