Advanced Algorithms

Floriano Zini

Free University of Bozen-Bolzano
Faculty of Computer Science

Academic Year 2013-2014

Lab 3 – Solutions of assignment
Assignment 02

Exercise 1.28 page 40 DPV
- In an RSA cryptosystem, \(p = 7 \) and \(q = 11 \).
 Find appropriate exponents \(d \) and \(e \).

Solution
- We first calculate \((p-1)*(q-1)\) which in our case is \(6*10=60\).
 Then we need to come up with an \(e \) which is relatively prime to 60 so that it has an inverse \(d \).
 We observe that \(e = 11 \) has \(\gcd(11, 60) = 1 \) and \(11*11=1 \mod 60 \),
 therefore the values \(e=11 \) and \(d=11 \) are appropriate.
 Other good pairs are \((7, 43)\), \((13, 37)\), \((17, 53)\),
 \((19, 59)\), \((23, 47)\), \((29, 29)\),
 \((31, 31)\), \((41, 41)\).

Assignment 02 (cont.)

Exercise 1.33 page 41 DPV
- Give an efficient algorithm to compute the least common multiple of two \(n \)-bit numbers \(x \) and \(y \), that is, the smallest number divisible by both \(x \) and \(y \).
 What is the running time of your algorithm as a function of \(n \)?

Solution
- The least common multiple (lcm) of any two numbers \(x,y \) can easily be seen to equal \(\text{lcm}(x,y) = (x*y)/\text{gcd}(x, y) \).
 We therefore need \(\text{O}(n^3) \) operations to compute the gcd, \(\text{O}(n^2) \) operations to multiply \(x \) and \(y \),
 and \(\text{O}(2*n*n) = \text{O}(n^2) \) operations to divide.
 Total \(\text{O}(n^3) \) running time.
Assignment 02 (cont.)

Exercise

Implement in Octave the algorithm you have found in the previous exercise to calculate the least common multiple

```octave
function g = lcm(a,b)
    g=a*b/gcd(a,b);
end
```