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Abstract

Using ontologies for the conceptual modeling of a domain of interest is becoming
increasingly popular, since ontologies have a formal semantics based on Descrip-
tion Logics (DLs), and since they inherit from modeling languages (like UML)
intuitive constructors. Hence, also application scenario where ontologies are
proposed as a conceptual view over data repositories, are becoming more and
more popular. The idea is that the data underlying an application are encap-
sulated by an ontology interface, and all access to the data is done through the
ontology [10]. This scenario is called ontology-based data access (OBDA), since
the major concern is the efficient access to data through an ontology. Two major
inference tasks are of importance in OBDA, namely checking consistency of data
wrt an ontology, and answering queries by taking into account the ontology. An
important issue is whether the ontology layer introduces significant overhead in
dealing with the data, and a key desiderata is that the major inference tasks are
not harder (when measured in the size of the actual data) than they would be if
the ontology layer were not present. This property is ensured in the presence of
so-called FOL-rewritability. For this purpose, several DLs have been proposed,
and they are grouped under the DL-Lite family of logics [7].

In the OBDA scenario, the issues related to the use of actual datatypes (such
as those adopted in database management systems) essentially have been ne-
glected. This thesis aims to overcome this restriction and studies the problem
of introducing datatypes into the OBDA scenario. We introduce a formal lan-
guage over datatypes, that enables creating new datatypes from existing ones
using a comprehensive set of constructors. Additionally, we define the notion
of datatype lattice, constituted by a set of datatypes that can be freely defined
using the available constructors. We classify datatype lattices according to a
hierarchy of three classes (D0 ⊃ D1 ⊃ D2), based on the conditions that are
satisfied by the datatype lattice. Apart from the ontology language, we explore
adding datatypes to other parts of the OBDA scenario, in particular the query
language. Specifically, we introduce the language UCQD, which is obtained by
extending standard UCQs with datatype constraints. In this theoretical frame-
work we distinguish between three major components (DL+D+Q). The first
component is constituted by the ontology language DL, and includes also the
interface for combining ontologies with datatype lattices. The second compo-
nent is the class D of datatype lattices considered. The last component is a
query language Q, over ontologies and datatype lattices (DL + D). The main
technical contribution of our work consists in studying the properties of two
important instances of the OBDA framework, namely, DL-Lite(HF)

core +D1 +UCQ

and DL-Lite(HF)
core + D2 + UCQD. For both scenarios, we prove the property of

FOL-rewritability of query answering and satisfiability. We also show for both
cases that the given conditions over datatype lattices are necessary to preserve
FOL-rewritability of query answering.
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Chapter 1

Introduction

1.1 Description Logics

Description logics [7] (DLs) are a family of logic-based languages that are based,
on the one hand, on the idea of formal knowledge representation that employs
reasoning methods, and on the other hand, on the idea of describing a domain
of interests using more intuitive languages like semantical networks or UML.

The formal face of DLs is rooted in the area of Knowledge Representation and
Reasoning (KRR), a significant research field within Artificial Intelligence (AI).
KRR explores logic based approaches for storing the knowledge about a given
domain of discourse, and reasoning methods of inferring implicit consequences
from the explicitly represented knowledge. Semantics of DLs are based on the
FOL semantics. There is a great variety of different DL languages that are
designed by taking into account the trade-off between reasoning complexity and
description capabilities.

The ’humanistic’ face of DLs is rooted in Computer Science (CS) and comes
from a need to describe formal knowledge (machine readable) in a way intuitive
for humans, often refereed as Ontologies. Ontologies are used to formally de-
scribe the domain of interest by means of concepts (classes), which are unary
predicates that assemble objects of common properties, and roles (relationships),
which are binary predicates that establish connections between objects. To de-
scribe object properties of objects, ontologies use attributes, which are binary
predicates, that relate objects to datatype constants. Ontologies use standard
constructors of conceptual modeling to describe dependencies between concepts,
roles and attributes. Usually, the list of constructors includes is-a hierarchies
(i.e., inclusions), disjointness for concepts, roles and attributes, domain and
range constraints for roles and attributes, mandatory participation in roles and
attributes, functionality constraints, general numerical restrictions for roles and
attributes, etc.

An Ontology, also called as a Knowledge Base (KB), is described by a finite
set of terminological assertions (inclusion assertions or axioms) called TBox
and a finite set of facts, called ABox (extensional knowledge), about individual
objects, such as whether an object is an instance of a concept, whether two
objects are connected by a role, or whether an object is connected to a datatype
constant by an attribute. Terminological assertions impose restrictions that all
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object of the ontology have to obey. For example,

Student v ∃hasSupervisor .Professor

states that each object of a type Student has a supervisor that is a professor.
Student and Professor represent concepts that contain students and profes-
sors respectively. hasSupervisor represents a role that connects a student with
his/her supervisor.

Similarly, one can state a fact about an object in an ontology,

hasEmail(John, ”john@inf.unibz.ac.at”)

where the attribute hasSupervisor is used to state the fact that the object John
has an email ”john@inf.unibz.ac.at”.

Applications of the ontologies includs areas like: Conceptual Modeling [9,
3] (e.g. UML or ER diagrams), information and data integration [12, 11],
Ontology-based data access [19, 21] and the Semantic Web 1. OWL (Web Ontol-
ogy Language) 2 is a W3C ontology language standard initially developed for use
in the semantic web and now widely used both academically and commercially.

1.2 Motivation

1.2.1 Motivation for DL-Lite

The standard reasoning services over an ontology include checking its consis-
tency (or ontology satisfiability), instance checking (whether a certain individual
is an instance of a concept), and logic entailment (whether a certain constraint is
logically implied by the ontology. There have been many proposed DL languages
that successfully and efficiently implement these scenarios.

Figure 1.1: Conceptual schema used at a design
phase

However, in most of those
languages the size of the data
(ABox) and the size of the
constraints (TBox) are con-
sidered to be approximately
the same, and they are not
aimed at working with a large
amounts of data.

Note that application like
Information and Data Inte-
gration, the Semantic Web,
and most importantly ontology-
based data access (OBDA),
can be very data intensive,
which means that the size of
data significantly dominates
the size of the terminological
part.

1http://www.w3.org/standards/semanticweb/
2http://www.w3.org/TR/owl2-overview/
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The idea is to use ontologies as a high-level, conceptual view over data
repositories, allowing users to access data items without the need to know how
the data is actually organized and where it is stored. Besides providing the
conceptual view, an ontology serves the role of imposing constraints, i.e., any
legal data instance has to an conform with the ontology.

In the literature, those scenarios are named ontology-based data access
(OBDA) scenario, since their major concern is the efficient access to data
through an ontology.

Figure 1.2: Ontology used in a run time

The DL-Lite family of
DLs is aimed to be used in
describing conceptual models
effectively balancing between
expressive power on the one
side and the computational
complexity of the reasoning
services on the other side.
Notice that the more expres-
sive a language is the higher is
the computational complex-
ity of the inference tasks. The
reasoning services are infer-
ence methods that should be
sound and complete wrt rea-
soned problem.

Conceptual models are
formal conceptualization of a
domain of interest. For exam-
ple, in the context of data integration where a DL is used to describe depen-
dences between sources and possible data incompleteness. The expressive power
is reflected in the capability to formally capture the intensional meaning of the
described domain. It was shown that DL-Lite family of DLs can be used to
formalize modeling languages like UML class diagrams or Entity-Relationship
diagrams [10].

In the common settings, conceptual schema are only used in the design
phase. Once a logical schema is built, one can start querying the underlying
data repository (Fig. 1.1), end, the conceptual schema is not considered any
more.

The idea with OBDA, is to present a user a conceptual view of the data,
that is more ”human” readable and at the same time to wrap (hide) the real
structure and organization of the data. One benefit is that OBDA can simplify
maintenance of the information system, as the user only considers the concep-
tual model. In addition to, for example views in database systems, OBDA
is semantically based, which facilitates formal integration with other systems.
Finally, the OBDA successfully deals with incomplete information.

The goal is to allow answering queries to the ABox with the constraints
in the TBox taken into account (Fig. 1.2) .The queries that are considered
are First-order Logic (FOL) conjunctive queries (CQs), which correspond to
the commonly used Select-Project-Join SQL queries. The idea is to benefit
from already existing highly optimized relational technology for query answer-
ing. That is achieved by rewriting a query into SQL considering only the ter-
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minological part (TBox), and evaluating the rewritten SQL query against the
extensional part stored in a relational database.

The notion of FOL-rewritability of CQ answering ensures the desired prop-
erty, that by rewriting into SQL are obtains a query that when evaluated over
the extensional data only, returns the certain answers to the original query. Un-
fortunately, not every DL will enjoys FOL-re and hence is not suitable OBDA.
Most commonly a DL will need to rewrite a CQ query into a language of higher
expressibility than FOL queries (f.e. recursive datalog). Consequently, we can’t
benefit from existing relational database technology.

The DLs that allows for FOL-rewritability of CQs are logics from the DL-Lite
family. Moreover, the property will hold even for Union of Conjunctive Queries
(UCQs).

Recently, the W3C consortium had defined OWL 2 QL 3 , as a one of three
profiles in OWL 2, that is designed for applications that are data extensive
and for which query answering is the major task. The OWL 2 QL profile is a
syntactical restriction on the full OWL 2 language and corresponds to DL-LiteR,
a DL-Lite family member.

1.2.2 Datatypes in the DL-Lite family

DL-Lite family members have been widely investigated [4] and more than 40
different logics of this family have been introduced. They are structured in the
taxonomy, considering expressibility and their computational properties.

However, no significant attention has been made towards introducing datatypes
in the DL-Lite family. We distinguish three issues relating datatypes in DLs

• The first one in an interface that a DL language provides to establish
the connection between datatypes and other ontology constructors. This
includes for example, constructor to a range restriction over an attribute:

Rng(hasName) v xsd : string

it constrains an attribute hasName, so that the second component can
only by of type xsd : string, and not xsd : integer for example.

Seeing more widely, a DL interface towards datatypes includes addressing
datatypes in all reasoning methods related to the DL. For instance, we
can consider CQ answering with numerical restrictions:

q(x) : −∃y.Student(x), hasAge(x, y),≥26 (y)

A CQ q should return students that are twenty-six years old or older.

• Secondly, an ontology language in addition to a language for modeling
objects, should provide a language for modeling datatypes. For example,
creating new datatypes using the defined datatypes or by enumerating
the datatype elements. Additionally, most of the standard datatypes, like
integers and strings, contain predefined constructors (facets) which defines
restrictions over the original datatypes. For example, numerical datatypes
provide facets like {<n,≤n,≥n, >n, 6=n}, maxlen(n) (the maximal number

3http://www.w3.org/TR/owl2-profiles/#OWL 2 QL
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of digits), minlen(n) (the minimal number of digits), while string datatype
is commonly restricted using regular expressions. An example of facets
application could be:

dt : adultAge ::= xsd : integer[≥18],

dt : emailAddress := xsd : string[RegExpr([0− 9A− Z] + @[0− 9A− Z.]+)],

where dt : adultAge is a new datatype defined as a restriction on integers
that are greater or equal 18, and dt : emailAddress is a new datatype that
admits only correctly formated email addresses.

The goal is to utilize existing facets functions and to introduce other
datatype constructors, to obtain a comprehensive datatype modeling lan-
guage, that adopts common standards in creating datatypes.

• Datatypes assigned to a DL will possess certain characteristics. For exam-
ple, values from datatype xsd : decimal are contained in datatype owl : real,
while owl : real and xsd : string will have no common values.

We realize that internal relations between datatypes have consequences
on reasoning methods over the ontology. For example,

Professor v ∃officeNum.xsd : string Rng(officeNum) v xsd : nonNegativeInteger

will imply that Professor v ⊥ considering that, xsd : stringuxsd : nonNegativeInteger v
⊥. Depending on the reasoning method, datatypes can cause more sophis-
ticated issues. For instance, if we have a finite datatype dt : colors := {red, blue, green},
then using inclusions

Vartex v ∃hasColor , Rng(hasColor) v dt : colors, (funct hasColor)

we can simulate graph coloring. Then we pose a CQ

q() : −∃x1, x2, y.Edge(x1, x2), hasColor(x1, y), hasColor(x2, y)

over the ontology that contains graph edges and vertices. If the answer is
true it means that for every positive extension of the ABox (that includes
color assignments as well) we have adjustment vertices with the same
color. In other words, the query answering problem is at least as complex
as 3-colorability, a computationally hard problem.

In this sense, merging datatypes with a certain DL has to be done carefully.
In the best case, we would like to characterize necessary and sufficient
conditions over datatypes wrt reasoning methods so that the complexity
remains in the assumed boundaries.

In the DL-Lite family datatypes were introduced with DL-LiteA, with a
strong condition that datatypes assigned to a DL-LiteA logic are pairwise dis-
joint (over the values). Practically, it means that we can’t have owl : real and
xsd : integer in a DL-LiteA ontology, because xsd : integer v owl : real. The at-
tribute interfaces allow range restriction for an attribute (e.g., Rng(hasSalary) v
xsd : nonNegativeInteger), mandatory attribute participation (e.g., Professor v
∃hasSalary), and typed attribute participation (e.g., Professor v ∃hasSalary .xsd : nonNegativeInteger).
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Recently a DL-Lite logic named DL-LiteHNAcore [5] has been proposed, with the
aim of extending interface that connects datatypes and the abstract components
of the logic. In addition to the DL-LiteA interface, it provides constructors for
expressing that two datatypes are disjoint (e.g., T1uT2 v ⊥), that one is a sub-
type of another one (e.g., T1 v T2), that an attribute is universally restricted
for a datatype (e.g., B v ∀U.Ti) and that a datatype constant belongs to a
datatype (e.g., Ti(vj)).

However, datatypes in DL-LiteHNAcore can not be considered predefined , and
from the logic point of view can be treated as special concepts, with the restric-
tion that only attributes can range over them (more discussion on this in the
section 3.1)

We argue, that there is an essential semantical difference between datatype
constant and objects constants. The meaning (interpretation) of a datatype
constant is fixed and given in advance (predefined), while object constants can
change their semantics depending on the interpretation. For example, an as-
sertion hasAge(John, ”25”∧∧xsd : int) 4 states that object John is 25 years old.
While an object John has potential to be considered (interpreted) as any person
with name John ( e.g., as a professor or as a student), ”25”∧∧xsd : int has to be
considered (interpreted) as the integer number twenty-five.

1.3 Aims and Results

The main aim of the thesis is to propose a language for describing datatypes
and to introduce such a language in the DL-Lite family, while exploring the
computational effects on the desired properties. The main computational prop-
erties of our concern are FOL-rewritability of ontology satisfiability and FOL-
rewritability of query answering. Concerning the query language we are not
binding ourselves to UCQs only, and we consider more expressive query lan-
guages that includes datatypes restrictions.

The contributions of the thesis include:

• We introduce a language over datatypes, aimed to define new datatypes
from the already existing ones. The language defines the syntax and se-
mantics of a datatype, that in a such a way that is compatible with FOL
semantics. New datatypes can be defined as sub-types by constraining
functions (facets) defined over the original datatypes. Additionally, a new
datatype can be built combining different datatypes using predefined con-
structors.

Finally, we define the notion of datatype lattice, a set of datatypes, that
can be freely defined using the available constructors. that is self contained
wrt the definitions of datatypes. We classify datatype lattice, in three
classes named D0, D1, and D2 (D0 ⊃ D1 ⊃ D2), based on the conditions
that a datatype lattice satisfies or not.

• We define a theoretical framework for OBDA and identify three major
components (DL + D +Q). The first component is a language DL, that

4”literal sting”∧∧datatype name is a RDF format for presenting typed constants (literals)
in a RDF ontology.
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describes the ontology language as well as an interface for combing on-
tologies with datatype lattices. The second component is the class D of
datatype lattices assigned to the DL. The Last component is a query
language Q.

Eligible candidates for the OBDA framework will be triples DL+D +Q
that are FOL-rewritable, i.e., where given a query from Q we can rewrite it
in a FOL query, called perfect reformulation, using only the terminological
part of an ontology. Answers of the perfect reformulation evaluated against
ABox should match the answers of the original query evaluated over the
ontology (model theoretical approach, Def., 12 ).

• Finally we present two significant instances of the OBDA framework.
The first instance is DL-Lite(HF)

core + D1 + UCQ. For the second instance,

DL-Lite(HF)
core +D2 + UCQD, we explored adding datatypes in a query lan-

guage. Specifically, we extend the standard UCQs with datatype con-
straints, and obtain a query language UCQD. Most importantly, for both
instances we proved FOL-rewritability of query answering. Conversely, we
show that in both cases the conditions over datatype lattices are necessary
to preserve FOL-rewritability.

In other words, if we allow datatype lattices of type D0 in the case of
DL-Lite(HF)

core +D1+UCQ then the OBDA framework is not FOL-rewritable

any more. The same holds in the case of DL-Lite(HF)
core +D2 + UCQD if the

datatype lattices are of type D0 or D1 instead of D2.

1.4 Structure of the thesis

In the following we describe the structure of the rest of the thesis.

Chapter 2: Preliminaries. In this chapter, we introduce basic definitions
regarding computational complexity. Also we present the syntax and semantics
of FOL queries. Afterwards, we introduce the most common constructors in
the DL-Lite family and we define their semantics. Then, we present in more
detail CQs and UCQs, together with their basic properties. Finally, we formally
define the notion of query answering over ontologies by means of certain answers.

Chapter 3: Datatypes. This chapter contains two parts. In the first part we
are discussing about datatypes from two points of view. One is a brief history
of datatypes in DLs in general. The other one, is a brief review of datatypes in
semistructured languages like XML, RDF and OWL. In the second part, we in-
troduce a formal language over datatypes, that enables creating new datatypes
from existing ones using a comprehensive set of constructors. We also provide
a semantics for the language constructors. Finally, we introduce the notion of
datatype lattice, a set of datatypes, that contains declarations of primitive (ab
initio) datatypes together with the definitions of datatypes derived from them.
Also we classify datatype lattices according to certain restrictions over them.

Chapter 4: OBDA framework. This chapter identifies the theoretical bases
for the OBDA scenario. Firstly, we present a DL-Lite common interface for con-
necting ontology elements (in particular attributes) with datatypes (denoting
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it DL + D), and we define its semantics. Secondly, we extend the definitions
of certain answers and FOL-rewritability to a three component framework, de-
noted with DL + D + Q. Here, DL stands for a DL language, D stands for a
datatype class, and Q stands for a query language. Lastly, we introduce new
query language, called Union of Conjunctive Queries with datatypes (UCQD),
that extends UCQs. We provide a formal semantics for it.

Chapter 5: OBDA framework DL-Lite(HF)
core +D1 +UCQ. This chapter con-

tains two parts. In the first part, we are proving that DL-Lite(HF)
core +D1+UCQ is

FOL-rewritable. This is done in two steps. Firstly, by showing that satisfiability
is FOL-rewritable in DL-Lite(HF)

core +D1. And secondly, by constructing the per-
fect reformulation of a UCQ for a satisfiable ontology. In the second part, we are
proving that the conditions over datatype lattices in DL-Lite(HF)

core +D1 + UCQ

are necessary. In other words, FOL-rewritability of DL-Lite(HF)
core +D1UCQ will

be lost if we violate them.

Chapter 6: OBDA framework DL-Lite(HF)
core + D2 + UCQD. In this chap-

ter we take an approach that is similar to the one in the previous chapter.
FOL-rewritability of satisfiability of DL-Lite(HF)

core + D2 ontologies directly fol-

lows more general case of DL-Lite(HF)
core + D1 satisfiability. Then we extend the

algorithm , that for a given UCQD constructs a perfect reformulation over a sat-
isfiable DL-Lite(HF)

core + D2 ontology. Finally, we show that the conditions over
the datatype lattices in D2 are necessary in order to have FOL-rewritability

of query answering in DL-Lite(HF)
core +D2 + UCQD.

Chapter 7: Conclusions and Future work. This last chapter presents
some conclusions of the work carried out in this thesis. It includes also some
future paths of research on the topics concerning the thesis.
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Chapter 2

Preliminaries

In the following chapter we introduce the syntax and semantics of FOL queries,
together with the common constructors in DL-Lite family. Then we present in a
more detail CQs and UCQs. Finally, we define the notion of query answering over
ontologies by means of certain answers. We start with computational complexity
that appears in all notions listed above.

2.1 Computational Complexity

In this thesis, we will make use of some complexity classes and their properties.
We will assume that a reader is familiar with the basic notions of computational
complexity. For the formal definitions of computational complexity classes we
refer to some standards textbooks on computational complexity, like [18].

Complexity classes that are important for the DL-Lite family are presented
in the relationship chain:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ ExpTime

where ⊆ states that it is not known whether an inclusion is strict, while ( states
that an inclusion is strict. In addition, it is known that PTime ( ExpTime. For
DL-Lite, also important class is coNP, the class of problems that are complement
to the problems in NP.

Classes that are not often referenced are AC0, LogSpace, and NLogSpace.
We will try to introduce them in an informal way.

A (decision) problem belongs to LogSpace if it can be decided by a two-tape
(deterministic) Turing machine that receives its input on the read-only input
tape and uses a number of cells of the read/write work tape that is at most loga-
rithmic in the length of the input. The complexity class NLogSpace is defined
analogously, except that a nondeterministic Turing machine is used instead of
a deterministic one. Two most prominent problem that are in NLogSpace-
complete but not in AC0 are directed graph reachability (or st-reachability)
and 2-SAT.

