Advanced Algorithms

Floriano Zini
Free University of Bozen-Bolzano
Faculty of Computer Science

Academic Year 2013-2014

Lab 12 – Linear regression and gradient descent
Assignment 10

Exercise 1
Consider the problem of predicting how well students do in their second year of college/university, given how well they did in their first year. Specifically, let x be equal to the number of “A” grades (including A-, A and A+ grades) that a student receives in their first year of college (freshmen year). We would like to predict the value of y, which we define as the number of “A” grades they get in their second year (sophomore year).

Exercises 1 through 3 will use the training set on the right of a small sample of different students’ performances. Here each row is one training example.
Recall that in linear regression, our hypothesis is $h_\theta(x) = \theta_0 + \theta_1 x$, and we use m to denote the number of training examples.

For the given training set, what is the value of m?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Assignment 10

Exercise 2
For this question, continue to assume that we are using the training set given in the previous slide and let $J(\theta_0, \theta_1)$ be the cost function as defined in the lectures. What is $J(0,1)$?
Assignment 10

Exercise 3
Suppose we set $\theta_0 = -2$, $\theta_1 = 0.5$. What is $h_\theta(6)$?

Exercise 4
Let f be some function so that $f(\theta_0, \theta_1)$ outputs a number. For this problem, f is some arbitrary/unknown smooth function (not necessarily the cost function of linear regression, so f may have local optima). Suppose we use gradient descent to try to minimize $f(\theta_0, \theta_1)$ as a function of θ_0 and θ_1.
Which of the following statements are true? (Check all that apply.)
- Setting the learning rate α to be very small is not harmful, and can only speed up the convergence of gradient descent.
- If θ_0 and θ_1 are initialized so that $\theta_0 = \theta_1$, then by symmetry (because we do simultaneous updates to the two parameters), after one iteration of gradient descent, we will still have $\theta_0 = \theta_1$.
- If θ_0 and θ_1 are initialized at the global minimum, then one iteration of gradient descent will not change their values.
- If the first few iterations of gradient descent cause $f(\theta_0, \theta_1)$ to increase rather than decrease, then the most likely cause is that we have set the learning rate α to too large a value.
Exercise 5
Suppose that for some linear regression problem (say, predicting housing prices as in the lecture), we have some training set, and for our training set we managed to find some θ_0, θ_1 such that $J(\theta_0, \theta_1) = 0$. Which of the statements below must then be true? (Check all that apply.)

- We can perfectly predict the value of y even for new examples that we have not yet seen. (e.g., we can perfectly predict prices of even new houses that we have not yet seen.)
- For this to be true, we must have $\theta_0 = 0$ and $\theta_1 = 0$ so that $h_\theta(x) = 0$
- Our training set can be fit perfectly by a straight line, i.e., all of our training examples lie perfectly on some straight line.
- This is not possible: By the definition of $J(\theta_0, \theta_1)$, it is not possible for there to exist θ_0 and θ_1 so that $J(\theta_0, \theta_1) = 0$