MAGIK: Managing Completeness of Data

Ognjen Savkovic

Joint work with Werner Nutt, Sergey Paramonov and Mirza Pramita

Outline

Introduction

Motivation examples

TC-QC encoding into ASP

System architecture

Introduction

- Goal: To automate the reasoning about query completeness using completeness statements (meta-data).
- Try out the system!

```
http://magik-demo.inf.unibz.it/test-version-2/
GO: Start demo >
    Connect to Database (select school in database schema mode).
```

Toy schema:

```
    pupil(<u>name</u>, level, code) ... pupils
    class(<u>level</u>, <u>code</u>, dept) ... every class belongs to a department
    langAtt(<u>name</u>, <u>language</u>) ... pupils attend language courses
```

Example 1: Plain reasoning

Statement 1: "We are complete for all pupils"

Pupil (Name, Class, Level)

SELECT p.name
FROM pupil AS p

p.level='1'

WHERE

Question 1: Can we answer query 1 completely under the assumption of statement 1?

Statement 1: "We are complete for all pupils in the class 1a"

Pupil (Name, 1, a)

SELECT p.name
FROM pupil AS p
WHERE p.level='1'

Question 2: Can we answer query 1 completely under the assumption of statement 2?

Example 1: Plain reasoning

Statement 1: "We are complete for all pupils" Pupil (Name, Class, Level)

Query 1: "Who are the pupils at the 1st class?"

SELECT p.name
FROM pupil AS p
WHERE p.level='1'

Question 1: Can we answer query 1 completely under the assumption of statement 1?

Statement 1: "We are complete for all pupils in the class 1a" Pupil (Name, 1, a)

Query 1: "Who are the pupils at the 1st class?"

SELECT p.name
FROM pupil AS p
WHERE p.level='1'

Question 2: Can we answer query 1 completely under the assumption of statement 2?

Which tables are incomplete wrt Query 1?

What does MAGIK suggest to us (Incomplete tables)?

Example 2: Reasoning under finite domains (FD)

Statement 2: "We are complete for all pupils in the class 1a"

Pupil(Name, 1, a)

FD1: "Codes of the pupils' classes can be either 'a' or 'b'

pupil(code) IN {a,b}

Query 1: "Who are the pupils at the 1st class?"

SELECT p.name
FROM pupil AS p
WHERE p.level='1'

Question 3: Can we answer query 1 completely under the assumption of Statement 2 and FD1?

What is incomplete wrt Query 1? What MAGIK suggests to us (Incomplete tables)?

Example 3: Reasoning under foreign keys (FK)

Statement 3: "We are complete for French learners" langAtt(Name, frech)

FK1: pupil(level,code) REFERENCES class(level,code)

FK2: langAtt(name) REFERENCES pupil(name)

Query 2: "Which science student learns French?

```
SELECT p.name

FROM pupila AS p, class AS c, langAtt AS l

WHERE p.name=1.name AND l.lang='french'

AND p.level=c.level AND p.code=c.code

C.branch='science'
```

- Question 1: Can we answer query 2 completely under the assumption of Statement 3?
- Question 2: Can we answer query 2 completely under the assumption of Statement 3 and foreign keys FK1 and FK2 (*enforced)?

Problem statement

A table completeness (TC) statement:

Table: pupil(Name,Level,Code)

Condition: class(Level, Code, science), langAtt(Name, english)

The problem statement (TC-QC): Given $TC_1,...,TC_n$ and Q. Does is hold that for any partial databse (D^i,D^a),

If
$$(D^i,D^a) \models TC_1,...,TC_n$$
 then $Q(D^i) = Q(D^a)$

Razniewski&Nutt(VLDB'11) reduced the problem to query containment. The complexity of the problem ranges from PTIME to Π^P_2

Our contribution:

- However they didn't show how to implement the TC-QC entailment.
- Additionally, we consider the impact of Schema Constraints, like Foreign key and Finite Domains on TC-QC entailment.

TC-QC encoding in ASP

Idea: simulate the classical characterization of query containment [Chandra and Merlin,'77] $Q_1 \subseteq Q_2$ iff $Q_2(D_{Q1})$ is not empty By encoding it into answer set programming (ASP).

Schema Constraints

-Foreign keys F [Johnson and Klug,'84]

Chase according F
Using Skolem terms

-Finite Domains Constraints (FDC)

f.e. student[gender] IN {male,female}

System Architecture