A LogSpace reduction is a reduction computable by a three-tape Turing
machine that receives its input on the read-only input tape, leaves its output on
the write-only output tape, and uses a number of cells of the read/write work
tape that is at most logarithmic in the length of the input.We observe that
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most reductions among decision problems presented in the computer science
literature, including all reductions that we present here, are actually LogSpace
reductions.

For the formal definition of AC0 we refer the reader to [23]. Here we will
describe basic intuition. A problem is in AC0 if it can be decided in a constant
time using a number of processors that is polynomial in the size of the input. In
order words, a problem can be efficiently parallelized. The most prominent AC0

member, is the evaluation of First-Order Logic (FOL) queries over relational
databases, where only the database is considered to be the input, and the query
is considered to be of a fixed size.

This is the main assumption of relational database effectiveness, because
SQL queries (without aggregation) correspond to FOL queries. The key of the
assumption is that the SQL query size is neglectable comparing to the size of
the database. Moreover, the same assumption is applied for Ontology-Based
Data Access framework.

On the other hand, we will often exploit the fact, whenever a problem is
shown to be a hard problem for a complexity class that strictly contains AC0

(e.g. NLogSpace), then it cannot be reduced to the evaluation of First-Order
Logic queries.

2.2 Query answering in databases

Nowadays, relational databases are de facto standard for storing and querying
large amounts of data. In this sense, we would like to define a simple logic
formalism for relational representation. For a moment we will assume that all
constants and values that appears in a database instance (shorter instance)
are from a common domain (a universe). In addition we need to define a query
language, a language for declaration of queries. A query should be a deceleration
that specifies what to extract from a database, but not and how. 1 For our
purposes, First Order Logic (FOL) queries will be the most expressive query
language that we consider. We define basic notations.

First-order logic queries. We assume a fixed vocabulary V that contains
infinite sets of variables Vars = {x1, x2, . . .}, constants Const = {c1, c2, . . .},
functional symbols Fun = {f1, f2, . . .}, and predicate symbols Pred = {P1, P2, . . .}.
For each natural number n we have infinitely many functional symbols and pred-
icate symbols of arity n. In addition we have logical connectors ¬ (”negation”),
∧ (”and”), ∨ (”or”), → (”imply”) and ↔ (”equal”) and two quantifiers ∀ (”for
all”) and ∃ (”exists”).

We define sets of Terms and Formulas recursively. Terms contains all vari-
ables and constants. If t1, . . . , tn ∈ Terms then also f(t1, . . . , tn) ∈ Terms. Let
t1, . . . , tn ∈ Terms and P a predicate symbol of arity n. Then P (t1, . . . , tn) ∈
Formulas. If φ, ψ ∈ Formulas then also ¬φ, ∃x.φ, ∀x.φ, φ ∧ ψ, φ ∨ ψ, φ →
ψ, φ ↔ ψ ∈ Formulas, where x is a variable that appears in φ and it is not
quantified (no ∃x nor ∀x appears in φ).

A FOL interpretation over a vocabulary V is a pair I = (∆I , ·I), where
∆I is an interpretation domain (a set of objects, the universe) and ·I is an
interpretation function that interprets predicates and function symbols s.t. for

1The most of the material in this section is adopted from the prof. Calvanese lecture notes
on the course Knowledge Representation and Ontologies., academic year 2010/2011
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each constant c : cI ∈ ∆I , for each function f with arity n, fI : (∆I)n → ∆I ,
and for each predicate P with arity n, P I ⊆ (∆I)n.

We define a variable assignment α : Vars → ∆I that maps all variables into
the universe. Naturally, α can be extended to an arbitrary term with α(c) = cI

and α(f(t1, . . . , tn)) = f(α(t1), . . . , α(tn))I .
Finally we say that a FOL formula φ is true in an interpretation I = (∆I , ·I)

wrt an assignment α (we write I, α |= φ) if:

I, α |= P (t1, . . . , tn) if (α(t1), . . . , α(tn)) ∈ P I

I, α |= t1 = t2 if α(t1) = α(t2)

I, α |= ¬φ if I, α 6|= φ

I, α |= φ ∧ ψ if I, α |= φ and I, α |= ψ

I, α |= φ ∨ ψ if I, α |= φ or I, α |= ψ

I, α |= φ→ ψ if I, α 6|= φ or I, α |= ψ

I, α |= φ↔ ψ if I, α |= φ iff I, α |= ψ

I, α |= ∃x.φ if exists a ∈ ∆I : I, α[x 7→ a] |= φ

I, α |= ∀x.φ if for all a ∈ ∆I : I, α[x 7→ a] |= φ

where α[x 7→ a] is the same as α except it maps x to a.
Also we say that a variable x is free in a formula φ if ∃x or ∀x doesn’t appear

in φ. A formula φ is open if it contains some free variables, otherwise way say
it is a closed formula.

Finally, we say that a FOL query is an (open) FOL formula. Now let
x1, . . . , xn be free variables in φ then we denote an assignment α that is ”rele-
vant” for φ as 〈a1, . . . , an〉 which means that for each i : α(xi) = ai. Given an
interpretation I, the answer to a query φ , denoted as φI , is:

φI := {(a1, . . . , an)| I, 〈a1, . . . , an〉 |= φ}

Query evaluation. Assume that a DB instance is a finite set of tuples. In
addition, a query φ contains only finitely many functional symbols and predi-
cates. So for a moment we consider finite interpretation I (finite domain ∆I).
We define complexity of a problem I, α |= φ based on the input:

- The combined complexity, where interpretation, tuple, and query are con-
sidered as the input: {〈I, α, φ〉|I, α |= φ}.

- The data complexity, where an interpretation and a tuple are considered
as the input (query is fixed): {〈I, α〉|I, α |= φ}.

- The query complexity, where a tuple and a query are considered as the
input (interpretation is fixed): {〈α, φ〉|I, α |= φ}.

2.3 Description Logic family DL-Lite

In the following we present common constructors of DL family DL-Lite, to-
gether with their semantics. Also we present CQs and UCQs in a more detail,
together with their properties. After that we introduce common inference tasks
in DL-Lite. Finally, we define the notion of FOL rewritability.

15



2.3.1 Syntax and Semantics

Logical expressions in DL-Lite family are carefully selected in order to express
the main features of conceptual modeling while keeping low the computational
complexity of the main reasoning tasks. The authors have defined more then
forty dialect of DL-Lite family[4] and the they are still introducing new ones [5].

Syntax

We adopt the definitions from [10].
A ontology vocabulary V is a set of symbols that contains:

- Infinite set of concept and role symbols: ΓVA : A1, A2, . . ., ΓVP : P1, P2, . . .
respectfully.

- Infinite set ΓVO of object constants: o1, o2, . . .

Using vocabulary elements we define more complex expressions. The nota-
tions are:

• A denotes an atomic concept, B a basic concept, C a general concept, and
>c the universal concept. An atomic concept is a concept denoted by a
name. Basic and general concepts are concept expressions whose syntax
is given at point 1 below.

• P denotes an atomic role, R a basic role, and Q a general role. An atomic
role is simply a role denoted by a name. Basic and general roles are role
expressions whose syntax is given at point 3 below.

1. Concept expressions are built according to the following syntax:

B −→ A | ∃Q
C −→ >c | B | ¬B | ∃Q.C

2. Role expressions are built according to the following syntax:

R −→ P | P−

Q −→ R | ¬R

3. Attribute expressions are built according to the following syntax:

V −→ U | ¬U

Inclusion assertion allowed in DL-Lite(HF)
core are:

B v C E v F R v Q U v V

where positive inclusions (PIs) do not contain symbol ’¬’. Otherwise we call
them negative inclusions (NIs).

Functionality assertion in DL-Lite(HF)
core can be:

(funct R)
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Finally, membership assertions in DL-Lite(HF)
core that declares the instances

of concepts, roles and attributes have the form:

A(o) P (o1, o2)

where A is an atomic concept, P is an atomic role, o, o1 and o2 are from ΓVO. In-
clusion assertions and functional assertion are also called intensional assertions,
while membership assertions are called extensional assertions.

Definition 1. A DL-Lite(HF)
core TBox is T is finite set of inclusion assertions

and functional assertions, with condition that a role that appears in a functional
assertion can not appear on the right hind side of some role assertion (can not be

specialized). A DL-Lite(HF)
core ontology O is a pair (T ,A) where T is DL-Lite(HF)

core

TBox and A is a final set of membership assertions that each concept and role
that appears in A, appears in T as well. A is called DL-Lite(HF)

core ABox.

Semantics

We define semantics in the term of First Order Logic interpretations.

Definition 2. An DL-Lite(HF)
core intepretation I is a pair I = (∆I , ·I) where :

• As usual the interpretation domain ∆I is non empty set, called domain of
objects.

– for each object constant oi ∈ ΓVO, oIi ∈ ∆IO.

– for each two objects constants oi, oj ∈ ΓVO,

oi 6= oj −→ oIi 6= oIj (UNA)

– ·I assigns domain elements to concepts and roles from vocabulary V
s.t.

AI ⊆ ∆IO, P I ⊆ ∆IO ×∆IO

Based on that we evaluate other DL-Lite(HF)
core +D1 expressions in the

following way:

(¬B)I = ∆IO \BI (∃Q)I = {o|∃o′.(o′, o) ∈ RI}
(¬R)I = (∆IO ×∆IO) \RI (∃R.C)I = {o|∃o′.(o′, o) ∈ RI ∧ o′ ∈ CI}
(P−)I = {(o, o′)|(o′, o) ∈ P I}

Definition 3. Let I be a DL-Lite(HN )
core interpretation:

• We define semantics for the intensional assertions

I satisfies B v C if BI ⊆ CI

I satisfies Q v R if QI ⊆ RI

and

I satisfies (funct P ) if ∀oI , oI1 , oI2 ∈ ∆IO.(o
I , oI1 ), (oI , oI2 ) ∈ P I → oI1 = oI2
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• For membership assertions I

I satisfies A(o) if aI ∈ AI

I satisfies P (o1, o2) if (oI1 , o
I
2 ) ∈ P I

• Finally, we say that I satisfies (or is a model of it) DL-Lite(HF)
core ontology

O = (T ,A) if it satisfies all assertions in T and A.

We denote with I |= α for an assertion α (intensional or extensional) if I
satisfies α. Similarly, I |= T (resp. I |= A) when I satisfies all assertions in
T (resp.A). Finally, I |= O = 〈T ,A〉 if I |= T and I |= A.

We point out two important syntactical restrictions of DL-Lite(HF)
core . Namely,

DL-LiteHcore and DL-LiteFcore. The former does not contain functional assertions,
while the later does not allow role inclusions.

Unrestricted merging of those two logic gives a DL DL-LiteHFcore. DL-LiteHFcore,
has no conditions on potential interplay between role inclusions and functional
constraints. Since, it is more expressive logic then DL-Lite(HF)

core . In particular,
satisfiability of DL-LiteHFcore is not FOL-rewritable. More on this we elaborate in
the following.

2.3.2 Conjunctive Queries in DL-Lite

Conjunctive queries (CQs) are queries constructed as FOL queries φ using
conjunction (∧), existential quantifier (∃x), atomic concepts (A(t1)) , atomic
roles (P (t1, t2)) where t1 and t2 are terms. Formally:

t −→ x | oi
ϕ −→ ∃x.ϕ | ϕ1 ∧ ϕ2 | A(t) | P (t1, t2)

where φ is a proper FOL formula, 2 x is a variable and oi is a object constant.
To denote, CQ query we will use datalog notation:

q(~x) : −conj (~x, ~y)

where q names a query, called the head of query, and conj denotes the conjunc-
tion described above, called the body of a query. As usual, ~x represents a vector
of distinguishable variables 〈x1, . . . , xn〉, and ~y a vector of non-distinguishable
variables 〈y1, . . . , ym〉. Arity of a CQ query is the arity of ~x.

Union of Conjunctive queries with datatypes(UCQ), is a FOL query
that is constructed as a disjunction of CQs of the same arity:

q(~x) : −
∨

1≤i≤k

conj i(~x, ~yi)

We denote with q(~o) a formula obtained from q(x) by replacing ~x with ~o.
The complexities of the decision problems of interest for UCQs and FOL

queries are presented at table 2.1.

2in particular ∃xϕ can be written only if x exists in ϕ and it is unbounded. Additionally,
we assume that ∃x can appear at mostly once in a CQ.
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Combined complexity Data complexity Query complexity

UCQ NP AC0 NP

FOL query PSpace AC0 PSpace

Table 2.1: The decision procedures complexities for UCQ and FOL queries

Definition 4 (Homomorphism between a model and a CQ ). Given a CQs
q(x) = ∃y.conj(x, y) over interpretation I = (∆I , ·I), and a tuple o = (o1, . . . , on)
of objects of ∆I of the same arity as x = (x1, . . . , xn), a homomorphism from
q(o) to I is a mapping µ from the variables and constants in q(x) to ∆I such
that:

- µ(c) = cI , for each constant c in conj(x, y),

- µ(xi) = oi, for i ∈ {1, . . . , n}, and

- (µ(t1), . . . , µ(tn)) ∈ P I , for each atom P (t1, . . . , tn) that appears in conj(x, y).

Theorem 1. Given a CQ q(x) = ∃y.conj(x, y) over an interpretation I =
(∆I , ·I), and a tuple o = (o1, . . . , on) of objects of ∆I of the same arity as
x = (x1, . . . , xn), we have that o ∈ qI if and only if there is a homomorphism
from q(o) to I.

Definition 5 (Certain answers of UCQs). Let O be a DL-Lite(HF)
core ontology and

q a UCQ over O. A tuple ~c of constants appearing in O is a certain answer to q
over O, written ~c ∈ cert(q,O), if for every model I of O, we have that cI ∈ qI .

2.3.3 Inferencing

Traditionally, in the most of DLs there are some reasoning services of interest.
In addition in DL-Lite family we are interest also in checking (funct f) and
answering (U)CQ [10]. So the problems include:

• Ontology satisfiability, i.e., to check whether for a given ontology exists at
least one model.

• Concept or role satisfiability, i.e., given a TBox T and a concept C (resp.,
a role R or an attribute U), verify whether T admits a model I such that
CI 6= ∅ (resp., RI 6= ∅).

• Logical implication, i.e. to check whether an ontology O(resp. T ) logically
implies assertion α, is to check if for every model I of O(resp. T ) is also
a model for α. We write shortly O |= α (resp. O |= α). In particular we
intresting in following sub-problems:

– instance checking, i.e., given an ontology O, a concept C and a con-
stant o (resp., a role R and a pair of object constants o1 and o2 ),
verify whether O |= C(o) (resp. O |= R(o1, o2));

– subsumption of concepts and roles i.e., given a TBox T and two
general concepts C1 and C2 (resp., two general roles R1 and R2),
verify whether T |= C1 v C2 (resp.,T |= R1 @ R2);
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– checking functionality, i.e., given a TBox T and a basic role R, verify
whether T |= (funct R).

In addition we are interested in:

• Query answering, i.e., given an ontology O and a query q (either a CQ or
a UCQ) over O, compute the set cert(q,O).

The following decision problem, called recognition problem, is associated to
the query answering problem: given an ontology O, a query q (either a CQ
or a UCQ), and a tuple of constants o of O, check whether o ∈ cert(q,O).
When we talk about the computational complexity of query answering, in fact
we implicitly refer to the associated recognition problem.

We point out that the problems of concepts and roles satisfiability , as well
as the problems related to logical implication, can be reduced to the problem
of ontology satisfiability in DL-Lite(HF)

core . Additionally, the problem of ontology

satisfiability can be reduced to the problem of CQ answering in DL-Lite(HF)
core .

The proves of the reductions can be found in [10]. Since, in the thesis we will
focus only on the problems of ontology satisfiability and query answering over
the ontologies.

2.3.4 FOL-Rewritability notion

We define the notion of FOL-Rewritability as it is presented in [10].
Assume we are given a DL ABox A. Based on that we create an interpreta-

tion DB(A) = (∆DB(A), ·DB(A)) on the following way:

- ∆DB(A) is a union of all objects constants that appears in A

- oDB(A) = o for each object constant

- ADB(A) = {o|A(o) ∈ A}, for each atomic concept A,

- PDB(A) = {(o1, o2)|P (o1, o2) ∈ A}, for each atomic role P

Definition 6. Satisfiability in a DL DL is FOL-rewritable, if for every TBox
T expressed in L, there exists a boolean FOL query q, over the alphabet of T ,
such that for every non-empty ABox A, the ontology (T ,A) is satisfiable if and
only if q evaluates to false in DB(A).

Definition 7. Answering UCQs in a DL DL is FOL-rewritable, if for every
UCQ q and every TBox T expressed over L, there exists a FOL query q1, over
the alphabet of T , such that for every non-empty ABox A and every tuple
of constants t occurring in A, we have that t ∈ cert(q, (T ,A)) if and only if

tDB(A) ∈ qDB(A)
1

If a DL DL has a property of FOL-rewritability of satisfiability (resp., query
answering) it means that checking satisfiability (resp. query answering) can
be done by evaluating a FOL query over the ABox A. Practically this means
that if our ABox is stored in a relational database, we don’t have to import the
data to the main memory to check those tasks. This has a crucial effect on the
applicability if we imagine that we are working with a big ABox.

In theory this also reflected on the computational complexity issue. Ac-
cording to the definition a FOL query depends only on the TBox. Evaluating
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First-Order Logic queries (i.e. an SQL queries without aggregation) over a DB
is in AC0 complexity class, this means that our problem will be in AC0 as well.

On the other hand, to showing that a certain problem in a DL DL is not
FOL-rewritable, it is enough to show that data complexity of the problem is
above AC0, for example LogSpace-hard, NLogSpace-hard, PTime-hard, or
even coNP-hard.

We state the known result for DL-Lite(HF)
core .

Theorem 2. Ontology satisfiability in DL-Lite(HF)
core is FOL-rewritable. Answer-

ing UCQs in DL-Lite(HF)
core is FOL-rewritable.
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Chapter 3

Datatypes

In this chapter we are defining a formal language for describing datatypes, to-
gether with the language for constructing new datatypes. Also we characterize
the sets of datatypes, throughout the notion of datatype lattice, based on the
certain restriction.

Before the formal definitions, we motivate a reader, with two overviews on
datatypes appearances in the DLs as well as in the semistructured languages
like XML.

3.1 Datatypes in DLs and wider

We distinguish two axes of our concern that should guide us in the selecting
proper datatypes language. One is the applications of datatypes, and de facto
standards that have been defined for datatypes is Computer Science in languages
like XML, RDF, OWL and so forth, a practical side of datatypes. And the
second axis, a theoretical view, is the story of introducing datatypes in DLs so
far. We explain each, in a more detail.

Datatypes in Computer Science

Standardization of XML datatypes is based on general recommendations and
normatives for datatype declerations and usage presented by ISO specification
1 , so called General-Purpose Datatypes (GPD) paper. In essence GPD speci-
fies the nomenclature ( or terminology) and shared semantics for a collection of
datatypes commonly occurring in programming languages and software inter-
faces (like HTML, XML).

XML Schema Definition (XSD) of XML Datatypes 2 (XSD datatypes, or
XML datatypes), is a language specification for XML datatypes, that complies
with GPD recommendations. GDP provides very broad view on datatypes in
CS, and XSD adopts only a part of it. Nevertheless, XSD specification is a very
comprehensive set of datatype generators that operate over defined datatypes
(allowing creation of unions, vectors, tables,etc). The subtype (generator) is

1 ISO 11404: Information technology - General-Purpose Datatypes (GPD) (2007)
2 defined in document: http://www.w3.org/TR/xmlschema-2/
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most basic one as operates only over one datatype and it is used for decelera-
tions of other (common) datatypes. For example, XSD defines datatype integer
as a subtype of decimal. However, the presented intuition is not consistently
followed. For instance, the real numbers are presented with doubles and floats,
which are treated as disjoint sets, plus they are disjoint with decimals (and so
with integers). Despite this, XML datatypes are assumed as underling datatype
schema for the widely accepted Semantic Web languages, RDF and OWL.

According the W3C recommendation a XML datatype is characterized by a
triple (VS,LS,FS) where:

• LS denotes a lexical space, which is the set of valid literals (constants)
for a datatype

• VS denotes a value space. Each value in the value space of a datatype
is denoted by one or more literals in its LS.

• Finally FS is a set of facets. A facet is a single defining aspect of a VS.
Generally speaking, each facet characterizes a value space along indepen-
dent axes or dimensions.

Example 1 For example, an XML integer can be described with:

xsd : int := ({..., ”−1”∧∧xsd : int, ”0”∧∧xsd : int, ”1”∧∧xsd : int, ...}, {...− 1, 0, 1, ...}, {<,>, ...})
a

In order to visualize an idea of a datatype langugege, we present some of
the features of XML datatype language. According XML Schema Datatypes
Specification each datatype can be assigned to one of the three classes:

Atomic datatypes are those having values which are regarded by this specification
as being indivisible. They can be either primitive, like xsd : decimal or
derived, like xsd : nonNegativInteger.

List datatypes are those having values each of which consists of a finite-length
(possibly empty) sequence of values of an atomic datatype. For exam-
ple, if an order in a list is not relevant, a list datatype can be P(N),
a partial set of natural numbers, where underling atomic datatype is
xsd : nonNegativInteger.

