Advanced Algorithms

Floriano Zini

Free University of Bozen-Bolzano
Faculty of Computer Science

Academic Year 2013-2014

Lab 3 – Exercises on algorithms with numbers
Exercise 1.12 page 39 DPV

- What is $2^{(2^{2006})} \pmod{3}$?

Solution

$2^{(2^{2006})} = 2^{(2 \cdot 2^{2005})} = 4^{(2^{2005})} \equiv 1 \pmod{3}$
Exercise 1.23 page 40 DPV

Show that if a has a multiplicative inverse modulo N, then this inverse is unique (modulo N)

Hint: proof by contradiction assuming there are two distinct inverses

Solution

Suppose x_1 and x_2 are two distinct inverses of a mod N. Then,

$$x_1 = x_1 \cdot 1 = x_1 \cdot a \cdot x_2 = 1 \cdot x_2 = x_2 \pmod{N}$$

which is a contradiction
Exercise 1.27 page 40 DPV

Consider an RSA key set with $p = 17$, $q = 23$
$N = p*q = 391$, and $e = 3$.
What value of d should be used for the secret key?
What is the encryption of the message $M = 41$?

Solution

First calculate $(p-1)*(q-1) = 16 * 22 = 352$.
We use the extended Euclid algorithm to compute the
gcd(3,352) and get the inverse d of e mod 352. We easily
obtain $e*d \equiv 1 \mod 352 \Rightarrow d \equiv -117 \equiv 235 \mod 352$.
The encryption of the message $M=41$ is
$E(M)=M^e \mod N = 41^3=117*41 = 105 \mod 391$
Exercise

- Implement in Octave the extended Euclid’s algorithm

Solution

```octave
function g = gcd_ext(a,b)
    if (b == 0)
        g = [1 0 a];
    else
        gp=gcd_ext(b,mod(a,b));
        g=[gp(2) gp(1)-floor(a/b)*gp(2) gp(3)];
    endif;
end
```
Assignment 02

Exercise 1.28 page 40 DPV
- In an RSA cryptosystem, $p = 7$ and $q = 11$.
 Find appropriate exponents d and e.

Assignment 02 (cont.)

Exercise 1.33 page 41 DPV
- Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running time of your algorithm as a function of n?
Assignment 02 (cont.)

Exercise

- Implement in Octave the algorithm you have found in the previous exercise to calculate the least common multiple.