A new course evaluation procedure

- There is new **online system** for the **evaluation** of **courses** by students
- Two questionnaires
 - One of students who have attended at least 50% of lectures
 - Another for those who have attended less than 50% of lectures
- The survey is **mandatory**, absolutely **anonymous**, and linked to exam registration
- It is put online two weeks before exam registration
- **No survey filling, no exam registration!**
- Please take it seriously, it’s important to improve the quality of teaching!
Evaluation of lab assignments

- There are **10 assignments**
- At least 7 assignments must be delivered
- Each assignment is graded 0, 1, or 2 points
 - 0: less than 60% correct
 - 1: from 60% to 80% correct
 - 2: more than 80% correct
- Not delivered assignments are graded 0 points
- The **final grade** for the lab is the rounded average of the grades obtained in the 10 assignments

Project

- The project is conducted individually or in small groups (2 students)
- Choose the advanced algorithm you like the most
- Implement it (or part of it) using Java or MATLAB®/Octave
- Validate the implementation on some use cases
- Research 3 real world application on which your champion algorithm has been applied
 - Explain how the computational problem underlying each application has been modeled to be treated with the algorithm
 - Explain which are the reasons why the algorithm has been chosen for each 3 applications and critically analyze pros and cons of the choice
 - Compare and contrast the selected algorithm with other algorithms for realizing the same 3 applications
- The project results include:
 - A written report of not more than 4,000 words
 - An algorithm implementation
Project – structure of the report

- Executive summary
- 1 section including the description of the selected algorithm
- 1 section describing how you have implemented it (e.g., provide the class and interaction diagrams and describe them, or describe the MATLAB®/Octave functions)
- 1 section for each of the 3 real world applications on which the algorithm has been applied
 - 1 subsection including the description of the application and how it has been modeled to be treated with the algorithm
 - 1 subsection including the reason why the algorithm has been applied to the application and critical analysis of pros and cons of the choice
 - 1 subsection that compares and contrasts the selected algorithm with other algorithms for realizing the same application
- 1 section including conclusions and observations
- Citations to the scientific papers and other material you reference in the report

Project – evaluation

- The report must be compliant with the structure defined in the previous slide
- The writing must be clear and neat
- The report must show that you have:
 - Well understood the selected algorithm
 - Deeply analyzed its application to the 3 specific fields
 - Compared in details the algorithms with other approaches
- The project results will be presented in a seminar (15 mins for each presentation) in front of the class
 - The presentation must be understandable and raise the audience attention
 - The presenters must be able to reply to the questions of the other participants
Project – Deadlines

- Send 1.5 pages draft to floriano.zini@unibz.it by 15 December 2013
- I’ll give you feedback by 22 December 2013
- Project presentation in front of the class on 17 January 2014
- Deliver project (report + implementation) to floriano.zini@unibz.it by 26 January 2014
- I’ll evaluate the projects by 9 February 2014

Written exam

- A positive evaluation of the project is necessary for attending the written exam
 - A passed project is valid for all 3 exam sessions of the academic year
- Exam simulation on 17 January 2013 in the lab from 2pm to 4pm
- My evaluation and feedback by 26 January 2013
- Written exam dates
 - 17 February 2014, 10:30am – 12:30am in D003 Lecture room, Ser-D
 - 2 July 2014, 10:30am – 12:30am
 - 2 September 2014, 8:30am – 10:30am