Union datatypes are those whose value spaces and lexical spaces are the union
of the value spaces and lexical spaces of one or more other datatypes. For
example: number := xsd : float ∪ xsd : double ∪ xsd : decimal.

Another distinction can be made on:

Primitive datatypes are those that are not defined in terms of other datatypes; they
exist ab initio.

Derived datatypes are those that are defined in terms of other datatypes. For
example, derivation can be defined by restriction using facets:
xsd : nonNegativInteger := xsd : integer[≥0].

Finally we can distinguish between:
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Built-in datatypes are those which are defined by XML specification 3 , and can be
either primitive or derived. XML Schema Definition Language hierarchy
of built-in datatypes that is W3C recommended (at the moment of the
writing), is given on the Figure [3.1].

User-derived datatypes are those derived datatypes that are defined by individual schema
designers.

Additionally, the schema impose that each dataype should be characterized
by a unique namespace, so a full name of datatype is unique. It is a good prac-
tice that a namespace and the URI address where a datatype is specified is ex-
actly the same word. For example, the datatypes from the XML schema are re-
ferred with the namespace: http://www.w3.org/2001/XMLSchema-datatypes.

Figure 3.1: XML Schema Datatype Hierarchy of built-in datatypes

Still XSD recommendations doesn’t provide any semantics.
W3C recommendation for RDF datatypes 4 adopts XSD with ”natural”

semantics. In addition, RDF defines untyped literals, datatype constants that
are not assigned to any datatype.

On the other hand, W3C recommendation for OWL datatypes 5 has com-
bined approach. It partially adopts some XSD datatypes, but also introduce

3http://www.w3.org/TR/xmlschema-2/
4 http://www.w3.org/TR/rdf-concepts/#section-Datatypes
5 http://www.w3.org/TR/owl2-direct-semantics/

24



some new, by overloading already existing XSD datatypes. For example, it
recommends to use owl : real instead of xsd : double or xsd : float 6.

Enhancing the OWL1 datatypes support in OWL2, the authors propose a
richer language for defining new subtypes over existing one using facets 7. Also,
there is a support to express dependences between values on different attributes
using datatype equations.

Finally, OWL2 defines a sub-language (profile) OWL-QL, that guarantees
FOL-rewritability of so called select-project-join queries (CQs ). OWL2-QL
is based on a DL-Lite-family member DL-LiteR. It is a syntactical restriction
of full OWL2, and so it allows fewer datatypes than OWL2. The set of allowed
datatypes for OWL2-QL is selected ”...such that the intersection of the value
spaces of any set of these datatypes is either empty or infinite, which is necessary
to obtain the desired computational properties” 8

Datatypes in DLs

Datatypes in DLs were firstly introduced by KL-One [8] and so called Con-
crete domains. Concrete domain were more explored in connection with ALC
in [15]. Finally, they were introduced in a DL EL (EL++) [6], that similarly
to DL-Lite DLs has weak expressiveness and tractable computational proper-
ties. In the mentioned papers the philosophy of adding datatypes in DLs is the
same. Datatypes should be accessed throughout the interface provided by a DL.
The DL should impose sufficient restrictions to preserve desired computational
properties. Reasoning over datatypes is not a part of DL reasoning and should
be done by external reasoner.

For example, EL++ condition over the set of admissible datatypes is called
p-admissibility, which essentially constraint datatypes, (i) that satisfiability of
conjunctions of datatype restriction can be solved in polynomial time (e.g.,
(>, 10)∧(≤, 14)), and (ii) that if any conjunction of datatype constraints implies
disjunction of datatype constrains than it implies at least one disjunct (e.g.,
(>, 10)∧(≤, 11)→ (=, 10)∨(≥, 15) then (>, 10)∧(≤, 11)→ (=, 10) ). Datatypes
are accessed by predicates (of different arity n ≥ 1). Although such an approach
allows us to have very complex datatype predicates ( for example, like ”+” where
(x, y, z) ∈ + iff x+ y = z), the condition of p-admissibility is strong concerning
more common unary datatypes, for example integers.

As a consequence, OWL2 profile OWL2-EL, which underlying logic is EL++,
allows only equality as an integer constraint ( f.e. =n (x) and no comparisons
like {<,>,≥,≤}). In the paper [16] authors relaxed conditions (i) and (ii),
allowing inequalities in EL++ like {<,≤,≥, >} over the arithmetic datatypes,
but restricting based on the cases whether inequalities is appeared on the rhs
of an axiom (positive occurrence) or on lhs of an axiom (negative occurrence).

In DL-Lite family datatypes are introduced with DL-LiteA, with strong
condition that datatypes assigned to a DL-LiteA logic are pairwise disjoint
(over the values). The only type of assertion in which datatype can appear
is range restriction for an attribute (e.g. Rng(U) v Ti). Additionally, datatype
constant can appear in a CQ only throughout an attribute (e.g. in a CQ
q(. . .)← . . . U(x, v) . . .).

6 http://www.w3.org/TR/owl2-syntax/#Datatype Maps
7 http://www.w3.org/TR/owl2-primer/#Advanced Use of Datatypes
8 http://www.w3.org/TR/owl2-profiles/#OWL 2 QL
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A new DL-Lite family member named DL-LiteHNAcore [5] relaxes the condition
of datatype disjointness. In addition to DL-LiteA interface, we can express
that two datatypes are disjoint (e.g. T1 u T2 v ⊥), that one is a sub-type
of the other (e.g. T1 v T2), that an attribute is universally quantified (e.g.
B v ∀U.Ti) or that a datatype constant belongs to a datatype (e.g. Ti(vj)).

Finally, DL-LiteHNAcore assumes that the semantics of datatypes is predefined, i.e.
that each interpretation I obeys the semantics defined by a datatype (T Ii =
val(Ti) ⊆ ∆IV ).

Then two questions emerge. Firstly, if datatypes are predefined why the
modeling language defines assertion of the type T (vj) (e.g. xsd : integer(5)),
or T1 v T2 (e.g. xsd : integer v xsd : decimal) or T1 u T2 v ⊥. Secondly, the
reasoning methods presented in the proves considers only dependences between
datatypes provided in the TBox of the reasoning ontology. So, it doesn’t take
into account predefined datatypes dependences that are not specified in the
TBox, which also have influence on the reasoning outcome. Even more, the
modeling datatype language is not sufficient to capture arbitrary datatype de-
pendences
(f.e. xsd : integer ≡ xsd : nonNegativeInteger ∪ xsd : nonPositiveInteger).

OWL QL vs. DL-LiteR

OWL 2 QL profile is a syntactical restriction of OWL 2 full. Since, it doesn’t
adopt (UNA), although it is based on a DL-Lite member DL-LiteR, . Dropping
(UNA) assumption in the case of DL-LiteR doesn’t increase the complexity of
CQ answering (AC0). However, DL-Lite members like DL-LiteR or DL-LiteA
where constructor (funct P ) is allowed, dropping (UNA) will increase the data
complexity of CQ answering to NLogSpace. Consequently, CQ answering will
not be FOL-rewritable[10].

According W3C recommendation ...The OWL 2 QL profile is designed so
that sound and complete query answering is in LogSpace (more precisely, in
AC0) with respect to the size of the data (assertions), while providing many of
the main features necessary to express conceptual models such as UML class
diagrams and ER diagrams.

The main differences between OWL-QL and DL-LiteA are [10]:

• Unique name assumption(UNA)

• no (funct P ) nor (id B . . .) operators in OWL 2 QL

• OWL 2 QL posses roles restrictions like (symm P ) and (asym P ) that we
can not express directly using DL-LiteA syntax. On the other hand OWL
2 QL doesn’t have (funct P ) and (idB . . .) restrictions.

• Finally OWL 2 QL is binded to predefined datatypes. In particular
rdf : PlainLiteral, rdf : XMLLiteral, rdfs : Literal, owl : real, owl : rational, xsd : decimal,
xsd : integer, xsd : nonNegativeInteger, xsd : string, xsd : normalizedString, xsd : token,
xsd : Name, xsd : NCName, xsd : NMTOKEN, xsd : hexBinary, xsd : base64Binary,
xsd : anyURI, xsd : dateTime, xsd : dateTimeStamp, while in DL-LiteA datatypes
are not specified and they assumed to be disjoint. In addition, OWL-QL
contains constructor DataIntersectionOf.
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3.2 Datatypes language

In the following section we provide a language for describing datatypes and
for defining new datatypes using predefined constructors. Mostly inspired with
XML and RDF datatype schemas we will define notions of a datatype and
datatype lattice. Finally we define a language for constructing new datatypes,
and we classify datatype lattices.

In our vocabulary we use T1, T2, . . . , Ti, . . . to denote datatypes, LST1
,LST2

, . . . ,LSTi , . . .
to denote their lexical spaces, VST1

,VST2
, . . . ,VSTi , . . . to denote their values

spaces, FST1
,FST2

, . . . ,FSTi , . . . to denote their set of facets, respectfully. Ad-
ditionally we have infinite set of untyped literals u1, u2, . . ..

Definition 8. A datatype Ti is defined by a quadruple (LSTi ,VSTi ,FSTi , ·Ti)

• LSTi denotes set of constants that is called lexical space which is finite
or countably infinite.

• VSTi denotes set of values that is called value space that is disjoint from
LSTi

• FSTi denotes set of facets constructors that is called facet space. A facet
constructor is a function that depending of the type on the input accepts
either constants from LSTi , positive integers, or string as parameters and
returns a subset of VSTi .

• ·Ti is an interpretation function.

We assume that a datatype is normalized, i.e. ·Ti : LSTi and VSTi is a
bijection. Additionally for each facet FTi ∈ FSTi and it’s acceptable parameters
p1, . . . , pn (n = 0 if a facet arity is 0), the datatype defines (FTi(p1, . . . , pn))Ti ⊆
VSTi . An expression FTi(p1, . . . , pn) we call parametrized facet of datatype
Ti.

A facet expression Ti[φ] over a datatype Ti is a boolean expression φ where
φ is a recursively defined boolean formula using formulas of the form:

φ −→ >Ti |⊥Ti |FTi |¬φ1|φ1 ∧ φ2|φ1 ∨ φ2

where FTi is a parametrized expression of Ti. Finally the formula Ti[φ] =
(φ)Ti ⊆ VST is interpreted recursively using:

(>Ti)Ti = VSTi , (⊥Ti)Ti = ∅, (¬φ1)Ti = VSTi \ (φ1)Ti ,

(φ1 ∧ φ2)Ti = (φ1)Ti ∩ (φ2)Ti , (φ1 ∨ φ2)Ti = (φ1)Ti ∪ (φ2)Ti

To facilitate explanations, we define DL-like expressions to express some of
the possible relations between datatypes:

Ti v Tj if VSTi ⊆ VSTj

Ti v ¬Tj if VSTi ∩VSTj = ∅
Ti ≡ Tj if VSTi = VSTj

Tk ≡ Ti u Tj if VSTk = VSTi ∩VSTj

Tk ≡ Ti t Tj if VSTk = VSTi ∪VSTj

|Tk| = |VSTk |

(Notice that Ti v ¬Tj iff Tj v ¬Ti)
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Definition 9. A datatype can be either primitive or derived. Primitive
datatypes are those that are defined axiomatically and not in terms of other
datatypes. Derived datatypes are all others that are defined using primitive
datatypes.

A datatype Ti is a subtype of a datatype Tj if it is defined using expression:

Ti := Tj [φ]

where φ is a facet expression over Tj. Additionally, the value space of Ti is
defined by VSTi = Tj [φ], the lexical space is defined by set of new constants
LSTi = {lvTi | v ∈ Tj [φ]} and the facet set FSTi = FSTj .

A datatype range over datatypes {T1, . . . , Tn} is an expression ϕ recursively
defined using formulas of the form:

ϕ −→ Ti | Ti[φ] | {d1, . . . , dm} | ϕ1 t ϕ2 | ϕ1 u ϕ2 | ϕ1 \ ϕ2 | ϕ1 × ϕ2

where i ∈ {1, . . . , n}, {d1, . . . , dm} is a set of datatype constants from T1, . . . , Tn,
φ is a facet expression over Ti, × is a Cartesian product, and ϕ1 and ϕ2 are
data ranges.

A datatype T ′ is defined by a datatype range ϕ over datatypes {T1, . . . , Tn}
if it defined by expression:

T ′ := ϕ

Additionally, the value space of T ′ is defined by VST ′ = ϕT
′
, where ϕT

′
is

determined recursively:

TT
′

i = VSTi , (Ti[φ])T
′

= (Ti[φ])Ti ,

(ϕ1 t ϕ2)T
′

= (ϕ1)T
′
∪ (ϕ2)T

′
, (ϕ1 u ϕ2)T

′
= (ϕ1)T

′
∩ (ϕ2)T

′
,

(ϕ1 \ ϕ2)T
′

= (ϕ1)T
′
\ (ϕ2)T

′
, (ϕ1 × ϕ2)T

′
= ((ϕ1)T

′
, (ϕ2)T

′
)

The lexical space is a set of fresh constants:

LST ′ = {lvT ′ |v ∈ (ϕ)T
′
}

and FSTi = ∅.
A derived datatype Ti directly depends on a datatype Tj if it is a subtype of

Tj or Ti it is defined by a data range where Tj occurs.

Definition 10. A Datatype lattice D is defined with a finite set of datatypes
Ti = (LSi,VSi,FSi) (1 ≤ i ≤ n) and infinite set of untyped constants {u1, u2, . . .}.
Additionally, D determines a function ·D that complies with the semantics of
the datatypes, i.e. ·D =

⋃
i ·Ti Then ·D naturally extends to sets of literals, facet

expressions and range expressions.
Additionally we put constraint on D:

1. Each derived datatype in D is defined by datatypes from D, either by data
range or as a sub-type. In addition, dependency relation over datatypes in
D is acyclic.

2. for each two datatypes Ti and Tj in D their lexical spaces are disjoint:
LSTi ∩ LSTj = ∅ (strict typing).
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3. D contains an empty datatype ⊥D = (∅, ∅, ∅)

4. each untyped constant ui does not appear in any of lexical spaces in D
(ui 6∈

⋃
1≤i≤n LSTi). Also we define (ui)

D = ui 6∈
⋃

1≤i≤n VSTi . Lastly

for each two untyped constants ui and uj (i 6= j), (ui)
D 6= (uj)

D.

Each datatype lattice D′ defines a datatype domain ∆D:

∆D =
⋃

Ti from D′
TD

′

i ∪
⋃

ui from D′
uD
′

i

Comment 1. Not every datatype lattice D is a mathematical lattice, wrt
v as a partial order. Nevertheless, we can using presented datatype language
”complete” D to become a mathematical lattice, by defining new datatypes.
The construction of a datatype lattice can be done in the following way: At the
beginning we are given only primitive datatypes that are pairwise disjoint and
independent. Then we enrich the lattice with new datatypes using datatype
restrictions (facets and intersection), to obtain new ”sub-datatypes”. Finally,
using union and difference operators over datatypes we shape the lattice to
obtain desired lattice structure.

Comment 2. Untyped constants are involved mainly because of the two
reasons. The first is to avoid closed domain issue and the second is to enhance
language functionality in practice where not always we know the type of a
datatype constant.

According Lemmas 21. and 22., if domain of values is closed, i.e. for each
interpretation attributes can only take values from existing datatypes (∆V =⋃n

1=i VSTi), then CQD query answering (CQ with possible datatypes in it) is
not FOL rewritable.

Additionally, we want to avoid anomalies caused by an ongoing set of datatypes
in our datatype lattice. For instance , if we extend our logic with disjunction on
the rhs then, an assertion ∃U v ∃U.T1 t . . .t∃U.Tn is a tautology if a datatype
lattice (or a current standard like XML) have only datatypes T1, . . . , Tn. Then
if the lattice (or a standard ) is extended with a new dataype, the inclusion is
not tautology any more [17].

Secondly, in practical scenarios (like OBDA scenario) due to technical rea-
sons, the data are not complete and some datatype constants are not typed,
or they might be typed with unknown datatype. For this reason, we introduce
untyped constants in the lattice.

On a given datatype lattice D (with n datatypes) we define several conditions
that might hold or not.

(infinite) There exists no T1, . . . , Tk (1 ≤ k ≤ n) s.t. there have afinite number of

data values in common, i.e. exists natural number m ≥ 2 s.t. |
kl

i=1

Ti| = m.

(sup-union) There exists no Tsup and T1, . . . , Tk (1 ≤ k ≤ n) s.t.:
Tsup 6v Ti (for 1 ≤ i ≤ k) and every data value from Tsup belongs to some

Ti (1 ≤ i ≤ k), i.e. Tsup v
k⊔
i=1

Ti.
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(infinite-diff.) There exists no Tsup and T1, . . . , Tk (1 ≤ k ≤ n) s.t. Tsup 6v Ti (for
1 ≤ i ≤ k) and there are finitely many data values that are in Tsup but

not in Ti (1 ≤ i ≤ k), i.e. |Tsup \
k⊔
i=1

Ti| <∞.

(open-domain) There are infinitively many untyped values in D, i.e. for every ontology

over D and an interpretation I over the ontology, |∆IV \
n⋃
i=1

VSTi | = ∞

(see 4.1.2). Lattices with no or finitely many untyped values we denote
with D = {T1, . . . , Tn}.

Finally, we define different type of datatype lattices based on their properties:

(D0) Every lattice D is of the type 0 (no restrictions).

(D1) A datatype lattice D is of the type 1 if it obeys (infinite) restriction defined
above.

(D2) A datatype lattice D is of the type 2 if it obeys (infinite), (infinite-diff.),
(open-domain) restrictions defined above.

Notice that (infinite-diff.) implies (sub-union), but not other way round.
In order to simplify notations, we will use D (D′ or similar) to denote

datatype lattices of unspecified type, D0 (D′0 or similar) to denote datatype
lattices of type 0, D1 (D′1 or similar) to denote datatype lattices of type 1 and
D2 (D′2 or similar) to denote datatype lattices of type 2. With a abuse of nota-
tion, we will use D0,D1 and D2 to denote classes of type 0,1 and 2 respectfully.

Comment 1. Restrictions over datatype lattices are based on the question
what conditions a datatype lattice needs to satisfy in order to guarantee the
FOL-rewritability of a particular DL-Lite logic and a query language Q.

Comment 2. (open-domain) Strictly considering (open-domain) is not a

necessary condition for FOL-rewritability of DL-Lite(HF)
core +D1 +UCQ. However,

it is a necessary condition in the case of DL-Lite(HF)
core +D2 + UCQD (see lemma

22).
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Chapter 4

OBDA freamwork

In this chapter we identify the theoretical base for the OBDA scenario, called
OBDA framework. Firstly, we present DL-Lite common interfaces for connect-
ing ontology elements (in particular attributes) with datatypes (denoting it
DL + D). We define semantics for it. Secondly, we extend starting definitions
of certain answers and FOL-rewritability to a three component framework, de-
noted with DL + D + Q. Here, DL stated for a DL language, D stated for a
datatype language and Q stated for a query language. Lastly, we introduce new
query language, called Union of Conjunctive Queries with datatypes (UCQD),
that extends UCQs. We provide a formal semantics for it.

4.1 Adding datatypes to DL-Lite: DL+D
As it is discussed in the Section 1.2.2, datatypes and concepts as well as object
and data constants are essentially different wrt semantics. Also DL languages
are not suitable to describe datatypes, because they can’t capture the sophisti-
cated relations between predefined datatypes, like a finite number of elements in
a difference between two datatypes. The idea is that, reasoning over datatype is
done by external reasoning, which ontology reasoners call as a external function.

For this reason, both components, a DL language with datatype interface and
datatype language with own characteristics should be considered as orthogonal
issues in the light of the OBDA scenario.

4.1.1 Syntax

To introduce datatypes in DL-Lite family we extend the vocabulary V of DL-Lite(HF)
core ,

with infinite set of attributes ΓVU : U1, U2, . . . and the vocabulary of datatypes.
An attribute connects an object with its quantitative measure, represented
throughout some datatype value. 1

In particular, basic concepts and roles are defined with:

B −→ ⊥ | A | ∃R | ∃U

R −→ P | P−

1In OWL2 attributes are called data property
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A DL-Lite terminological assertion that we are interested in are of the form:

B v B, B v ¬B (concept inclusions (positive and negative resp.))

B v ∃R.B (quantified concept inclusions (positive)

R v R, R v ¬R (role inclusions (positive and negative resp.))

U v U, U v ¬U (attribute inclusions (positive and negative resp.))

B v ∃U.T (local datatype restrictions (inclusion))

Rng(U) v T (global datatype restrictions (inclusion))

(funct U), (funct R) (functional constraints)

(symm R), (asym R) (symmetric and asymmetric constraints resp.)

(refl R), (iref R) (reflexive and irreflexive constraints resp.)

where U states for an attribute and T for a datatype. Notice that, R1 v ¬R2

(U1 v ¬U2 resp.) and R2 v ¬R1 (U2 v ¬U1 resp.) are semantically equal (see
semantics later), so we use Disj(R1, R2) (Disj(U1, U2) resp.) to denote any of
them. We define for a basic role R− = Pi if R = P−i and R− = P−i if R = Pi.

All inclusion with the ”positive” in the name together with local datatype re-
strictions, and symmetric and reflexive constraints are called positive inclusions
(PIs). All the rest are negative inclusions (NIs).

