Advanced Algorithms

Floriano Zini
Free University of Bozen-Bolzano
Faculty of Computer Science

Academic Year 2013-2014

Lab 2 – Exercises on algorithms with numbers
Exercise 0.1 page 8 DPV

In each of the following situations, indicate whether \(f = O(g) \), or \(f = \Omega(g) \), or both, i.e., \(f = \Theta(g) \). Justify your answer.

- **Hint:** you can
 - Apply the definitions of \(O(\cdot), \Omega(\cdot), \Theta(\cdot) \)
 - Apply the simplifications introduced in the lectures
 - Plot the graphics of the functions (e.g., using Octave)

<table>
<thead>
<tr>
<th>(f(n))</th>
<th>(g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (n - 100)</td>
<td>(n - 200)</td>
</tr>
<tr>
<td>(b) (n^{1/3})</td>
<td>(n^{2/3})</td>
</tr>
<tr>
<td>(c) (100n + \log n)</td>
<td>(n + (\log n)^2)</td>
</tr>
<tr>
<td>(d) (n\log n)</td>
<td>(10n \log 10n)</td>
</tr>
<tr>
<td>(e) (\log 2n)</td>
<td>(\log 3n)</td>
</tr>
<tr>
<td>(f) (10\log n)</td>
<td>(\log(n^2))</td>
</tr>
<tr>
<td>(g) (n^{1.1 n})</td>
<td>(n\log^2 n)</td>
</tr>
<tr>
<td>(h) (n^2 / \log n)</td>
<td>(n(\log n)^3)</td>
</tr>
</tbody>
</table>

Solution

a) \(n - 100 = \Theta(n - 200) \)
b) \(n^{1/2} = O(n^{2/3}) \)
c) \(100n + \log n = \Theta(n + (\log n)^2) \)
d) \(n \log n = \Theta(10n \log 10n) \)
e) \(\log 2n = \Theta(\log 3n) \)
f) \(10\log n = \Theta(\log(n^2)) \)
g) \(n^{1.01} = \Omega(\log^2 n) \)
h) \(n^2 / \log n = \Omega(n(\log n)^2) \)
Exercise

- Implement in Octave the function \texttt{fib1}, which calculates Fib_n recursively. Modify the program such that it displays all the calculated Fibonacci numbers.

```matlab
function f = fib1(n)
if (n == 0)
    f = 0;
    disp(sprintf("fib(%d)=%d",n,f));
elseif (n==1)
    f = 1;
    disp(sprintf("fib(%d)=%d",n,f));
else
    f=fib1(n-1)+fib1(n-2);
    disp(sprintf("fib(%d)=%d",n,f));
endif;
end
```

Exercise

- Implement in Octave the function \texttt{fib1}, which calculates Fib_n recursively. Modify the program such that it displays all the calculated Fibonacci numbers.

```matlab
function f = fib1(n)
if (n == 0)
    f = 0;
    disp(sprintf("fib(%d)=%d",n,f));
elseif (n==1)
    f = 1;
    disp(sprintf("fib(%d)=%d",n,f));
else
    f=fib1(n-1)+fib1(n-2);
    disp(sprintf("fib(%d)=%d",n,f));
endif;
end
```
Exercise

- Implement in Octave the function fib2, which calculates Fib_n iteratively

Solution

```matlab
function f = fib2(n)
f = ones(1, n);
for i = 3:n
    f(i) = f(i-1) + f(i-2);
endfor
```
Assignment 01

Exercise 0.1 page 8 DPV (cont.)

In each of the following situations, indicate whether \(f = O(g) \), or \(f = \Omega(g) \), or both, i.e., \(f = \Theta(g) \). Justify your answer.

Hint: you can
- Apply the definitions of \(O(.), \Omega(.), \Theta(.) \)
- Apply the simplifications introduced in the lectures
- Plot the graphics of the functions (e.g., using Octave)

\[
\begin{align*}
(i) & \quad n^{0.1} & (log n)^{10} \\
(j) & \quad (log n)^{log n} & (log n)^{n/\log n} \\
(k) & \quad \sqrt{n} & (log n)^{9} \\
(l) & \quad n^{1/2} & 5^{log_{10} n} \\
(m) & \quad n^2 & 3^n
\end{align*}
\]

Assignment 01 (cont.)

Exercise

With reference on exercise 0.4 on page 9 of DPV, implement in Octave a function \(fib3 \) that calculates the \(n \)-th Fibonacci number using matrices

\[
\begin{pmatrix}
F_n \\
F_{n+1}
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}^n \begin{pmatrix}
F_0 \\
F_1
\end{pmatrix}.
\]
Assignment 01 (cont.)

Exercise 1.7 page 39 DPV

How long does the recursive multiplication algorithm take to multiply an n-bit number by an m-bit number? Justify your answer

```
function multiply(x, y)
    Input: Two n-bit integers x and y, where y ≥ 0
    Output: Their product
    if y=0: return 0
    z = multiply(x, y/2)
    if y is even:
        return 2z
    else:
        return x + 2z
```