Advanced Algorithms

Floriano Zini
Free University of Bozen-Bolzano
Faculty of Computer Science

Academic Year 2013-2014

Lecture 2 – Algorithms with numbers
RSA Algorithm

Why does RSA work?

- RSA is based on the contrast between two problems
- **Factoring**
 - Given a number N, express it as a product of its prime factors
- **Primality**
 - Given a number N, determine whether it is a prime
 - Factoring is **hard**
 - exponential time in the number of bits of N
 - Primality is **efficient**
 - polynomial time in the number of bits of N
Why does RSA work? (cont.)

- Alice can **easily create** her **public** and **private keys**
- Bob can **easily encrypt** a message using Alice’s **public key**
- Alice can **easily decrypt** the message using her own **private key**
- **Eve** (who doesn’t know Alice’s private key) can try to **decrypt** the message but this takes **exponential time**!

- For implementing RSA we need some algorithms that work on numbers

Addition

- The sum of any three single-digit numbers is at most two digits long
- E.g., in base 10: \(9 + 9 + 9 = 27\)
- This rule holds in any base \(b \geq 2\)
- In base 2: \(1_2 + 1_2 + 1_2 = 11_2 = 3_{10}\)

<table>
<thead>
<tr>
<th>Carry:</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The algorithm for sum is trivially correct
Addition (cont.)

- Given two binary numbers x and y, how long does it take to add them?
 - We want the answer expressed as a function of the size of the input
 - Suppose x and y are each n bits long
 - The sum of x and y is $n+1$ bits long at most
 - E.g. $n=2 \rightarrow 11_2 + 11_2 = 110_2$
 - Each individual bit of this sum gets computed in a fixed amount of time
 - The total running time for the addition algorithm is of the form
 - $c_0 + c_1 n$, where c_0 and c_1 are some constants, i.e., $O(n)$

Addition (cont.)

- **Is there a faster algorithm?**
 - In order to add two n-bit numbers we must at least read them and write down the answer, and even that requires n operations.
 - So the addition algorithm is optimal, up to multiplicative constants!
 - Why $O(n)$ operations? Isn’t binary addition performed by computers in one instruction?
 - Yes, up to word length of today’s computer – 32 bits perhaps
 - But it is often useful and necessary to handle very large numbers (several thousands bits long)
Multiplication

- The algorithm for multiplying two numbers x and y is to
 - create an array of intermediate sums, each representing the product of x by a single digit of y
 - These values are appropriately left-shifted and then added up
 - For example: 13×11 in binary notation

\[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
\times & 1 & 0 & 1 \\
\hline
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

(binary 143)

Multiplication (cont.)

And the complexity?

- If x and y are both n bits, then there are n intermediate rows, with lengths of up to $2n$ bits
- The total time taken to add up these rows, doing two numbers at a time, is $O(n^2)$ that is:

\[
\underbrace{O(n) + O(n) + \cdots + O(n)}_{n-1 \text{ times}}
\]
Multiplication (cont.)

- Another algorithm

\[
x \cdot y = \begin{cases}
2(x \cdot \lfloor y/2 \rfloor) & \text{if } y \text{ is even} \\
2x \cdot \lfloor y/2 \rfloor + x & \text{if } y \text{ is odd}
\end{cases}
\]

- Is it correct?
 - Yes! It mimics the rule and handle the base case \(y=0\) properly

How long does it take?
 - It terminates after \(n\) recursive calls, because at each call \(y\) is halved
 - At each call it performs \(O(n)\) bit operations
 - The total time is thus \(O(n^2)\)
Division

- To divide an integer \(x \) by another integer \(y \neq 0 \) means to find a quotient \(q \) and a remainder \(r \), where
 \[x = y \cdot q + r \text{ and } r < y \]

- As multiplication, it takes \(O(n^2) \) time

Modular arithmetic

- With repeated addition or multiplication, numbers can get cumbersomely large
- For cryptography it is necessary to deal with numbers that are significantly large but whose range is limited
- Modular arithmetic deals with restricted ranges of integers
- We define \(x \) modulo \(N \) to be the remainder when \(x \) is divided by \(N \)
 - If \(x = q \cdot N + r \) with \(0 \leq r < N \) then \(x \) modulo \(N \) is equal to \(r \)
Modular arithmetic (cont.)