A membership assertion in DL-Lite are of the form:

A(o1), P (o1, o2), U(o1, d1),

where o1 and o2 are object constant and d1 is a data constant (typed or untyped).
As usual, a TBox in some DL-Lite logic DL is a finite set of terminological

assertion, an ABox is a finite set of membership assertions, and a DL-Lite
ontology, O = 〈T ,A〉, is a pair of a TBox T and an ABox A.

Definition 11. Let DL be a DL-Lite DL and D datatype lattice type. The
logic DL+D is the logic obtained, extending DL with syntax constructors that
contains attributes and datatypes. Datatypes lattices that appear in DL+D logic
are datatype lattice of D type.

For example, DL-Lite(HF)
core + D1 represents a logic where DL-Lite(HF)

core logic
is extended with datatype lattice of type D1.

4.1.2 Semantics

An interpretation, I = (∆I , ·I), consists of a nonempty domain ∆I and an
interpretation function ·I . The interpretation domain ∆I is the union of two
non-empty disjoint sets, ∆I = ∆IO ∪ ∆IV , the domain of objects ∆IO and the
domain of values ∆IV .

We assume that all interpretations agree on the semantics assigned to each
datatype in some datatype lattice D. In particular, for an ontology DL + D,
defined over datatype lattice D′:

∆IV = ∆D′ =
⋃

Ti from D′
TD

′

i ∪
⋃

ui from D′
uD
′

i
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The rest, I interprets as usual, each object constant oIi ∈ ∆IO, each data

constant dIi = dD
′

i ∈ ∆ID (type or untyped), each atomic concept AIi ⊆ ∆IO,
each atomic role P Ii ⊆ ∆IO ×∆IO, and each atomic attribute UIi ⊆ ∆IO ×∆ID.
Additionally, object constants adopt unique name assumption (UNA): oIi 6= oIj ,
for i 6= j. Notice that (UNA) is not imposed over datatype constants.

Also we extend interpretations over datatypes and predefined concept, >Id =
∆ID, ⊥Id = ∅, >I = ∆IO, ⊥I = ∅, and :

(¬B)I = ∆IO \BI (∃R)I = {o|∃o′.(o′, o) ∈ RI}
(¬R)I = (∆IO ×∆IO) \RI (∃R.C)I = {o|∃o′.(o′, o) ∈ RI ∧ o′ ∈ CI}
(P−)I = {(o, o′)|(o′, o) ∈ RI} (∃U)I = {o|∃v.(o, v) ∈ UI}
(¬U)I = (∆IO ×∆IV ) \ UI (∃U.Ti)I = {o|∃v.(o, v) ∈ UI ∧ v ∈ TiI}

T Ii = TDi (Rng(U))I = {v|∃o.(o, v) ∈ UI}
¬T Ii = ∆IV \ TDi

Finally, let α1 v α2 be a terminological assertion, then I |= α1 v α2 if
(α1)I ⊆ (α2)I . Functional, reflexive, irreflexive, symmetric and asymmetric
constraints, or shortly role and attribute constraints, are interpreted:

I |= (funct R) if ∀o, o1, o2 ∈ ∆IO.(o, o1), (o, o2) ∈ P I → o1 = o2,

I |= (funct U) if ∀o ∈ ∆IO∀d1, d2 ∈ ∆IV .(o, d1), (o, d2) ∈ UI → d1 = d2,

I |= (refl R) if ∀o ∈ ∆IO.(o, o) ∈ RI ,
I |= (iref R) if ∀o ∈ ∆IO.(o, o) 6∈ RI ,
I |= (symm R) if ∀o1, o2 ∈ ∆IO.(o1, o2) ∈ RI → (o2, o1) ∈ (R−)I ,

I |= (asym R) if ∀o1, o2 ∈ ∆IO.(o1, o2) ∈ RI → (o2, o1) 6∈ (R−)I .

TBox T is a finite set of terminological assertions and role and attribute
constraints. I |= T if I models each assertion and constraint in T .

Membership assertions are interpreted in a usual way: I |= A(o) if oI ∈ AI ,
I |= P (o1, o2) if oI1 , o

I
2 ) ∈ P I and I |= U(o1, d1) if (oI1 , d

I
1 ) ∈ UI . I |= A if

I |= α for all membership assertions α from an ABox A.
Finally, I |= 〈T ,A〉 if I |= T and I |= A.
Comment. In DL-LiteA datatypes are considered pairwise disjoint. Obvi-

ously, ”disjointness” of the datatypes in DL-LiteA was condition that ensures
UNA over the datatypes. Once we have UNA over all constants in DL-LiteA
we can syntactically simplify DL-LiteA and investigate logic properties without
considering attributes. In DL+D we are preserving UNA over the object con-
stants, but not over datatype values. On the other hand, such relaxation have
to be chosen carefully in order to preserve FOL-rewritability of query answering.

Another motivation for abandoning UNA over the datatypes comes form the
practice. Some of those distinguishable datatype properties are presented 1.2.2.
Datatypes included in OWL2 are essentially XML datatypes which complies
with [1], and therefore they are not strictly disjoint.

Finally, in DL + D we are not binding to any specific set of datatypes,
but we are trying to put certain restriction on the datatype set, and then we
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are investigating consequences. Defined constructors follows generally accepted
standards in declaring datatypes and their behavior specified by [1].

Example 2 We present an example of an academic ontology, using DL-Lite
language constructors. We illustrate the descriptive capabilities of DL-Lite log-
ics. On the Fig. 2 is the UML picture of a modeling domain. Since, the domain
is described with DL language it adopts formal semantics, which can be used
to reason over it.

Using concept is-a inclusion we model a hierarchy of classes.

RegularStudent v Student RegularStudent v ¬PhdStudent

PhdStudent v Student RegularStudent v ¬Professor

PhdStudent v Employee Professor v ¬PhdStudent

Professor v Employee

Employee v Person

Student v Person

«Person»
-hasId: uniqueID
-hasName: string
-hasEmail: emailAddress

«Student» «Employee»
-officeNum: string
-salary: real
-emplId: string

«RegularStudent»
-studId: integer

«PhDStudent» «Professor»

0..*

1..*
    hasSupervisor

«Project»
projName :string
start: dateTime
end: dateTime
moneyFond: natural

0..*

1..1

leadBy0..1

0..*

projectInvolved

«disjoint»«disjoint»

0..*

0..*

worksOn

isColleague

0..n 0..1
name

   Symbol    |   Meaning

InstanceOf

Association

Figure 4.1: UML representation of the academy ontology

Using roles in concept inclusion we define range and domain restriction for
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them. Additionally using functionality we specify the multiplicity for the role.

∃hasSupervisor− v Professor (restriction on range)

∃hasSupervisor v Student ( restriction on domain)

∃Student v hasSupervisor (role domain multiplicity 1..* )

∃leadBy− v Professor (restriction on range)

∃leadBy v Project (restriction on domain)

∃Student v hasSupervisor

(funct leadBy) (role domain multiplicity 1..1 )

∃projectInvolved− v Project (restriction on range)

∃projectInvolved v Student (restriction on domain)

∃isColleague− v Person (restriction on range)

∃isColleague v Person (restriction on domain)

(refl isColleague) (collegialism is mutual)

Multiplicity 0..* is obtained without further restrictions.
Role inclusions are used to define more abstract relations.

projectInvolved v worksOn (students are involved)

leadBy− v worksOn (project leader are involved)

hasSupervisor v isColleague (collegiality in academia :)

Apart from the modeling ontological part of DL + D, we model datatypes
and adopts them based on the needs

academy : emailAddress := xsd : string[RegExpr(γ)]

academy : natural := xsd : integer[≥0]

academy : uniqueID := xsd : string t xsd : integer

where γ = \b[A-Z0-9._\%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\)] is a regular
expression that accepts only regular email addresses.

Finally we define attribute range for each attribute. Notice that, some at-
tributes are contained in others, but modeling data ranges we expend the data
range for a super attribute.

Rng(projName) v xsd : string Rng(studId) v xsd : integer

Rng(start) v xsd : dateTime Rng(officeNum) v xsd : string

Rng(end) v xsd : dateTime Rng(salary) v owl : real

Rng(moneyFond) v academy : natural Rng(emplId) v xsd : string

Rng(hasEmail) v academy : emailAddress Rng(hasName) v xsd : string

Rng(hasId) v academy : uniqueID

(funct projName) (funct studId)

(funct start) (funct officeNum)

(funct end) (funct salary)

(funct moneyFond) (funct emplId)

(funct hasId) (funct hasName)

emplId v hasId studId v hasId
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4.2 OBDA framework: DL+D +Q
FOL-rewritability is the major prerequisite that one logic has to satisfy in order
to be eligible candidate for the OBDA scenario. Traditionally, OBDA candidates
were explored only considering ontology language, while query language was
fixed (UCQ)[10, 4].

In order to construct a robust approach to OBDA, we identify three major
components of the notion of FOL-rewritability. That are a DL language DL,
datatype lattices of type D, and a query language Q. Such framework we denote
with DL+D +Q.

Let O = 〈T ,A〉 be a DL + D a ontology. An interpretation DB(A) =
〈∆DB(A), ·DB(A)〉 is obtained from an ABox A, as a minimal DL + D inter-
pretation (in inclusion sense) of an ontology O′ = 〈∅,A〉. In short, ∆IO =
{o|o is object constant that appears in A}, ADB(A) = {o|A(o) ∈ A} for each
atomic concept A, PDB(A) = {(o1, o2)|P (o1, o2) ∈ A} for each atomic role P .
Additionally, I adopts the semantics of datatypes and untyped constants de-
fined by D (∆IV = ∆ID) and for each atomic attribute U in A, UDB(A) =
{(o, dI)|U(o, d) ∈ A}.

Certain Answers. An ontology encodes the information that is very often
incomplete, in the sense that it can admit different models (interpretations),
and each model is plausible ”description” of the information presented in the
ontology.

Given a query q over an ontology O, different ontology models can produce
different answerers over the query. One legal view could be to consider a tuple
~o as an answer of evaluating the query over O, if there exists a modelM of the
ontology that evaluates ~o ∈ qM. From logical point of view, this is checking
whether the information q(o) contradict the information provided by ontology.

However, we are rather to take a conservative view, that ~o is an answer of
evaluating q over O if q(~o) is entailed by every model of O (infinite models ones
as well). Then we are certain that regardless of the real world model of O we
guarantee that ~o will be a correct answer. The idea comes from the

Information Integration [14].

Definition 12. Let DL + D be a DL, and O ontology form DL. Let Q be a
query language and q a query from Q over O. A tuple ~c of constants from O
is a certain answer wrt q, written ~c ∈ cert(q,O), if for every model I of O
holds ~cI ∈ qI .

The notion of FOL-rewritability of satisfiability is defined in preliminaries
and it can be applied to an arbitrary DL. However, we need to extend the
notion of FOL-rewritability of query answering, while we consider arbitrary
query language. Intuitively, eligible languages for FOL-rewritability of query
answering will be fragments of FOL query language.

Definition 13 (FOL-rewritability of DL+D+Q). Let DL+D be a DL language
extended with datatypes, and Q a query language. Answering Q queries in
DL + D is FOL-rewritable, or shortly DL + D +Q is FOL-rewritable, if for
every TBox T from DL and a query q from Q, there exists a FOL query qFOL,
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over the alphabet of T , such that for every non-empty ABox A and every tuple
of constants t occurring in A, we have that t ∈ cert(q, (T ,A)) if and only if

tDB(A) ∈ qDB(A)
FOL .

4.3 Union of Conjunctive queries with datatypes(UCQD)

As we seen in Preliminaries, CQs correspond to SQL Select-Project-Join

queries. Precisely, Select is expressed by an atom appearance in a query,
Project is obtained by distinguishable variables (others are under existential
quantifier), and Join is obtained by shared variables in the query.

UCQs can be seen as SQL Select-Project-Join-Union queries. Still,
Select-Project-Join-Union queries are less expressible then full SQL (with-
out aggregation), so the question is can we extend the query language of UCQs
and still be a FOL rewritable.

On the other side, datatype restrictions, like numerical restrictions ({6=, <
,>,≥,≤}) or regular expressions restriction over strings, are commonly used
restriction in SQL queries.

Then a logical question would be, can we somehow enrich our query language
(UCQ) with datatype restrictions but still remain FOL rewritable. The answer
is yes, but not without certain restrictions over datatype lattices.

In this section, we are presenting a query language UCQD, that strictly
contains UCQ.

4.3.1 Syntax

A datatype atom is an atom of the form Ti(t), where t is a term (a variable or
a constant).

Conjunctive queries with datatypes(CQDs) are queries constructed as a
FOL query φ using conjunction (∧), existential quantifier (∃x), atomic concepts
(A(t1)) , atomic roles (P (t1, t2)), atomic attributes (U(t1, t2)) and datatype
atoms (Ti(t1)), where t1 and t2 are terms. Formally:

t −→ x | oi | di
ϕ −→ ∃x.ϕ | ϕ1 ∧ ϕ2 | A(t) | P (t1, t2) | U(t1, t2) | Ti(t1)

where φ is a proper FOL formula, 2 x is a variable, oi is a object constant,
di is a datatype constant. Further, a CQD ϕ obeys a safety restriction:

(Safety) Every distinguishable variable x that appears in a datatype atom Ti(x)
has to appear in at least one atom which is not datatype atom (concept,
role or attribute)

To denote, CQD query we will use datalog notation:

q(~x) : −conjD(~x, ~y),

where q names a query, and we called it the head of a query, and conjD denotes
the conjunction described above, and we called it the body of a query. As usual,

2in particular ∃xϕ can be written only if x exists in ϕ and it is unbounded. Additionally,
we assume that ∃x can appear at most once in a CQD.
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~x represents a vector of distinguishable variables 〈x1, . . . , xn〉, and ~y a vector
of non-distinguishable variables 〈y1, . . . , ym〉. Arity of CQD query is the arity
of ~x. For the sake of readability, we will denote distinguishable variables with
~x, x1, . . . and non distinguishable variables with ~y, y1, . . ..

Comment. A FOL query ϕ is safe if ϕI is finite for all finite instances I.
Considering that a query over an ontology can have for the answers only the
tuples from the ontology ABox, we expect that all CQDs are also safe queries.
However, without (Safety) condition this is not the case. Consider an ontology
O = 〈∅, {A(o)}〉 and query q(x1, x2) : −A(x1), T (x2). Then for every interpre-
tation I of O, the answer to the query, qI = {(o, v)|v ∈ T I}, returns tuples
that are not in the ABox of O. In addition, qI is infinite when T is infinite.

Union of Conjunctive queries with datatypes(UCQD), is a FOL query
that is constructed as a disjunction of CQD queries of the same arity:

q(~x) : −
∨

1≤i≤k

conjDi (~x, ~yi)

We denote with q(~o) a formula obtained from q(x) by replacing ~x with ~o.

4.3.2 Semantics

Let I = (∆I , ·I) be an interpretation and q an UCQD of arity n. We denote
with qI a set of tuples ~o ∈ (∆I)n s.t. I |= q(~o).

Similarly, as in the case for CQ, we define the notion of homomorphism be-
tween a UCQD and an interpretation and we establish Chandra-Merlin theorem
[13].

Definition 14 (Homomorphism between a model and a query). Let I = (∆I , ·I)
be an interpretation, q(x) a CQD query, and a tuple o = 〈o1, . . . , on〉 of objects
and data constants from ∆I s.t. x has arity n. Mapping µ is a homomor-
phism from q(o) to I if it maps variables and constants from q(x) to ∆I on the
following way:

• µ(c) = cI , for each constant c in q(x),

• µ(xi) = oi, for i ∈ {1, . . . , n}, and

• (µ(t1), . . . , µ(tn)) ∈ P I , for each atom P (t1, . . . , tn) that appears in q(x).

Theorem 3. Given a CQ q(x) = ∃y.conj(x, y) over an interpretation I =
(∆I , ·I), and a tuple o = (o1, . . . , on) of objects of ∆I of the same arity as
x = (x1, . . . , xn), we have that o ∈ qI if and only if there is a homomorphism
from q(o) to I.
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Chapter 5

OBDA framework:
DL-Lite

(HF)
core +D1 + UCQ

In the first part of this chapter, we are proving that DL-Lite(HF)
core +D1 + UCQ is

FOL-rewritable. This is done in two steps. Firstly, by showing that satisfiability
is FOL-rewritable in DL-Lite(HF)

core + D1. And secondly, by constructing the
perfect reformulation from the given UCQ.

In the second part of the chapter, we are proving that the conditions over
datatype lattices in DL-Lite(HF)

core +D1+UCQ are necessary. In other words, FOL-

rewritability of DL-Lite(HF)
core +D1 + UCQ will be lost if we violated them. This

is done by encoding coNP-hard problems into the problem of query answering.

DL-Lite(HF)
core +D1

With a slight abuse of notation we will denote with D1 datatype lattices of type
D1.

A DL-Lite(HF)
core +D1 TBox, T defined over a datatype lattice D1, is a finite set

of: concept inclusions (positive and negative resp.), quantified concept inclusions
(positive), role inclusions (positive and negative resp.), attribute inclusions (pos-
itive and negative resp.), local datatype restrictions (inclusion), global datatype
restrictions (inclusion) and functional constraints, where datatype symbols are
from D1.

Additionally, DL-Lite(HF)
core +D1 TBox T has to obey a condition:

(FH) If an atomic role P appears with (funct P ) or (funct P−) in T , then it
does not appear on the rhs of a positive role inclusion (e.g. R v P or
R v P−) or quantified concept inclusions (e.g. B v ∃P.B or B v ∃P−.B)
in T . The same holds for attributes in T .

A DL-Lite(HF)
core +D1 ABox, A defined over a datatype lattice D1, is a finite

set of DL-Lite membership assertions, where datatype constants are from D1.
And a DL-Lite(HF)

core +D1 ontology, O = 〈T ,A〉, is a pair of a DL-Lite(HF)
core +D1

TBox T and a DL-Lite(HF)
core +D1 ABox A.

Comment 1. Justification of (FH) condition one can find in [10, p. 320], where
unrestricted interplay between (funct R) and R on the rhs of a concept inclusion,
creates a logic where instance checking is NLogSpace-hard for data complexity,
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i.e. (U)CQ answering is not FOL rewritable. Moreover, Kontchakov et al. [4,
p. 47] showed that the data complexity of UCQ answering over DL-LiteHFcore is
PTime-complete.

Comment 2. Recall, that D1 class of lattices impose the condition (infi-

nite) (|
kl

i=1

Ti| = m > 0, 1 ≤ k ≤ n ). Justification of (infinite) condition in

DL-Lite(HF)
core + D1 logic is confirmed with Lemma 11. We present it in the

second part of this chapter.

5.1 Reasoning

Final goal of this section is to prove FOL-rewritability of DL-Lite(HF)
core + D1 +

UCQ. This is done in four step. Firstly, an ontology is simplified in the nor-
malization step. Secondly, a representative model is defined (canonical model),
from which we establish FOL-rewritability of ontology satisfiability.

Lastly, an algorithm that constructs perfect reformulation is presented.

5.1.1 Normalization

In order to simplify analyses of DL-Lite(HF)
core + D1 properties, we will rewrite

some terminological rules. Let O = 〈T ,A〉 be a DL-Lite(HF)
core + D1 ontology,

then we proceed:

• Each assertion of the form B v ⊥ we will rewrite into Disj(B,B,). Simi-
larly, Rng(U) v ⊥D is rewriten to Disj(B,B). On the other hand we delete
all inclusion of the form B v >, ⊥ v B and Rng(U) v >D, as they have
no impact. After this, the ontology wont contain symbols >, ⊥, >D, ⊥D
.

• Each B v ∃R.B′ is replaced with B v ∃Rnew, Rnew v R, ∃R−new v B′,
where Rnew is a new role name in the ontology.

• Each B v ∃U.Ti is replaced with B v ∃Unew, Unew v U , Rng(Unew) v Ti,
where Unew is a new attribute name in the ontology.

• In order to impose symmetry or asymmetry of a role we introduce new
unique named role, Id . When ontology contains (refl R) we introduce Id
in a way:

– For every object constants o from A add >(o) and Id(o, o) to A.

– Extend T with > v ∃Id 1 and Id− v Id .

– Replace each (refl R) with Id v R and each (iref R) with R v ¬Id .

• Each (symm R) is replaced with R v R− and each (asym R) is replaced
with R v ¬R−.

• Lastly, we normalize datatypes in O. For each attribute U in O we define
a new datatype RngTmax (U) if it doesn’t exists already (see 5.1.2). A new
inclusion Rng(U) v RngTmax (U) is added to T .

1> v Id is a new constructor, and it is interpreted in a usual way. However, it is only
allowed for Id .
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Comment 1. The new unique role Id in only introduced for technical reasons
and doesn’t change the syntax perception of DL-Lite(HF)

core + D1. Although, we
could kept (refl R) (resp. (iref R)) in a ontology, and proceed with the proves,
the reformulation is more convenient as it goes along with the proves without
considering (refl R) (resp. (iref R)) separately.

Comment 2. Notice, that all rewriting, except quantified concept inclusion
(B v ∃R.B) and local datatype restriction (B v ∃U.Ti), are replaced with
equivalent DL expressions. Nevertheless, B v ∃R.B ( resp. B v ∃U.Ti) is
rewritten in expressions, s.t. every model on them is also a model of B v ∃R.B
( resp. B v ∃U.Ti). Opposite way doesn’t hold, but only because of the
rewritings has more predicates. To formalize it,

Definition 15. Two TBoxes T1 and T2 are modulo equivalent if: for every
interpretation I that interprets only symbols from T s.t. I |= T1 exists positive
extension of I, I ′, s.t. I ′ |= T ′. And vice versa. Positive extension of I is an
interpretation I that contains more positive facts (grounded atoms).

Example 3 B v ∃R.B′ is modulo equivalent with B v ∃Rnew, Rnew v R,
∃R−new v B′. While there is no modulo equivalent in DL-Lite(HF)

core + D1 for
inclusion B v ∀U.Ti.

a

If it is not explicitly mentioned, we will consider that every DL-Lite(HF)
core +D1

ontology is normalized.

5.1.2 Canonical model

In order to check whether a DL-Lite(HF)
core +D1 ontology O is satisfiable, instead

of searching for a model, we would like to build a ”representative” model for
O, in the sense that such model satisfies O if and only if O is satisfiable. This
model is called canonical model and its build by the notion of chase [2], that
builds a model starting from an ABox as a base and then expanding it according
positive inclusions in the TBox. We adopt the chase from [10]. For a moment

we fix a DL-Lite(HF)
core +D1 ontology O.

Maximal range

In building chase new constants are introduced. Adding new object constants,
is not a concern as their semantics depends on an interpretation. On the other
hand, new value constants for a canonical model has to be selected carefully, as
their semantics is already predefined by corresponding datatypes.

An idea is to define a datatype RngTmax (U), called a maximal range of an
attribute U wrt TBox T . Intuitively, if RngTmax (U) is defined for U , the chase
should always select datatype constants from RngTmax (U).

Formally we define,

Definition 16. Let T be a DL-Lite TBox with assigned datatype lattice D. For
each attribute U from T we define a set of datatypes from D, RngSetT (U), s.t.:

Ti ∈ RngSetT (U) for each datatype Ti s.t. ρ(U) v Ti ∈ T
RngSetT (U ′) ⊆ RngSetT (U), for each attribute U ′ s.t. U v U ′ ∈ T
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If there exists a datatype Ti form D s.t. Ti ≡
d
Tj∈RngSetT (U) Tj, we set

RngTmax (U) := Ti. Otherwise we define a new datatype:

RngTmax (U) :=
l

Tj∈RngSetT (U)

Tj

Lemma 1. For each attribute U and DL-Lite ontology O = 〈T ,A〉, RngTmax (U)
can be calculated in a linear time wrt the size of TBox T .

Proof. We denote with v∗ a transitive closure of v between attributes.
Based on attributes inclusion in T we create, a graph G = 〈V,E〉, where

attribute names are vertices and attribute inclusion are edges, i.e.

V = {U |U is an attribute from O}, E = {(U2, U1)|U1 v U2 ∈ T }

Using Tarjan’s algorithm 2 we detect strongly connected components (SCCs)
in G. The strongly connected components of a directed graph G are its maximal
strongly connected subgraphs, where strongly means that any two vertices of
a subgraph are mutually reachable. A SCC in G represent set of equivalent
attributes, because T entails Ui v Uj and Uj v Ui for each two attributes Ui
and Uj from the SCC. For each SCC in G we denote an equivalent class [Ui]v
wrt v as a relation.

Based on SCC in G we define SCC graph G′ = (V ′, E′), where vertices
are SCC from G, and edges are edges between elements of SCCs (without self
loops), i.e.

V ′ = {[Ui]v|[Ui]v is a SCC in G}

E′ = {([Ui]v, [Uj ]v)|∃U ′i ∈ [Ui]v ∃U ′j [Ui]v.(U ′j , U ′i)T }

We claim that obtained graph G′ is acyclic, i.e. a tree. Assume contrary
that exists a cycle and let [Ui]v and [Uj ]v be a different vertices on a cycle path.
Then according, G, Ui v∗ Uj and Uj v∗ Ui are in T . But then, by definition of
a SCC must be [Ui]v = [Uj ]v. Contradiction.

Finally, starting from the leaves of G′(vertices without outgoing edges), we
can construct RngTmax ([Ui]v) for each SCC, in a bottom-up fashion. Two prop-
erties emerge:

- All attributes from a SCC ([U ]v) will have the same RngTmax ([U ]v).

- if U1 v∗ U2 then RngTmax (U1) v RngTmax (U2).

-
RngTmax (U) ≡

l

ρ(U)vTi

Ti u
l

UvU ′
RngTmax (U ′)

To conclude, Tajran’s algorithm calculates SCCs in a linear time in the size
of a graph (|G| = |V | + |E|). G is linear in the size of the TBox T , and we
traverse graph G only two times, once to detect SCCs and once in calculating
maximal ranges.

2http://en.wikipedia.org/wiki/Tarjan’s strongly connected components algorithm
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Example 4 We extend the UML model of academy ( Example 2). Each student
assigned to a project obtains a project email of the form: name@project-name.[the-rest].
This information is contained in attribute hasProjectEmail :

∃hasProjectEmail v Student Rng(hasProjectEmail) v xsd : string[RegExpr(γ1)]

, where γ1 = [A-Z0-9\.-]+@project\.[A-Z0-9.-]+\.[A-Z]{2,4}\)] is a
regular expression.

Further, each student at Uni Bolzano has an email of the form: name@[something].unibz.it.
This information is contained in attribute hasUniBZEmail :

∃hasUniBZEmail v Student Rng(hasUniBZEmail) v xsd : string[RegExpr(γ2)]

, where γ2 = [A-Z0-9.-]+@[A-Z0-9.-]+unibz\.it is a regular expression.
Finally, there exists an attribute hasProjectBZEmail that contains emails of

the Uni Bolzano students that are assigned to some project. Then a natural
constraints would be:

hasProjectBZEmail v hasProjectEmail hasProjectBZEmail v hasUniBZEmail

If there are no further constrains on hasProjectBZEmail , we can calculate a
maximal range for hasProjectBZEmail .Firstly we define a new datatype:

RngTmax (hasProjectBZEmail) := xsd : string[RegExpr(γ1)]u xsd : string[RegExpr(γ2)]

And then set the range:

Rng(hasProjectBZEmail) v RngTmax (hasProjectBZEmail)

Notice that in the example we slightly abuse the notation, and use expression
like xsd : string[RegExpr(γ1)] and RngTmax (U) do denote datatypes. Formally, this
is not correct. However, this formality is mainly introduced to facilitate naming
in formal proves. We can imagine that in practical application one can skip
such renaming.a

Lemma 2. Let O = 〈T ,A〉 be a DL-Lite(HF)
core +D1 ontology and U an attribute

that appears in O. Then:

(Soundness) O |= Rng(U) v RngTmax (U)

(Completeness) if T is satisfiable and T 6|= U v ¬U then T 6|= Rng(U) v
Ti, for each Ti that is a proper sub-datatype of RngTmax (U) ( Ti v RngTmax (U)
and RngTmax (U) 6v Ti )

Proof. (Soundness) If O is unsatisfiable, then everything follows. Assume that
O is satisfiable and for some model I exists a pair (o, v) ∈ UI s.t. v 6∈
RngTmax (U). From the Lemma 1 proof we know: RngTmax (U) =

d
ρ(U)vTi Ti ud

UvU ′ RngTmax (U ′). So either exists some datatype Ti s.t. v 6∈ Ti or exists some

attribute U ′ s.t. v 6∈ RngTmax (U ′). If the former holds, then I 6|= ρ(U) v Ti.
Contradiction. If the later, we know there exists a path (see the proof of pre-
vious lemma) in T : U v U ′, U ′ v U1, . . . , Um−1 v Um and a datatype Ti s.t.
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Rng(Um) v Ti ∈ T , where v 6∈ T Ii . On the other hand, from U v∗ Um it follows
(o, v) ∈ UIm and then I 6|= Rng(Um) v Ti. Again contradiction.

(Completeness) Let v be a value from VSRngTmax (U) s.t. for any datatype Tj if

v ∈ VSTj then RngTmax (U) v Tj , i.e. v is the value that does not belongs to any
proper subdatype or datatype with common intersection. According datatypes
definition v exists. Additionally, we denote with dv a datatype constant for
which (dv)

D = v and with Ti an arbitrary proper sub-datatype of RngTmax (U).
Let M be a model of T , where (o, v′) ∈ UM. It means that ontology

O = 〈T , {U(o, dv′), Unew(o, dv)}〉 is satisfiable, where (dv′)
D = v′ and Unew is

a new attribute. According Lemma 7.(see later), O is satisfied by it’s canoni-
cal model. Now, let denote with M′ a model which is obtained following the
same construction steps of can(O) except the starting base is chase0(O) =
{U(o, dv, Unew(o, dv)}. We claim thatM |= T . If we assume contrary, then the
only assertion which can be falsify by M′ are one of the form Disj(U1, U2) and
Rng(U1) v Tj , where (o, dv) ∈ UM1 . In the first case v 6∈ Rng(U2)M, because
dv can not be introduced as a new datatype constant in step of constructing
can(O) and v 6∈ Rng(U2)chase0(O). In the second case, if (o, dv) ∈ UM1 then
U v∗ U1 and RngTmax (U) v RngTmax (U1) v Tj , so Rng(U1) v Tj can not be
falsified in M. To conclude, M |= T and M 6|= Rng(U) v Ti.

Comment. Soundness of Lemma 2, advocates that RngTmax (U) is soundly
defined wrt O, and adding it to O will not change the semantics (set of models)
of O. Completeness of Lemma 2, advocates that RngTmax (U) is a maximal range
for U , and introducing Rng(U) v Ti into T for Ti a sub-datype of RngTmax (U),
can spoil semantics (satisfiability) of T .

Chase

R(o1, o2) denotes P (o1, o2) when Q = P and P (o2, o1) when Q = P−

Definition 17. Let A be a set of DL-Lite(HF)
core +D1 membership assertions. We

denote with B(o) any of the assertions of the form A(o), R(o, o2), U(o, d2). We
say that a PI α is applicable in A to a membership assertion β ∈ A if:

• α = B1 v B2, β = B1(o) and B2(o) 6∈ A,

• α = R1 v R2, β = R1(o1, o2) and R2(o1, o2) 6∈ A,

• α = U1 v U2, β = U1(o1, d1) and U2(o1, d1) 6∈ A,

We are constructing chase extension, a potentially infinite set of assertions
chase(O) that extends A as it is presented in [10]. In order to produce unique
chase up to the renaming of fresh constants, it is important to determine the
order of applied rules. Firstly we assume that all symbols in our vocabulary V
over D are (lexicography) fully ordered, so based on this we can order assertions.

In addition we add ordered infinite set of fresh object constant ΓVN , so our
ΓVO = ΓVN ∪ ΓVA where ΓVA is a set of object constants that appear in given
ontology O.

For each datatype Ti we define the infinite set of datatype constants RestTi =
{dTi1 , d

Ti
2 , . . .}, s.t. for each two datatype Ti and Tj , if i 6= j then RestTi 6=

RestTj . This is possible, due to the fact that each datatype has infinite number

44



of datatype constants. Additionally, there is no a datatype constant in A, say
d1 and datatype constant d2 from some RestTi , such that (d1)D = (d2)D.

For the attributes which range is not bounded we introduce an infinite set
of untyped constants Rest>D = {u1, u2, . . .} that do not appear in A, and set
RngTmax (U) := >D for each such attribute.

If n is the number of assertions in A we reserve first n places for them in
our order. And let Tp be the set of PI in T .

Definition 18 (Chase). We define Sj set of assertions in an iterative way:

• S0 = A

• Sj+1 = Sj ∪ βnew where βnew is a membership assertion numbered with
n+ j + 1 in Sj+1 and obtained as follows:

let β be the first membership assertion in Sj such that there exists a PI
α ∈ Tp applicable in Sj to β.

let α be the lexicographically first PI applicable in Sj to β.

let anew be the constant of ΓN that follows lexicographically all object
constants in Sj and let dTinew be lexicographically the first constant
from RestTi that proceeds all such constants in Sj.

case α, β of

(CR1) α = A1 v A2 ∧ β = A1(o) =⇒βnew = A2(o)

(CR2) α = A v ∃R ∧ β = A(o) =⇒βnew = R(o, onew)

(CR3) α = A v ∃U ∧ β = A(o) =⇒βnew = R(o, d
RngTmax (U)
new )

(CR4) α = ∃R v A2 ∧ β = R(o, o′) =⇒βnew = A2(o)

(CR5) α = ∃R1 v ∃R2 ∧ β = R(o, o′) =⇒βnew = R(o, onew)

(CR6) α = ∃R v ∃U ∧ β = R(o, o′) =⇒βnew = U(o, d
RngTmax (U)
new )

(CR7) α = ∃U v A2 ∧ β = U(o, d) =⇒βnew = A2(o)

(CR8) α = ∃U v ∃Q ∧ β = R(o, d) =⇒βnew = R(o, onew)

(CR9) α = ∃U1 v ∃U2 ∧ β = R(o, d) =⇒βnew = U2(o, d
RngTmax (U)
new )

(CR10) α = R1 v R2 ∧ β = R1(o, o′) =⇒βnew = R2(o, o′)

(CR11) α = U1 v U2 ∧ β = U(o, d) =⇒βnew = U2(o, d)

*Id. For each βnew that contains object constant anew that was not present
in Sj, in addition to βnew we add Id(anew, anew) and >(anew) to Sj+1

• Finally we denote:

chase(O) :=
⋃
j∈N

Sj

Intuitively, can(O) model should satisfy all PIs in T . However, one might
ask whether all rules are applied uniformly, in the sense that some rules might
never get their turn to be applied in can(O). The following criteria confirms
uniformity:
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Proposition 1. Let O = (T ,A) be a DL-Lite(HF)
core +D1 ontology, and let α be

a PI in T . Then, if there is an i ∈ N such that α is applicable in chasei(O)
to a membership assertion β ∈ chasei(O), then there is a j ≥ i such that
chasej+1(O) = chasej(O) ∪ β′, where β′ is the result of applying α to β in
chasej(O).

Proof. Assume by contradiction that there is no j ≥ i s.t. chasej+1(O) =
chasej(O)∪ β. This would mean that either there are infinitely many member-
ship assertions that precede β in the ordering that we choose for membership
assertions in chase(O), or that there are infinitely many chase rules applied to
some membership assertion that precedes β. However, none of these cases is
possible. Indeed, β is assigned with an ordering number m such that exactly
m − 1 membership assertions precede β. Furthermore, a PI can be applied at
most once to a membership assertion (afterwards, the precondition is not sat-
isfied and the PI is not applicable anymore), and also there exists only a finite
number of PIs. Therefore, it is possible to apply a chase rule to some member-
ship assertion at most times. We can thus conclude that the claim holds.

Definition 19 (Canonical model). The canonical interpretation can(O) =
(∆can(O), ·can(O)) is the interpretation where:

∆can(O) = ΓVO ∪∆D, where D is underlying datatype lattice of O.

ocan(O) = o, for each object constant o ∈ ΓVO, and dcan(O) = (d)D if
d ∈ LSTi for some datatype Ti.

Acan(O) = {o|A(o) ∈ chase(O)}, for each atomic concept A.

P can(O) = {(o1, o2)|P (o1, o2) ∈ chase(O)}, for each atomic role P .

U can(O) = {(o, dcan(O))|U(o, d) ∈ chase(O)}, for each attribute role U .

We also define cani(O) = (∆cani(O), ·cani(O)), where ·cani(O) is analogous to
·cani(O), except that it refers to chasei(O) instead of chase(O).

Lemma 3. (i)Let O = (T ,A) be a DL-Lite(HF)
core + D1 ontology and let Tp be

the set of positive inclusion assertions in T . Then, can(O) |= (Tp,A).

(ii)If two conditions hold, for every U(o, d) ∈ A we have dD ∈ RngTmax (U)
and when O |= ∃U then RngTmax (U) 6= ⊥D , then can(O) |= (Tp ∪ Td,A), where
Td is the set of all range constraints (Rng(U) v Ti) in T .

Proof. (i) can(O) |= A by definition as A ⊆ chase(O). So it remains to show
can(O) |= Tp. Assume contrary that exists assertion α ∈ Tp s.t. O 6|= α. We
can distinguish several cases for α

- α = A1 v A2. This means there exists an object constant o ∈ ΓVO s.t.
A1(o) ∈ chase(O) but A2(o) 6∈ chase(O). Obviously in this case α =
A1 v A2 is applicable to A1(o) using rule (CR1). According Proposition1
there exists j s.t. A2(o) ∈ Sj and consequently A2(o) 6∈ Sj . Contradiction.

- Other cases for α can be reasoned analogously.
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Finally, as existence of such α is not possible so we conclude that can(O) satisfies
all assertions in Tp, and therefore can(O) |= 〈Tp,A〉

(ii) By induction over the construction of chase(O). Notice that if any of
two conditions are violated O is not satisfiable.

Base. From the construction of RngTmax (U), we know that RngTmax (U) v Ti
for every Rng(U) v Ti ∈ T (*). Then assuming that for every U(o, d) ∈ A we
have dD ∈ RngTmax (U), we conclude that chase0(O) |= 〈Td,A〉.

Induction step. Assume that chasei(O) |= Td. The cases we need to consider
are when new assertion of the form U(o, dnew) is added to chasei+1(O). This
possible by two rules, B v ∃U or U1 v U . If the first is the case, then dnew is
from RngTmax (U) and taking (*) into account, we conclude that chasei+1(O) |=
Td. In the second is the case, then according induction base dnew must be in
RngTmax (U1). On the other hand, RngTmax (U1) v RngTmax (U), so we conclude
again chasei+1(O) |= Td. In both cases, the condition that RngTmax (U) 6= ⊥d
guarantees that introducing U(o, dnew) in chasei+1(O) will not violate Rng(U) v
RngTmax (U).

Lemma 4. For every DL-Lite(HF)
core +D1 ontology O = 〈T ,A〉 it holds: can(O) |=

Tf iff DB(A) |= Tf .

Proof. (⇒) As can(O) |= Tf and DB(A) ⊆ can(O) then DB(A) |= Tf .
(⇐) By induction over the construction of chase(O).
Induction base follows from assumption chase0(O) = DB(A) |= Tf .
Inductive step. Assume that in the step (i + 1) a functional role (funct R)

or (funct R−) has been violated in chasei+1(O), by a new assertion R(o1, o2).
Considering that R1 v R and R1 v R− are not in T due to the (FH) restriction,
the only possible generating rules for R(o1, o2) are B v ∃R or B v ∃R−.

If B v ∃R is the case, then o2 is a new constant. However, in order to apply
the rule, we know that there exists no R(o1, o

′) in chasei(O), for some object
constant o′. Then (funct R) is not violated. If B v ∃R− is the case, then o1 is
a new constant. o1 doesn’t exists in chasei(O), then adding R(o1, o2) can not
(funct R).

Similarly we reason for (funct R−) and for an attribute functionality (funct U).

In other words lemma shows that functionality constraints will not be vio-
lated by extending DB(A) to can(O).

Negative assertions closure

Similarly, as we reason on the positive inclusions we can try to reason over the
negative inclusion in a TBox. The only difference is that two negative assertion,
e.g. A1 v ¬A2 and A2 v ¬A3, can’t deduce new negative inclusion, i.e. we
can’t say anything about relation between A1 and A3. But from a positive and a
negative inclusion can deduce a new negative inclusion, for example if A1 v ¬A3

and A2 v A3 then A1 v ¬A2.
The idea, adopted from [10], is to deduce all negative assertions that follows

from a TBox T . Then, in order to check satisfiability it will be sufficient to
check those negative inclusion over DB(A).

Let T be a DL-Lite(HF)
core +D1 TBox. Acln(T ) is the smallest set that contains:
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• cln(T ) contains all functional constraints (Tf ), negative inclusions (Tn)

and Rng(U) v RngTmax (U) for each attribute U that appears in T .

• ifB1 v B2 ∈ T and Disj(B2, B3) ∈ cln(T ) then also Disj(B1, B3) ∈ cln(T ).

• if R1 v R2 ∈ T and Disj(∃R2, B) ∈ cln(T ) (or Disj(∃R−2 , B) ∈ cln(T )
resp.) then also Disj(R1, B) ∈ cln(T ) (or Disj(∃R−1 , B) ∈ cln(T ) resp.) .

• ifR1 v R2 ∈ T and Disj(R2, R3) ∈ cln(T ) then also Disj(R1, R3) ∈ cln(T ).

• if any of Disj(∃R,∃R), Disj(∃R−,∃R−) ,Disj(R,R) is in T , then all three
are.

• if U1 v U2 ∈ T and Disj(∃U2, B) ∈ cln(T ) then also Disj(U1, B) ∈ cln(T )

• if U1 v U2 ∈ T and Disj(U2, U3) ∈ cln(T ) then also Disj(U1, U3) ∈ cln(T ).

• if any of Disj(∃U,∃U), Disj(U,U), Rng(U) v ⊥D is in cln(T ), then all
three are in cln(T ).

Obviously, all negative inclusions in cln(T ) are logically entailed by T . Next
lemma confirms that:

Lemma 5. For a DL-Lite(HF)
core +D1 TBox T and an arbitrary NI α it holds: if

cln(T ) |= α then T |= α.

The next lemma, essentially confirms that satisfiability of a DL-Lite(HF)
core +D1

ontology if FOL rewritable. The only remaining step is to translate cln(T ) into
a FOL query, which is rather straightforward.

Lemma 6. Let O = 〈T ,A〉 be a DL-Lite(HF)
core +D1 ontology. Then, can(O) |= O

iff DB(A) |= cln(T ).