- x and y are congruent modulo N if they differ by a multiple of N

 $$x \equiv y \pmod{N} \text{ iff } N \text{ divides } (x-y)$$

- E.g.
 - $253 \equiv 13 \pmod{60}$ because 60 divides $253-13$
 - $59 \equiv -1 \pmod{60}$ because 60 divides $59-(-1)=60$

Two interpretations

- Modular arithmetic limits numbers to a predefined range $\{0, 1, \ldots, N-1\}$ and wraps around whenever you leave this range, like the hand of a clock
 - Example of addition modulo 8

![Addition modulo 8 diagram](image)

- Modular arithmetic It deals with all the integers, but divides them into N equivalence classes of the form $\{i + k*N \mid k \in \mathbb{Z}\}$ for some i between 0 and $N-1$
Which are the classes of equivalence modulo 3?

\[c_0 = \{0 + k \cdot 3 \mid k \in \mathbb{Z}\} \]
\[c_1 = \{1 + k \cdot 3 \mid k \in \mathbb{Z}\} \]
\[c_2 = \{2 + k \cdot 3 \mid k \in \mathbb{Z}\} \]

Useful rules

- **Substitution rule**
 - If \(x \equiv x' \pmod{N} \) and \(y \equiv y' \pmod{N} \), then
 \[x+y \equiv x'+y' \pmod{N} \text{ and } x*y \equiv x'*y' \pmod{N} \]
 - Example:
 \[5 \equiv 8 \pmod{3} \quad \text{and} \quad -2 \equiv 1 \pmod{3} \]
 \[5+(-2) \equiv 8+1 \pmod{3} \]
 - Any member of an equivalence class is substitutable for any other

- **Algebraic rules**
 - \(x+(y+z) \equiv (x+y)+z \pmod{N} \) (Associativity)
 - \(x*y \equiv y*x \pmod{N} \) (Commutativity)
 - \(x*(y+z) \equiv x*y + x*z \pmod{N} \) (Distributivity)

Example of rule application:

\[2^{345} \equiv (2^5)^{69} \equiv 32^{69} \equiv 1^{69} \equiv 1 \pmod{31} \]
Modular addition

- We want to calculate $x + y \mod N$
 - $0 \leq x, y \leq N-1 \implies 0 \leq x + y \leq 2(N-1)$
 - If $x + y > N-1$ then
 $x + y \mod N = x + y - N \leq N-1$
- The computation consists of an addition, and possibly a subtraction, of numbers that never exceed $2N$
- The running time is linear in the sizes of x, y
 - Modular addition is $O(n)$, where $n \approx \log N$

Modular multiplication

- We want to calculate $x \cdot y \mod N$
 - $0 \leq x, y \leq N-1 \implies 0 \leq x \cdot y \leq (N-1)^2$
 - If $x \cdot y > N-1$ then $x \cdot y \mod n$ is obtained by calculating the reminder upon dividing it by N
- The computation consists of a multiplication, and possibly a reminder of numbers $\leq (N-1)^2$
 - $(N-1)^2$ is at most $2 \cdot \log(N-1) \leq 2n$ bits long
 - Multiplication is $O(n^2)$, so it is division (used for reminder)
 - Modular multiplication is a $O(n^2)$ operation
Modular division

- Not quite so easy
- In ordinary arithmetic there is just one tricky case
- Division by zero
- In modular arithmetic there are potentially other tricky cases
- Whenever modular division is legal, it can be managed in cubic time, $O(n^3)$