Proof. (⇒) Each assertion α in cln(T ) is logically implied by T , so can(O) |=
cln(T ). Now, by restricting the model can(O) we can not falsify any NIs in
cln(T ). As DB(A) ⊆ can(O) then DB(A) |= cln(T ).

(⇐) By assumption DB(A) = chase0(O) |= 〈cln(T ),A〉.
According Lemma 4. and Lemma 3. (i) that can(O) |= 〈Tp ∪ Tf ,A〉.
So it remain to show that can(O) |= 〈T \ (Tp ∪ Tf ),A〉. We will show even

more, can(O) |= 〈cln(T ),A〉. The proof is based on the induction over the
construction of can(O).

Base. By assumption DB(A) = chase0(O) |= 〈cln(T ),A〉 .
Induction step. Assume contrary that for some i ≥ 0 chasei(O) |= 〈cln(T ),A〉,

but chasei+1(O) 6|= 〈cln(T ),A〉. We distinguish cases, based on the rule that
was applied against a membership assertion and a NI that becomes unsatisfiable
with a new assertion.

With B(o) we denote any atom of the from A(o), R(o, o2), U(o, d).
Let B1 v B2 be a generating rule for assertion β = B2(o) that is added

to chasei+1(O), and B1(o) ∈ chasei(O). We distinguish several cases for the
violated NI:

1. Disj(B2, B3),

2. Disj(R,R1) for B2 = ∃R,
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3. Disj(U,U1) for B2 = ∃U , or

4. Rng(U) v Ti for B2 = ∃U .

If the first is the case, then we have that Disj(B1, B3) ∈ cln(T ), so chasei(O) 6|=
Disj(B1, B3). Contradiction.

If the second is the case, R(o, onew) is added to chasei+1(O), where onew
doesn’t appear in chasei(O), so Disj(R,R1) is not violated by R(o, onew) for

R1 6= Id . In the case R1 = Id , (onew, onew) ∈ Idcan(O)i+1 . However, onew is
newly introduced so o 6= onew. Hence, Disj(R, Id) cannot be violated. Contra-
diction.

In the third case we reason as in the previous one.
In the fourth case, new data value is selected from RngTmax (U), for which

holds RngTmax (U) v Ti. The problem can occur only if RngTmax (U) = ⊥D. But
then Disj(U,U) ∈ cln(T ), and so Disj(B1,∃U) ∈ cln(T ) as well. Furthermore,
Disj(B1,∃U) and B1 v ∃U makes Disj(B1, B1) ∈ cln(T ), so finally chasei(O) 6|=
cln(T ). Contradiction.

Similarly we reason when the generating rule is of the form R1 v R2 and
U1 v U2.

5.1.3 Ontology satisfiability

Lemma 7. can(O) |= O iff O is satisfiable.

Proof. (⇐). Obviously follows.
(⇒). We assume contrary, that can(O) is not a model of O and that O is
satisfiable by a model M.

Considering Lemma 6., it follows DB(A) 6|= cln(T ). Then exists some NI,
functional constraint, or datatype restriction α ∈ cln(T ), s.t. DB(A) 6|= α.
Finally, from cln(T ) |= α and Lemma 5 we know that T |= α.

Now, M 6|= α as DB(A) ⊆M and M |= α as M |= T . Contradiction.

Lemma 8. Let O = 〈T ,A〉 be a DL-Lite(HF)
core + D1 ontology. Then DB(A) |=

cln(T ) iff O is satisfiable.

Proof. Follows directly from Lemmas 7. and 6.

The Lemma 8. provides a guide for constructing a FOL query that will
check satisfiability of DL-Lite(HF)

core +D1 ontology . We construct a boolean FOL
query ϕ(T ), that evaluated over DB(A) provide us direct answer whether the
ontology is satisfiability or not:

ϕ(T ) =
∨

α∈cln(T )

ϕ(α) (5.1)

where rewriting ϕ(α) is:

ϕ((funct R)) = ∃x∃y∃z.R(x, y) ∧R(x, z) ∧ y 6= z,

ϕ((funct U)) = ∃x∃v∃w.U(x, v) ∧ U(x,w) ∧ v 6= w,

ϕ(Disj(B1, B2)) = ∃x.ϕ(B1(x)) ∧ ϕ(B2(x)),

ϕ(Disj(R1, R2)) = ∃x∃y.ϕ(R1(x, y)) ∧ ϕ(R2(x, y)),

ϕ(Disj(U1, U2)) = ∃x∃v.U1(x, v) ∧ U2(x, v),

ϕ(Rng(U) v Ti) = ∃x∃v.U(x, v) ∧ ¬Ti(v),
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where ϕ(A(x)) = A(x), ϕ(∃P (x)) = ∃y.P (x, y), ϕ(∃P−(x)) = ∃y.P (y, x),
ϕ(∃U(x)) = ∃v.U(x, v), ϕ(P (x, y)) = P (x, y), ϕ(P−(x, y)) = P (y, x).

To summarize, from the Lemma 8 we know that (ϕ(T ))DB(A) = ⊥ iff O is
satisfiable.

We observe that A remains intact in constructing ϕ(T ), and the size of ϕ(T )

depends only on T . As a consequence, data complexity of a DL-Lite(HF)
core +D1

ontology satisfiability will be data complexity of FOL query answering over
DB(A), which in AC0 wrt the size of the ABox. Considering previously stated
we conclude:

Theorem 4. Satisfiability problem is FOL rewritable in DL-Lite(HF)
core +D1.

5.1.4 Certain answers

In the following part we are proving that DL-Lite(HF)
core + D1 + UCQ is FOL-

rewritable. Similarly, to the satisfiability part, we are ”strongly” exploiting the
idea of canonical model.

We will show that query answers over a canonical model matches the certain
answers in the case of satisfiable ontology. Lastly, we will use can(O) as a guide
for the construction of a perfect reformulation of an given UCQ. A FOL query is
a perfect reformulation, if evaluating it against the ABox we obtain all certain
answers. If we can construct perfect reformulation for a given ontology and a
UCQ query over it, then we have proven FOL- rewritability of DL-Lite(HF)

core +
D1 + UCQ.

The following lemma adopts the lemma from [10], that holds for DL-Lite(HF)
core

ontologies. We will denote with V(A) the set of all atomic predicates (concepts,
roles, attributes) in our vocabulary V, and with V(D) the set of datatype names
in our vocabulary V.

Lemma 9. Let O = (T ,A) be a satisfiable DL-Lite(HF)
core +D1 ontology, and let

M = (∆M, ·M) be a model of O. Then, there is a homomorphism from can(O)
to M over predicate set V(A).

Proof. We are constructing a homomorphism µ form can(O) toM, by induction
over the construction of can(O). In addition, for each step i in the induction,
we show that:

(hom.) For each objects o, o′ ∈ ∆
cani(O)
O and value v ∈ ∆

cani(O)
V holds:

for any atomic concept A from O, if o ∈ Acani(O) then µ(o) ∈ AM,

for any atomic role P fromO, if (o, o′) ∈ P cani(O) then (µ(o), µ(o′)) ∈ PM,

for any atomic attribute U from O, if (o, v) ∈ Ucani(O) then (µ(o), µ(v)) ∈
UM.

If the property (hom.) holds for each i, then it immediately establishes µ as
a homomorphism form can(O) to M.

Base. For each object constant o that appears in A we set µ(o) = oM. For
each datatype constant d that appears in A we set µ(d) = dM(= dD). Since
M |= A, (hom.) property follows directly for chase0(O).

Induction step. Here we distinguish several cases based on the assertion β
and the applied rule α in obtaining cani+1(O) from cani(O). For example, as-
sume α = B v ∃U and β = B(o), where B(o) denotes a membership assertion of
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the form A(o), R(o, o1) or U(o, d1). Then cani+1(O) = cani(O)∪U(o, (dnew)D),
where dnew is a fresh datatype constant from RngTmax (U). According induction
hypothesis, exists om ∈ ∆M s.t. µ(o) = om and om ∈ AM. Since M |= α
then must exists some datatype constant d′ s.t. (om, (d

′)M) ∈ UM. We set
µ(dnew) = (d′)M and conclude (µ(o), µ(dnew)) ∈ UM. This together with ind.
hypothesis that (hom.) property holds for cani(O) implies that (hom.) property
holds for cani+1(O) as well.

Similarly, we can reason for cani+1(O) in other cases of α and β.

Comment. Notice that in the theorem above, considered homomorphisms
are over the set of predicates from V(A), and not including V(D). Then a
question could be, does the theorem holds if the homomorphisms are over the
set of predicates P = V(A) ∪ V(D). The answer is no, and it is confirmed with
the following example.

Example 5 We extend the example 2, with two datatypes:

myowl : studentAge := xsd : int[≥16], myowl : oldStudentAge := xsd : int[≥25]

, and a new attribute hasAge, that states the age of a student:

Student v ∃hasAge, Rng(hasAge) v myowl : studentAge, (funct hasAge)

Additionally, assume that datatype constants ”16”∧∧xsd : int, . . . , ”24”∧∧xsd : int
are already present in the ABox (*). Also assume that in the ABox we have
fact Student(John) but no hasAge(John, d) for a datatype constant d.

Then for each model of the ontology, must exists a datatype constant d from
myowl : studentAge. For the canonical model can(O), considering (*) there exists
exactly one constant dD ∈ myowl : oldStudentAgeD.

However, this doesn’t necessarily hold for all models, and letM be a model
of the ontology, where (John, ”20”∧∧xsd : int) ∈ hasAgeM.

Finally, there is no homomorphism between can(O) and M over V(A) ∪
V(D), since d must be mapped to ”20”∧∧xsd : int, but then (”20”∧∧xsd : int)D 6∈
(myowl : oldStudentAge)D while dD ∈ (myowl : oldStudentAge)D.a

Exploiting the previous lemma we will show that a canonical model can(O)
properly represents all models of O wrt certain answers, i.e. certain answers are
matching the answers of the canonical model for UCQ queries.

Proposition 2. Let q be a UCQ over a satisfiable DL-Lite(HF)
core + D1 ontology

O = (T ,A) and let t be a tuple of constants that from A. Then,

t ∈ cert(q,O) iff tcan(O) ∈ qcan(O)

Proof. (⇒). Follows from the definition of a certain answer.
(⇐). Then if q is UCQ composed with CQ {q1, . . . , qn}, there must be at least

one qi(x)← conji(x, y) s.t. tcan(O) ∈ qcan(O)
i . According Theorem 1. there is a

homomorphism µ from conji(t, y) to can(O).
Now, letM be an arbitrary model of O. According Lemma 9. there exists a

homomorphism η from can(O) to M. Since, homomorphisms are closed under
the composition we get that η ◦ µ is a homomorphism from conji(t, y) to M.
Again using Theorem 1. we conclude that tM ∈ qM. Since, M is chosen
arbitrary it follows that t ∈ cert(q,O).
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The next lemma states that certain answers of a UCQ query can be obtained
from the certain answers of its CQs.

Lemma 10. For an DL-Lite(HF)
core +D1 ontology O and a UCQ q over it, holds:

cert(q,O) =
⋃
qi∈q

cert(qi,O)

Proof. (⊆:) By definition.
(⊇:) If the ontology is unsatisfiable then it follows trivially. Otherwise, let

t be a tuple from cert(q,O). Then from Proposition 2. tcan(O) ∈ qcan(O). It

follows that exists some CQ qi in q, tcan(O) ∈ q
can(O)
i . Then again according

Proposition 2. t ∈ cert(qi,O).

Perfect rewriting

In this part we are constructing a FOL query, called perfect rewriting, based on
a given UCQ q and DL-Lite(HF)

core +D1 TBox T . Perfect rewriting is an evidence
that confirms FOL-rewritability. To remind, answering UCQ is FOL-rewritable
in DL-Lite(HF)

core +D1, if for every DL-Lite(HF)
core +D1 TBox T and UCQ q, there

exists is a FOL query qpr (perfect rewriting), such that for every DL-Lite ABox
A, qpr

DB(A) = cert(q, T ).

So far, we have see that satisfiability of a DL-Lite(HF)
core +D1 ontology is FOL

rewritable. Further, we proved that one can obtain certain answers over UCQs
by evaluating it against the canonical model 2.

However, a canonical model can be infinite, so it will not be feasible to
implement it. Despite this, a canonical model can be used as a ”guide” in
constructing prefect reformulation (see later the proof of Theorem 6.1.2). But
be before that we define some necessary definitions.

We denote with B(x) any atom of the form A(x), R(x, ), U( , x) or U(x, ),
where,

R(x, ) =

{
P (x, ) for R = P
P ( , x) for R = P−

We say that an argument of an atom in a query is bounded if it corresponds
to either a distinguished variable or a shared variable, i.e., a variable occurring
at least twice in the query body, or a constant. Instead, an argument of an
atom in a query is unbound if it corresponds to a non-distinguished non-shared
variable. As usual, we use the symbol ” ” to represent non-distinguished non-
shared variables. Using this, we define whether a PI is applicable to an atom:

• A PI α is applicable to an atom A(x), if α has A on its right-hand side.

• A PI α is applicable to an atom P (x1, x2), if one of the following conditions
hold:

– x2 = and the right-hand side of α is ∃P or

– x1 = and the right-hand side of α is ∃P− or

– α is a role inclusion and its right-hand side is either P or P−.

• A PI α is applicable to an atom U(x1, x2), if one of the following conditions
hold:
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– x2 = and the right-hand side of α is ∃U or

– α is a attribute inclusion assertion and its right-hand side is U .

In the Figure1, we provide the algorithm PerfectRef(q, T ), which reformu-
lates UCQ q (considered as a set of CQs) by taking into account the PIs of a
TBox T . Two functions are presented there:

• rewrite(q, g, α). We denote with B(x) any of the atoms of the form A(x),
R(x, ), U(x, ), where R(x, ) = P (x, ) when R = P and R(x, ) =
P ( , x) when R = P−. Also, we denote with B any of the DL-Lite concept
expressions of the form A, ∃R or ∃U . Additionally, for a given B we define
B(x) as A(x) when A = B, R(x, ) when B = ∃R, U(x, ) when B = ∃U .
Finally, we define rewriting (rw)(q, α), for a given atom g and a given PI
α according the table:

g α (rw)(q, α)
B1(x) B2 v B1 B2(x)

R1(x1, x2) R2 v R1 R2(x1, x2)
U1(x1, x2) U2 v U1 U2(x1, x2)

An exceptional case is the rule of the form α = > v ∃Id . If q′ =
rewrite(q, Id(x1, ), α) applies rule α, then q′ is obtained from q by re-
placing Id(x1, ) with the top concept >(x1). As usual, the semantics of
the top concept is defined with (>)I = ∆IO, for an arbitrary model I.

In other cases, rewrite(q, g, α) is a CQ obtained from q by replacing the
atom q with a new atom (rw)(q, α).

• reduce(q, g1, g2). Method reduce(q, g1, g2) creates a new CQ form q by
applying two operations on q. Firstly, it calculates the most general unifier
(mgu) ν of g1 and q2, and it applies ν over q to obtain q′ = ν(q). This
is done with remark, that in unifying g1 and g2, each occurrence of the
symbol has to be considered as a different unbound variable.

After unification, new variables can become unbound variables. There-
fore, the second operation is replacement of the unbound variables with
symbol (say from q′ we obtain q′′ by this operation). Notice that, possible
new rules will be applicable in q′′, that were not before in q.

Finally, a CQ q” = reduce(q, g1, g2) is returned as a result.

An import remark concerns the size of the UCQ query qpr . Namely, the size
of each CQ in qpr is less or equal then the longest CQ from q. Simply because,
both functions rewrite(·, ·, ·) and reduce(·, ·, ·) always produce a CQ that is less
or equal then the size of the original CQ. So each CQ in qpr is less or equal to
|q|, where | · | denotes the size measure.

Further, new CQs in qpr can only be built using variables, constants and
atoms from q and T . Which means, there are at most |T | × |q|2 possible CQs
in qpr .

To summarize, the size of each CQ in qpr less or equal to |q| and there are
at most |T | × |q|2 of them in qpr . In other words:

|qpr | ≤ (|T | × |q|2)|q|. (5.2)
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Algorithm 1 The algorithm that computes PerfectRef of a UCQ q given a
DL-Lite(HF)

core +D1 TBox T
Input: UCQ q, DL-Lite(HF)

core +D1 TBox T
Output: UCQ qpr

1: procedure PerfectRef(q, T )
2: qpr ← q
3: repeat
4: q′pr ← qpr

5: for all CQ q in qpr do
6: for all atoms g in q do . step (rw)
7: for all PI α in T do
8: if α is applicable to g then
9: q′pr ← q′pr ∪ rewrite(q, g, α);

10: end if
11: end for
12: end for
13: for all pair of atoms g1, g2 in q do . step (red)
14: if g1 and g2 unify then
15: q′pr ← q′pr ∪ reduce(q, g1, g2);
16: end if
17: end for
18: end for
19: until qpr = q′pr

20: return qpr ;
21: end procedure
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Although it might seems obvious, the important consequence of inequality 5.2
is the termination of the PerfectRef algorithm. Complexity consequences are
presented later.

The last step in proving that query answering of UCQs is FOL rewritable in
DL-Lite(HF)

core +D1, is the next theorem.

Theorem 5. Given a satisfiable DL-Lite(HF)
core +D1 ontology O = 〈T ,A〉 and a

UCQ query q over it, we claim that holds:

(qpr )DB(A) = cert(q,O)

,where qpr = PerfectRef(q, T ).

Proof. Firstly we define the notion of a witness. Given an ontology O, a tuple
t of constants from O, and a CQ q(x) over O, we say that a set of membership
assertion Θ, is a witness for t wrt q, if there exists substation σ ({x 7→ t} ∈ σ)
over atoms in q s.t. σ(q(x)) = Θ ( q is considered set-wise).

Considering Lemma 10 we have that (qpr )DB(A) =
⋃
q̄∈qpr

q̄DB(A). Moreover,
considering Proposition 2, it will be sufficient to show:⋃

q̄∈qpr

q̄DB(A) = qcan(O)

(⊆:) We have to show that for an arbitrary q̄ ∈ qpr , q̄DB(A) ⊆ qcan(O).
We will show it by induction over the number of steps (rw) and (red) used

for generating q̄.
Induction base. No reformulation applied, so q̄ ∈ q. Then q̄DB(A) ⊆

q̄can(O) ⊆ qcan(O).
Induction step. Induction hypothesis states that for all q̄ ∈ qpr s.t q̄ is

generated applying steps (rw) and (red) less then n + 1 times , then q̄DB(A) ⊆
q̄can(O) ⊆ qcan(O). It will be sufficient to show that for each tuple t in can(O)
and for each q̄2 generated in (n + 1) steps, holds: if tcan(O) ∈ q̄2

can(O) then
tcan(O) ∈ qcan(O).

Firstly, we assume that q̄2 is generated in (n+ 1) steps, where the last step
was (rw) on the rule β : A v ∃U , i.e. q̄2 = rewrite(q̄1, β, U). By assumption,
q̄1

can(O) ⊆ qcan(O). If for a tuple t from O, we have a witness Θ wrt q̄2 in
can(O), then there are two possibilities. Firstly, that Θ is already a witness for
t wrt q̄1. If not, then must be a ground atom A(oi) ∈ Θ that applied on β in
can(O) to produce a new fact U(oi, dnew). Then either Θ ∪ {U(oi, dnew)} or
(Θ \ {A(oi)}) ∪ {U(oi, dnew)} is a witness for t wrt q1 from can(O).

Finally, in both cases, tcan(O) ∈ q̄1
can(O). Considering the i.h. it holds

tcan(O) ∈ q̄can(O).
Secondly, let’s assume q̄2 = rewrite(q̄1, β, Id), where β = > v Id . Also, let’s

assume Θ is a witness for t wrt q2, i.e. tcan(O) ∈ qcan(O)
2 .

Top concept >(x) is satisfied with each object constant from can(O). Hence,

Θ is a witness for t wrt q1 as well. Finally, according i.h. tcan(O) ∈ qcan(O)
2 ⊆

q
can(O)
1 ⊆ qcan(O).

Similarly, we can prove other cases for (rw) step.
If q̄2 = reduce(q̄1, g1, g2), then every witness for t wrt q̄2 is also a witness wrt

q̄1.
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(⊇:) Assume tcan(O) ∈ qcan(O) and that Θ is a witness. Then exists a CQ
q′ ∈ q for which Θ is the witness. We are constructing q̄ from qpr s.t. t ∈ q̄DB(A).

The canonical model can(O) can be seen as a forest, where nodes are mem-
bership assertions in can(O) and edges correspond to the rules that generate
new membership assertions from A. In particular, all facts from A we consider
as roots. can(O) is truly a forest because no node name are duplicated and
there is at most one incoming edge for each node.

Out of this forest, potentially infinite, we will consider a minimal as possible
(final) sub-forest F , where leaves are the assertions in Θ, roots are the roots of
the assertions in Θ, and edges are one that establish paths between the leaves
and the roots, s.t. Θ is contained in the set of nodes from F . Notice that
each membership assertion can appear only once in F . Notice also, that not
necessarily all elements from Θ are leaves in F .

The idea is to construct q̄ starting from q′ and then following the rules
(inverted) that generate Θ, directing from the leaves towards roots. Assume
that F has n edges. We define a chain of sub-forests F0 = F ,F1, . . . ,Fn of F ,
where Fi+1 is obtained from Fi by deleting one leaf. Additionally we define the
list of queries q̄0, q̄1, . . . , q̄n, where q̄i+1 is obtained from q̄i, according the rule
βi that corresponds to the deleted edge in Fi in obtaining Fi+1. Additionally,
following the witness substitution for t from Fi+1 wrt q̄i+1, we apply Reduction
step (see bellow) on each q̄i+1. This is done, to ensure correct (rw) application
for q̄i+1 in the next step.

Two criteria we have to show: (i) the rule βi is applicable to corresponding
atom in qi, (ii)(induction hypothesis) and for each i there exists a witness in
Fi for t wrt q̄i s.t. no two atoms in q̄i are assigned by the witness substitution
to the same membership assertion from the witness (injection between atoms
in q̄i and the elements of a witness). As a consequence (i) we have that q̄n is
generated from q applying (rw) and (red) rules and that (ii) there is a witness

in Fn ⊆ DB(A) for t wrt q̄n, i.e. t ∈ q̄DB(A)
n .

Reduction step on q̄i. Each witness Θi determines a substitution σ, where
σ(q̄i(x)) = Θi and {x 7→ t} ∈ σ. Following this, we will apply (red) step to all
pairs of atoms in q̄i that become identical after applying substitution σ. After
this atoms in q̄i and assertions in Θ relates 1 to 1.

Induction base. Let’s denote with q̄0 a query obtained from q after apply-
ing Reduction step. So, no two atoms in q̄0 relates to the same assertion in
F0(injection). Nevertheless, σ(q′) = σ(q̄0)(set-wise) and Θ ⊆ F0 is a witness of
t wrt q̄0.

Induction step. Assume that that exists a witness in Fi for t wrt q̄i. Now
let Fi+1 = Fi \ γ where the edge label is rule βi and γi is deleted membership
assertion. If βi has a form A1 v A, R1 v R2 or U1 v U2 than it is very
straightforward to show that there exists a witness in Fi+1 for t wrt q̄i+1 =
rewrite(q̄i, βi, A1) (or U1 or R1), and that (rw) step is correctly applied.

Slightly more complicated cases are B v ∃R and B v ∃U , because the
correct application of a step (rw) isn’t straightforward.

So, lets assume β = A v ∃P and γi = P (o, onew) (the case B v ∃U is
analogous). As γi = P (o, onew) is a leaf of Fi then onew doesn’t appear in
any other membership assertion from Fi. This means that a variable y in
an atom P (z, y) ∈ q̄i that corresponds to P (o, onew) is non distinguishable one.
Additionally y is not shared one, for the two reasons. Firstly there is no another
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atom P (z2, y) ∈ q̄i that corresponds to P (o, onew) as Reduction step is applied
on q̄i. Secondly, y can not appear in some other atom, for example A(y) ∈ q̄i,
because the witness defines 1-1 (injection) relation between atoms in qi and
nodes in Fi. So after application of Reduction step, P (z, y) must be rewritten
in P (z, ) ∈ q̄i and the rewriting using β to obtain q̄i+1 is correct.

We summarize the steps that need to be taken in order to evaluate a UCQ q
against a DL-Lite(HF)

core +D1 ontology O = 〈T ,A〉:

SAT Check ontology satisfiability by evaluating boolean query ϕ(T )(5.1) over
DB(A). If (ϕ(T ))DB(A) = true then ontology O is unsatisfiable. From
FOL point of view, O entails everything and then for any query q the an-
swer should be all possible tuples of the arity of q that can be constructed
from the constants in O. However, this is not feasible in the practice and
a message should be printed that address inconsistency of O.

If (ϕ(T ))DB(A) = false, then O is satisfiable and we can move to the next
step.

q
DB(A)
pr First step is to calculate perfect reformulation of q according PerfectRef

algorithm 1, qpr = PerfectRef(q, T ). Then qpr should be evaluated against
an ABox A. If we consider that A is stored in a database DB(A) than
qpr should be reformulated as a SQL query and posed against DB(A). qpr

reformulation in SQL format is not a hard task, taking into account that
every CQ corresponds to a select-project-join, where select corre-
sponds to atom names in a CQ, project corresponds to distinguishable
variables and join corresponds to shared variables. Moreover, disjunction
of CQs directly corresponds to SQL statement union.

Unfortunately, the data in the real world application are not stored as
tables with one or two columns, but as tuples of strictly typed constants.
In this case, one have to establish mapping language between database and
ontology, that can express correlation between typed data in the database
and ontology objects. This problem is called impedance mismatch problem.

The problem and a solution for this are addressed in [10, p. 329]. The
authors proposed a mapping language between databases and DL-Lite
ontologies. The mappings are not materialized, i.e. the ABox is not in-
stantiated, but they are used in a step where perfect reformulation is
rewritten in a SQL query. Finally, they proved the correctness of the
methods, that reformulated SQL provides the same answer as if they ma-
terialize the data throughout the mappings.

Example 5.12. Let us consider again the query of Example 5.9

Computational complexity

From everything that has been shown in this chapter we conclude

Theorem 6. DL-Lite(HF)
core +D1 + UCQ is FOL-rewritable.

Here we summarize complexity measure of DL-Lite(HF)
core +D1 + UCQ.
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• PerfectRef(q, T ) ∈ PTime(T ).
The meaning is that PerfectRef(q, T ) is a polynomial algorithm in the size
of T . This is a consequence of the formula 5.2.

• (Data complexity) Answering UCQs in DL-Lite(HF)
core +D1 is in PTime in

the size of the ontology.

It follows from the facts. Firstly, cln(T ) is polynomial in the size of T and
that each CQ in ϕ(T )5.1 is bounded in size and has at maximum three
variables. Each CQ in ϕ(T ) can be evaluated separately over the ABox.
Second fact is stated in the point above: PerfectRef(q, T ) ∈ PTime(T ).

• (Schema complexity) Answering UCQs in DL-Lite(HF)
core +D1 is in AC0 in

the size of the ABox.

Answering UCQ queries over a database is in AC0 for the data complexity.
Firstly, both ϕ(T ) and qpr do not depend on the ABox. Secondly, the
ABox is only addressed in satisfiability check and query evaluating this is
done by evaluate ϕ(T ) and qpr against it (resp.). To conclude, both steps

of the UCQ query answering process over DL-Lite(HF)
core + D1 are in AC0,

so the query answering is then in AC0 as well.

• (Combined complexity) Answering UCQs in DL-Lite(HF)
core + D1 is NP-

complete in combined complexity.

Lower bounds comes from the combined complexity of UCQ evaluation
over the databases.

To show that answering UCQs in DL-Lite(HF)
core + D1 is NP, we need to

describe non-deterministic evaluation of perfect reformulation. According
the proof of theorem 6.1.2, for each tuple t that is a certain answer, there
is a CQ in qpr that can be computed from q applying at most polynomial
number of (rw) and (red) step such that exists a witness for t in DB(A).
The same holds if the input query is a boolean UCQ. To conclude, given
a boolean UCQ q we non-deterministically compute a CQ from qpr which
evaluates to true over DB(A) iff q evaluates to true under can(O) iff q is
entailed by the ontology.

To summarize, the above results show that query answering in DL-Lite(HF)
core +

D1+UCQ is computationally no worse than answering UCQs over the ABox only,
i.e. UCQ answering in standard databases.

5.2 Relaxing datatype conditions

In this section we will prove that condition (infinite) over datatype lattices is

necessary condition for FOL-rewritability of UCQ answering over DL-Lite(HF)
core +

D1 ontologies. The prove is based on the reduction of the coNP-hard problems
to the query answering in DL-Lite(HF)

core +D + UCQ, where D violates (infinite)
condition.

We remind the reader, that data complexity of FOL query evaluation is in
AC0 complexity class, which is strictly contained in coNP. Which means, if
a problem is coNP-hard, it can’t be solved with the method that is in AC0.
We will encode coNP-hard problem into the problem of UCQ answering an
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ontology, where TBox and query are fixed (bounded) and only the ABox is
adopting wrt the problem instance. Consequently, that data complexity of the
query answering is at least coNP-hard. In other words, we will not be able to
rewrite a given UCQ into a FOL query that is perfect reformulation.

The encodings are expressed using only concept inclusions (B1 v B2), dis-
jointness between attributes (Disj(U1, U2,)) and attribute ranges (Rng(U) v Ti).
Role hierarchies and functional restrictions are not used. It means that already
for DL-Litecore with attributes disjointness, (infinite) condition is necessary for
the efficient UCQ answering.

Assume k ≥ 2 is the number of datatype values in common of a violating
set of datatypes. The prove is based on the two lemmas. In the first (lemma
11), we reduce the problem complement to 3-colorability problem into UCQ
answering, for k ≥ 3. In the second (lemma 12), we adopt the proof of lemma
21, that encodes 2+2-CNF unsatisfiability problem, for k = 2.

Lemma 11. Let O be a DL-Lite(HF)
core + D ontology defined over a datatype

lattice D where exists T1, . . . , Tk (1 ≤ k ≤ n) s.t. they have exactly k values in

common for k ≥ 3, i.e. |
kl

i=1

Ti| = k ≥ 3. Then UCQ answering over O is not

FOL rewritable.

Proof. 3-COLOR is a decision problem where given an undirected graph, one
has to compute whether it is possible to assign to each node one of the color
from the set {red, blue, green}, such that no two adjustment vertices has the
same color. The problem is NP-complete.

So assume we are given an undirected graph G = (V,E) where E ⊆ V × V
is a set of edges and V set of vertices. We define a DL-Lite(HF)

core + D ontology
OG = 〈TG,AG〉 where TG is fixed and |A| ∈ O(k × |V |+ |E|). Also we assume
that datatype constants {d1, . . . , dn} are constants that corresponds to the k
common datatype values. Then we set:

AG = {A(vi)|vi ∈ V } ∪ {E(vi, vj)|(vi, vj) ∈ E} ∪ {V (vi, dk)|1 ≤ i ≤ n ∧ k ≥ 4},

TG = {A v ∃U, V v ¬U,Rng(U) v
kl

i=1

Ti}

and
q()← U(x1, c), U(x2, c), E(x1, x2).

We claim

G is 3-COLOR iff () 6∈ cert(OG, q())

(⇒:). G is 3-COLOR then exists β : V → {d1, d2, d3}, s.t. if (vi, vj) ∈ E
then α(vi) 6= α(vj). We use {d1, d2, d3} to denote {red, blue, green} respectfully.

Based on this we define a model I = (∆I , ·I) s.t. I |= OG and I 6|= q().
Let {v1, . . . , vn}∪T ⊆ ∆I , vIi = vi and dIj = dDj = dj . Atoms are interpreted

as: AI = {vi|vi ∈ V }, UI = {(vi, vj)|(vi, vj) ∈ E}, V I = {(vi, dk)|1 ≤ i ≤
n ∧ k ≥ 4}, UI = {(vi, β(vi)|vi ∈ V }.
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Inclusions A v ∃U , V v ¬U and Rng(U) v
kl

i=1

Ti are satisfied by I by

definition. Finally, I 6|= ∃x1, x2, c.U(x1, c), U(x2, c), E(x1, x2) because β assigns
different colours to adjustment nodes.

(⇐:) Now assume there exists a model I = (∆I , ·I) s.t. I |= OG and
I 6|= q(). Then take UI relation to define an assignment β : V → {d1, d2, d3}. β

is correctly defined as each v ∈ V has some d ∈
kl

i=1

Ti considering A v ∃U and

Rng(U) v
kl

i=1

Ti. On the other hand, Rng(U) ⊆ {d1, d2, d3} because V v ¬U .

Finally as I 6|= ∃x1, x2, c.U(x1, c), U(x2, c), E(x1, x2) we know that β assigns
different colours to adjustment nodes and G is 3-colorable.

3-COLOR is an NP-hard problem, which means that the problem of answer-
ing UCQ over the ontology that violates condition (finate), is at least coNP-hard.
On the other hand data complexity of FOL query answering is in AC0, which
means we wont be able to rewrite q in a FOL query that is perfect reformula-
tion.

Lemma 12. Let O be a DL-Lite(HF)
core +D ontology defined over a datatype lattice

D where exists T1, . . . , Tk (1 ≤ k ≤ n) s.t. they have exactly two data values in

common, i.e. |
kl

i=1

Ti| = 2. Then UCQ answering over O is not FOL-rewritable.

Proof. We adopt the proof of lemma 21. The proof idea is the same, and we

adopt only the encoding ontology OF = 〈T ,AF 〉. Assume that (

kl

i=1

Ti)
D =

{t, f}, where (true)D = t and (false)D = f . We set,

T = {O v ∃U,Rng(U) v
kl

i=1

Ti}

∪ {Rng(Upos) v
kl

i=1

Ti} ∪ {Upos v ¬U∗pos}

∪ {Rng(Uneg) v
kl

i=1

Ti} ∪ {Uneg v ¬U∗neg},

AF = {O(l1), . . . , O(lm)}
∪ {P1(ck, l

k
1+), P2(ck, l

k
2+), N1(ck, l

k
1−), N2(ck, l

k
2−)|1 ≤ k ≤ n}

∪ U(ltrue , true)

∪ U(lfalse , false)

∪ {Upos(lk1+, false), Upos(lk2+, false)|1 ≤ k ≤ n}
∪ {U∗pos(lk1+, true), U∗pos(lk2+, true)|1 ≤ k ≤ n}
∪ {Uneg(lk1−, true), Uneg(lk2−, true)|1 ≤ k ≤ n}
∪ {U∗neg(lk1−, false), U∗neg(lk2−, false)|1 ≤ k ≤ n}
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and for a CQD :

q()←P1(c, f1), U(f1, vf1), Upos(f1, vf1),

P2(c, f2), U(f2, vf2), Upos(f2, vf2),

N1(c, t1), U(t1, vt1), Uneg(t1, vt1),

N2(c, t2), U(t2, vt2), Uneg(t2, vt2).

The rest of the proof proceeds in the same fashion as in the lemma 21.
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Chapter 6

OBDA framework:
DL-Lite

(HF)
core +D2 + UCQD

In this chapter, we provide another significant example of OBDA framework,
DL-Lite(HF)

core + D2 + UCQD. We provide reacher query language, but impose
more conditions over admissible datatype lattices.

FOL-rewritability of satisfiability of DL-Lite(HF)
core + D1 ontologies directly

follows more general case of DL-Lite(HF)
core +D1 satisfiability. However, we adopt

the canonical model in order to prove the next step. In the next step, we further
extend the algorithm, that for a given UCQD constructs perfective reformulation
over a satisfiable DL-Lite(HF)

core +D2 ontology.
In the second part of the chapter, we prove necessity for the conditions in

D2 in order to remain FOL-rewritable, by encoding coNP-hard problems into
the problems of query answering.

6.1 Reasoning

In this section, we are aiming to prove FOL-rewritability of DL-Lite(HF)
core +D2 +

UCQD. We are approaching in the same fashion as in the case of DL-Lite(HF)
core +

D1 + UCQ (Section 5.1). Although, FOL-rewritability of ontology satisfiability

follows from the more general case, DL-Lite(HF)
core + D1, we will need to adopt

the notions of canonical model and of homomorphism between models in order
to prove FOL-rewritability of query answering. We start with satisfiability.

Before that, we remind the reader on the conditions that a datatype lattice
D2 has to satisfy in order to be of type 2:

(infinite) There exists no T1, . . . , Tn in D2 for n ≥ 1 s.t.

|
kl

i=1

Ti| <∞.

(infinite-diff.) There exists no Ts and T1, . . . , Tn in D2 for n ≥ 1 s.t.

Ts 6v Ti (1 ≤ i ≤ n) and |Tsup \
k⊔
i=1

Ti| <∞.
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(open-domain) D2 doesn’t impose a closed domain, i.e. exists interpretation I s.t.:

|∆IV \
n⋃
i=1

VSTi | =∞ where T1, . . . , Tn denote all datatypes defined in D2.

Example 6 Notice that, Tis from (infinite-diff.) condition are not necessarily
sub-types of Ti. For example:

Tk := xsd : integer[<0 ∪ ≥10], Ti := xsd : integer[≥0]

then Ti 6v Tk, but |Ti \ Tk| = 11.
a

Before starting with formal definitions we would like to make a short com-
ment over the datatype constructs in D2. New datatypes in DL-Lite(HF)

core +D2

can be build using various constructors. The constructors include facet expres-
sion (Ti := Tj [ϕ]), union of two datatypes (Ti := T1 t T2), intersection of two
datatypes (Ti := T1 u T2), difference of two datatypes (Ti := T1 t T2), and any
finite combination of them.

However, only data ranges that includes only intersection ( f.e. Tk+1 =
T1u . . .uTk), one can define without considering consequences. In other words,
if {T1, . . . Tk} is set that obey D2 conditions, then adding Tk+1 in the set will
not violate any of D2 conditions.

On the other side this doesn’t hold for other constructors. For an example,
if we define

myowl : negative := xsd : integer \ xsd : nonNegativeInteger.

then such definition directly violate (sup-union) condition as

xsd : integer ≡ myowl : negativeInteger t xsd : nonNegativeInteger.

Similar situation we can have with union:

myowl : myinteger := myowl : negativeInteger t xsd : nonNegativeInteger

, and with facet expressions:

myowl : negativeInteger := integer[<0], myowl : nonNegativeInteger := integer[≥0].

6.1.1 Satisfiability

Every DL-Lite(HF)
core +D2 ontology is also a DL-Lite(HF)

core +D1 ontology. Hence, all

properties relating satisfiability that holds for DL-Lite(HF)
core +D1 ontologies, will

hold for DL-Lite(HF)
core +D2 ontologies as well. The most important consequence

is that satisfiability of DL-Lite(HF)
core +D2 ontologies is FOL-rewritable.

On the hand, we will show that canonical model of DL-Lite(HF)
core +D1 ontolo-

gies will not return certain answers of over the UCQDs. Thus, we need to adopt
the canonical model for DL-Lite(HF)

core + D2 ontologies. But then, we have to

show again that properties relating satisfiability holds for the DL-Lite(HF)
core +D2

canonical model.
Luckily, the change on the DL-Lite(HF)

core +D2 canonical model is small, and
we can easily adopt all satisfiability properties.
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Normalization

Given a DL-Lite(HF)
core +D2 ontology O, first step will be normalization. Normal-

ization is done identically as the DL-Lite(HF)
core +D1 normalization (see 5.1.1).

Canonical model

The main consequence of the (infinite-diff.) condition is infinite number of values
of a datatype that do not belong to any proper sub-type or a type . This allows
us to that in can(O) model while considering a rule B v ∃U , can(O) model
can always take a values of from RngTmax (U) that do not belongs to any proper
sub-type of RngTmax (U).

Let O = 〈T ,A〉 be a DL-Lite(HF)
core + D2 ontology and let D2 be a datatype

lattice assigned to O. For each dataype Ti defined in D we define an infinite set
of datatype constants RestTi = {d1

Ti , . . .}, where for each dj
Ti ∈ RestTi holds:

if (dj
Ti)D2 ∈ (Tk)D2 for some datatype Tk 6= Ti in D2 then Ti v Tk

We point out that existence of RestTi is a consequence of conditions (infinite)
and (infinite-diff.).

Once we have defined RestTi , the construction of a canonical model for

O = 〈T ,A〉 precede in the same fashion as in the case of DL-Lite(HF)
core + D1

ontologies. Firstly a chase is constructed starting from the ABox and expanding
iteratively according the positive rules in T ( see Definition 18). Finally, a model
can(O) = 〈∆can(O), ·can(O)〉 is defined, that match ground facts from the chase
and adopts semantics of the assigned datatype lattice.

In the following, we adopt the properties that hold for DL-Lite(HF)
core + D1

ontologies, for the case of DL-Lite(HF)
core +D2.

Lemma 13. (i)Let O = (T ,A) be a DL-Lite(HF)
core + D2 ontology and let Tp be

the set of positive inclusion assertions in T . Then, can(O) |= (Tp,A).

(ii)If two conditions hold, for every U(o, d) ∈ A we have dD ∈ RngTmax (U)
and when O |= ∃U then RngTmax (U) 6= ⊥D , then can(O) |= (Tp ∪ Td,A), where
Td is the set of all range constraints (Rng(U) v Ti) in T .

Lemma 14. For every DL-Lite(HF)
core +D2 ontology O = 〈T ,A〉 it holds: can(O) |=

Tf iff DB(A) |= Tf .

Negative assertions closure

So far we have seen that can(O) model satisfies all PIs in T , i.e. can(O) |=
Tp (Lemma 13(i)). Also it satisfies all data ranges in T , i.e. can(O) |= Td,
whenever O is not inconsistent with having an attribute U for which O |= ∃U
and RngTmax (U) = ⊥D(Lemma 13(ii)). Moreover, can(O) doesn’t violate any
functional constraint in T if some functional constraint has not been violated
already by the ABox (Lemma 14)

Considering stated, the remaining step is to create a method that will check
when can(O) violate NIs in T . Based on the interaction between negative and

positive inclusions in a DL-Lite(HF)
core +D2 TBox T , we construct the NIs closure

cln(T ), in the same way as for DL-Lite(HF)
core + D1. The canonical model of

DL-Lite(HF)
core +D2 is a special case of the canonical model in DL-Lite(HF)

core +D1,
so the following properties holds directly:
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Lemma 15. For a DL-Lite(HF)
core +D2 TBox T and an arbitrary NI α it holds:

if cln(T ) |= α then T |= α.

Lemma 16. Let O = 〈T ,A〉 be a DL-Lite(HF)
core +D2 ontology. Then, can(O) |=

O iff DB(A) |= cln(T ).

Lemma 17. For every DL-Lite(HF)
core +D2 ontology O it holds: can(O) |= O iff

O is satisfiable.

Finally from Lemmas 16. and 17. we conclude:

Lemma 18. Let O = 〈T ,A〉 be a DL-Lite(HF)
core +D2 ontology. Then DB(A) |=

cln(T ) iff O is satisfiable.

Lemma 18 gives us direct guide how to construct a boolean FOL query for
which ϕ(T )db = ⊥ iff O is satisfiable.

ϕ(T ) =
∨

α∈cln(T )

ϕ(α) (6.1)

The transformation ϕ maps every NI α to its negation expressed as a FOL
sentence (see formula 5.1).

And we conclude,

Theorem 7. Satisfiability problem is FOL-rewritable in DL-Lite(HF)
core +D2.

6.1.2 Certain answers

We remind the reader, that V(A) denotes a set of all predicates from our vocab-
ulary V, i.e. all concepts, roles and attributes. With V(D) we denote the set of
all datatype names in V.

The next lemma is very similar to its counter-part in DL-Lite(HF)
core +D1 logic.

Nevertheless, in this case we define a homomorphism over a bigger set of atoms,
V(A) ∪ V(D). The subtle difference is of a crucial importance for the ensuring
that a composition of two homomorphisms is again a homomorphism, need in
the lemma after this.

Lemma 19. Let O = (T ,A) be a satisfiable DL-Lite(HF)
core + D2 ontology D2

as assigned lattice, and let M = (∆M, ·M) be a model of O. Then, there is a
homomorphism from can(O) to M over the set of predicates from V(A)∪V(D).

Proof. We are constructing a homomorphism µ form can(O) toM, by induction
over the construction of can(O). In addition, for each step i in the induction,
we show that:

(hom.) For each objects o, o′ ∈ ∆
cani(O)
O and value v ∈ ∆

cani(O)
V holds:

for any atomic concept A from O, if o ∈ Acani(O) then µ(o) ∈ AM,

for any atomic role P fromO, if (o, o′) ∈ P cani(O) then (µ(o), µ(o′)) ∈ PM,

for any atomic attribute U from O, if (o, v) ∈ Ucani(O) then (µ(o), µ(v)) ∈
UM,

for any datatype name Ti from D2, if dcan(O) ∈ Ti then (µ(d))M ∈ Ti.
Notice that dcan(O) = dD and (µ(d))M = (µ(d))D.
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If the property (hom.) holds for each i, then it immediately establishes µ as
a homomorphism form can(O) toM over the set of predicates fromV(A)∪V(T ).

Base. For each object constant o that appears in A we set µ(o) = oM. For
each datatype constant d that appears in A we set µ(d) = dM(= dD). Since
M |= A, (hom.) property follows directly for chase0(O).

Induction step. Here we distinguish several cases based on the assertion β
and the applied rule α in obtaining cani+1(O) from cani(O). For example, as-
sume α = B v ∃U and β = B(o), where B(o) denotes a membership assertion of
the form A(o), R(o, o1) or U(o, d1). Then cani+1(O) = cani(O)∪U(o, (dnew)D),
where dnew is a fresh datatype constant from RngTmax (U). From the definition
of RestTi , dnew neither belongs to any proper subtype of RngTmax (U) nor to a
datatype with common intersection with RestTi (*).

According induction hypothesis, exists om ∈ ∆M s.t. µ(o) = om and
om ∈ AM. Since M |= α then must exists some datatype constant d′ s.t.
(om, (d

′)M) ∈ UM. We set µ(dnew) = (d′)M and conclude (µ(o), µ(dnew)) ∈
UM. Between attributes U is the only attribute that has changes semantics
and we conclude that the property (hom.) holds for attributes in cani+1(O).
Concepts and roles are the same as in cani(O) so the (hom.) property holds for
them in cani+1(O) as well.

Now only remains to check (hom.) property on datatypes in D2. Let Ti
be a datatype from D. Taking into account (*) Ti can be only RngTmax (U) or
RngTmax (U) v Ti. From the (soundess) of the Lemma 2, we have O |= Rng(U) v
RngTmax (U). Since M |= O then (d′)M ∈ RngTmax (U). To conclude, for any
datatype Ti, and for every datatype constant in cani+1(O) if dcani+1(O) ∈ Ti
then (µ(d))M ∈ Ti.

To complete µ formally over the ∆D2 , for every datatype constant d that dD

doesn’t appear in can(O) construction we set µ(dD) = dD.
Similarly, we can reason for cani+1(O) in other cases of α and β.

A consequence of previous lemma we have an important property:

Proposition 3. Let q be a UCQ over a satisfiable DL-Lite(HF)
core + D2 ontology

O = (T ,A) and let t be a tuple of constants that from A. Then,

t ∈ cert(q,O) iff tcan(O) ∈ qcan(O)

Proof. (⇒). Follows from the definition of a certain answer.
(⇐). Then if q is UCQ composed with CQ {q1, . . . , qn}, there must be at least

one qi(x)← conji(x, y) s.t. tcan(O) ∈ qcan(O)
i . According Theorem 1. there is a

homomorphism µ from conji(t, y) to can(O).
Now letM be an arbitrary model of O. According Lemma 19. there exists a

homomorphism η from can(O) to M. Since, homomorphisms are closed under
the composition we get that η ◦ µ is a homomorphism from conji(t, y) to M.
Again using Theorem 1. we conclude that tM ∈ qM. Since, M is chosen
arbitrary it follows that t ∈ cert(q,O).

Comment. The lemma 19 has significant importance for the previous propo-
sition. Notice that we have already showed in lemma 9 there exists a homomor-
phism between a can(O) and an arbitrary model M. However, the homomor-

phism in 9 was over the set of atoms from P(A) only. Because DL-Lite(HF)
core +D1

66



has weaker datatype conditions, the homomorphism doesn’t hold for P(A) +
P(D).

Further more, CQD contains datatypes atoms while lemma 9 address CQs
only. Consequently composition of a homomorphism between models over P(A)
and a homomorphism between a model and a UCQ is not always a homomor-
phism.

Example 7 continues on the example 5 Assume the ontology in example
5 is satisfiable and we have two models can(O) and M which are partially
described in example 5. Then consider a CQD query:

q(x) : −∃y.Student(x),myowl : hasAge(x, y),myowl : oldStudentAge(y)

Then (John)can(O) ∈ qcan(O). On the contrary, John 6∈ cert(O, q) because
(John)M 6∈ qM.

The example shows that although can(O) and M establish homomorphism
from Lemma 9. this is not sufficient for certain answers on CQD queries. Es-
sentially, this a reason why we need (infinite-diff.) condition on datatypes in

DL-Lite(HF)
core +D2 + UCQD.

a

The next lemma states that certain answers of a UCQ query can be obtained
from the certain answers of its CQs.

Lemma 20. Let O be an DL-Lite(HF)
core + D2 ontology and q a UCQD over it.

We claim:
cert(q,O) =

⋃
qi∈q

cert(qi,O)

Proof. (⊆:) By definition.
(⊇:) If the ontology is unsatisfiable then it follows trivially. Otherwise, let

t be a tuple from cert(q,O). Then from Proposition 2. tcan(O) ∈ qcan(O). It

follows that exists some CQD qi in q, tcan(O) ∈ qcan(O)
i . Then again according

Proposition 2. t ∈ cert(qi,O).

Perfect reformulation

Perfect reformulation in DL-Lite(HF)
core +D2 + UCQD we will calculate using the

same PerfectRef algorithm as for the DL-Lite(HF)
core +D1 +UCQ. Nevertheless, we

will need to slightly adopt rewriting rules. But firstly, we describe how to rewrite
a UCQ query in a equivalent UCQ query that contains less inconsistencies (f.e.
shared variable between concept and datatype).

So far, a bound variable was defined as a variable that is either distinguish
or shared between atoms in a query. An unbounded variable was the opposite
one, non-shared and non-distinguishable variable. We used the symbol ” ” do
denote them.

(Safety) condition of CQD impose that each distinguishable x that appears
in some datatype atom Tj(x) has also to appear in some atom that is not
datatype. Without lose of generality, we can assume that for every Tj(x2),
where x distinguishable or shared, appears only on the second position in some
attribute U(x1, x2). Cases in which x2 appears on other places, such CQD are
semantically false and we can discard them. Query without atom is logically
equal to ⊥ (false).
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Additionally we assume that we have no datatype atoms that have no shared
variable with some attribute. There are tow possible counter-cases. The atom
has the form Ti(dj) and then we simply check if dD ∈ Ti then discard Ti(dj) from
a CQD, or if not then discard the CQD. Secondly, if we have T1(y1), . . . , Tk(y1)
in a CQD, then either

d
1≤i≤k Ti ≡ ⊥D so we discard the CQD, or if

d
1≤i≤k Ti 6≡

⊥D then we discard T1(y1), . . . , Tk(y1) for the CQD.
We summarize the previous analysis in following:

• (Safety)
∗

Each datatype atom in a CQD appears in the form Ti(x) where
x is a variable that appears at only at the second place of an attribute
atom (U(t1, x)) and exists at least one such attribute.

We say that a variable is bounded if it is distinguishable or it is shared
between concept, role and attribute atoms (not datatype atoms). For example,

q1() : −∃x, y.A(x), U(x, y), Ti(y) q2() : −∃x, y.A(x), U(x, y), Ti(y), U2(x, y)

y is not shared variable in q1, while it is a shared variable in q2.
Unbound variables are not bounded. We use the symbols ” i” to represent

them, where i is a natural number. Each unbounded variable will get uniquely
numbered symbol, except variables from datatype atoms, that take the symbol
of the attributes that associate with them. For example, in a query :

q3() : −∃x, y, z.A(x), U(x, y), Ti(y), B(z)

a renaming with ” i” symbols will be

q3() : −∃x.A(x), U(x, 1), Ti( 1), B( 2)

In the rest, we will use i to denote an arbitrary non-bounded variable.
The following list defines whether an atom in CQD is applicable to a PI α

from T . The definition is slightly changed comparing to DL-Lite(HF)
core +D1+UCQ

counterpart. Formally:

• A PI α is applicable to an atom A(x), if α has A in its right-hand side.

• A PI α is applicable to an atom P (x1, x2), if one of the following conditions
holds:

– x2 = i and the right-hand side of α is ∃P or

– x1 = i and the right-hand side of α is ∃P− or

– α is a role inclusion assertion and its right-hand side is either P or
P−.

• A PI α is applicable to an atom U(x1, x2), if one of the following conditions
holds:

– x2 = i and the right-hand side of α is ∃U and there exists no
datatype atom in the CQD s.t. Tj( i), or

– α is a attribute inclusion assertion and its right-hand side is U .

In the algorithm figure2 we provide the algorithm PerfectRefD, which refor-
mulates a UCQD (considered as a set of CQDs) by taking into account the PIs
of a TBox T . PerfectRefD algorithm is based on three functions:
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• rewrite(q, g, α). We denote with B(x) any of an atom of the form A(x),
R(x, i), U(x, i), where R(x, i) = P (x, i) when R = P and R(x, i) =
P ( i, x) when R = P−. Also, we denote with B any of the DL-Lite
concept expression of the form A, ∃R or ∃U . Additionally, for a given B
we define B(x) as A(x) when A = B, R(x, i) B = ∃R, U(x, i) when
B = ∃U . Finally, we define rewriting (rw)(q, α), for a given atom g and a
given PI α according the table:

g α (rw)(q, α)
B1(x) B2 v B1 B2(x)

R1(x1, x2) R2 v R1 R2(x1, x2)
U1(x1, x2) U2 v U1 U2(x1, x2)

Then, rewrite(q, g, α) is a CQ obtained from q by replacing the atom q with
a new atom (rw)(q, α).

• reduce(q, g1, g2). Method reduce(q, g1, g2) creates a new CQD form q by
applying two operations on q. Firstly, calculates the most general unifier
(mgu) ν of atoms g1 and q2, and applies it over q, q′ = ν(q). This is done
with remark, that unifying g1 and g2, each occurrence of the symbol i

has to be considered as a different unbound variable.

After unification, new variables can become non-distinguishable non-shared
(unbound) variables. Therefore, the second operation is replacement of the
unbound variables with i symbol (say from q′ we obtain q′′ by this oper-
ation). Notice that, possible new rules will be applicable in q′′ in the step
(rw), that were not before in q.

Finally, a CQ q” = reduce(q, g1, g2) is returned as a result.

• deleteRng(U(x, i), q). Method Rng ( ) creates a new CQD from q by
deleting all datatype atoms with variable i, i.e. datatype atom of the
form Tj( i). We elaborate the method correctness:

The condition for the (range) step is RngTmax (U) v Rngq(U(x, i)). Con-
sidering that Rng(U) v RngTmax (U), the datatype restriction from Rngq(U(x, i))
have no effect on U , and from the logic point of view we can do no harm
by deleting them. Moreover, if we delete them potentially new rules of
the form B v ∃U will become applicable.

On the other hand, if Rng(U) 6v RngTmax (U) then datatype restrictions
from Rngq(U(x, i)) remains. This is also logically correct, considering
the construction of can(O). Namely, can(O) model on the rules like
B v ∃U , will add new constants from RngTmax (U) that are not in the
intersection Rngq(U(x, i)). Then if DB(A) doesn’t contains facts that
satisfies U(x, i) u Rngq(U(x, i)) then neither can(O) will satisfy it.

The algorithm that computes UCQD PerfectRefD(q, T ) for a given UCQD q
and TBox T is presented on Algorithm 2.

All three functions in the algorithm PerfectRefD produces CQD that is equal
or shorter than original one. Further, all CQD created in PerfectRefD are build
using the variables, constants and predicate names from T and q. To conclude,
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Algorithm 2 The algorithm that computes PerfectRef of a UCQD q given a
DL-Lite(HF)

core +D2 TBox T
Input: UCQD q, DL-Lite(HF)

core +D2 TBox T
Output: UCQD qpr

1: procedure PerfectRef(q, T )
2: qpr ← q
3: repeat
4: q′pr ← qpr

5: for all CQD q in qpr do
6: for all atoms g in q do . step (rw)
7: for all PI α in T do
8: if α is applicable to g then
9: q′pr ← q′pr ∪ rewrite(q, g, α);

10: end if
11: end for
12: end for
13: for all pair of atoms g1, g2 in q do . step (red)
14: if g1 and g2 unify then
15: q′pr ← q′pr ∪ reduce(q, g1, g2);
16: end if
17: end for
18: for all U(x, i) ∈ q do . step (range)
19: if RngTmax (U) v Rngq(U(x, i)) then
20: q′pr ← q′pr ∪ deleteRng(q,Rngq(U(x, i)));
21: end if
22: end for
23: end for
24: until qpr = q′pr

25: return qpr ;
26: end procedure
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the size of each CQ in qpr less or equal |q| and there are at most |T | × |q|2 of
them in qpr . In other words:

|qpr | ≤ (|T | × |q|2)|q|. (6.2)

Formula 6.2 quarantines the termination of PerfectRefD algorithm.
The last step in proving that DL-Lite(HF)

core +D2 + UCQD is FOL-rewritable
is the next theorem.

Theorem 8. Given a satisfiable DL-Lite(HF)
core +D2 ontology O = 〈T ,A〉 and a

UCQD query q over it, we claim that holds:

(qpr )DB(A) = cert(q,O)

, where qpr = PerfectRefD(q, T ).

Proof. Firstly we define a notion of witness. Given an ontology O, t tuple of
constants from O, and a CQD q(x) over O, we say that a set of membership
assertion Θ, is a witness for t wrt q, if there exists substation σ ({x 7→ t} ∈ σ)
over atoms in q s.t. σ(q(x)) = Θ ( q is considered set-wise).

Considering Lemma 20 we have that (qpr )DB(A) =
⋃
q̄∈qpr

q̄DB(A). Moreover,
considering Proposition 3, it is sufficient to show:⋃

q̄∈qpr

q̄DB(A) = qcan(O)

(⊆:) We have to show that for an arbitrary q̄ ∈ qpr , q̄DB(A) ⊆ qcan(O).
We will show it by induction over the number of steps (rw), (red) and (range)

used for generating q̄.
Induction base. No reformulation applied, so q̄ ∈ q. Then q̄DB(A) ⊆

q̄can(O) ⊆ qcan(O).
Induction step. Induction hypothesis is that for all q̄ ∈ qpr s.t q̄ is generated

using steps (rw), (red) and (range) in less then n times , q̄DB(A) ⊆ q̄can(O) ⊆
qcan(O). It is sufficient to show that for each tuple t from O and for each q̄2

generated in (n+ 1) steps holds: if tcan(O) ∈ q̄2
can(O) then tcan(O) ∈ qcan(O).

Firstly, we assume that q̄2 is generated in (n+ 1) steps, where the last step
was (rw) on the rule β : A v ∃U , i.e. q̄2 = rewrite(q̄1, β, U). By assumption,
q̄1

can(O) ⊆ qcan(O). If for a tuple t from O, we have a witness Θ wrt q̄2 in
can(O), then there are two possibilities. Firstly, that Θ is already a witness for
t wrt q̄1. If not, then must be a ground atom A(oi) that was applied on β in
can(O) to obtain witness Θ. Then we enrich Θ, with the U(oi, d), obtained by
application of A(oi) over β, to create a witness Θ1∪ can(O) for t wrt q̄1. Notice
that the fact U(oi, d) doesn’t violate any datatype atom in q̄1. Finally, in both
cases, tcan(O) ∈ q̄1

can(O). Considering the hypothesis it holds tcan(O) ∈ q̄can(O).
Similarly, we can prove other cases for (rw) step.
If q̄2 = reduce(q̄1, g1, g2), then every witness for t wrt q̄2 is also a witness wrt

q̄1.
If q̄2 = deleteRng(U(x, i), q̄1), then every witness for t wrt q̄2 is also a

witness wrt q̄1. Since, the condition of deleteRng(, ) holds, then for a witness
atom U(o, d) that corresponds to U(x, i), it must hold d ∈ Rngq(U(x, i)).

(⊇:) Assume tcan(O) ∈ qcan(O) and that Θ is a witness. Then exists a CQD
q′ ∈ q for which Θ is the witness. Analogically to the theorem 6.1.2, we are
constructing q̄ from qpr s.t. t ∈ q̄DB(A).
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The canonical model can(O) can be seen as a forest, where nodes are mem-
bership assertions in can(O) and edges correspond to the rules that generate
new membership assertions from A. In particular, all facts from A we consider
as roots. Out of this forest, potentially infinite, we will consider a minimal as
possible (final) sub-forest F , where leaves are the assertions in Θ, roots are the
roots of the assertions in Θ, and edges are one that establish paths between the
leaves and the roots, s.t. Θ is contained in the set of nodes from F . Notice that
each membership assertion can appear only once in F .

The idea is to construct q̄ starting from q′ and following the rules (inverted)
that generate Θ, from the leaves towards roots. Assume that F has n edges.
We define a chain of sub-forests F0 = F ,F1, . . . ,Fn of F , where Fi+1 is ob-
tained from Fi by deleting one leaf. Additionally we define the list of queries
q̄0, q̄1, . . . , q̄n, where q̄i+1 is obtained from q̄i, according the rule βi that cor-
responds to the deleted edge in Fi in obtaining Fi+1. Additionally, following
the witness substitution for t from Fi+1 wrt q̄i+1, we apply Reduction step (see
bellow) on each q̄i+1. This is done, to ensure correct (rw) application for q̄i+1

in the next step.
Two criteria we have to show: (i) the rule βi is applicable to corresponding

atom in qi, (ii)(induction hypothesis) and for each i there exists a witness in
Fi for t wrt q̄i s.t. no two atoms in q̄i are assigned by the witness substitution
to the same membership assertion from the witness (injection between atoms
in q̄i and the elements of a witness). As a consequence (i) we have that q̄n is
generated from q applying (rw), (red) and (range) rules and that (ii) there is a

witness in Fn ⊆ DB(A) for t wrt q̄n, i.e. t ∈ q̄DB(A)
n .

Reduction step on q̄i. Each witness Θi determines a substitution σ, where
σ(q̄i(x)) = Θi and {x 7→ t} ∈ σ. Following this, we will apply (red) step to all
pairs of atoms in q̄i that become identical after applying substitution σ. After
this atoms in q̄i and assertions in Θ relates 1 to 1. Additionally, in q̄i we applying
(range) rule as much as possible. Then for each attribute of the form U(x, i)
in q̄i, if it has assigned datatype atoms then RngTmax (U) 6v Rngq(U(x, i)).

Induction base. Let denote with q̄0 a query obtained from q after apply-
ing Reduction step. So, no two atoms in q̄0 relates to the same assertion in
F0(injection). Nevertheless, σ(q′) = σ(q̄0)(set-wise) and Θ ⊆ F0 is a witness of
t wrt q̄0.

Induction step. Assume that that exists a witness in Fi for t wrt q̄i. Now
let Fi+1 = Fi \ γ where the edge label is rule βi and γi is deleted membership
assertion. Cases in βi deal only with concepts and role are similar to the cases in
. So we are focus on the other remaining case, βi = U1 v U2 or βi = B1 v ∃U2.

Firstly assume, βi = U1 v U2. Then q̄i+1 = rewrite(q̄i, βi, U1) and the rule q̄i
is applicable. By assumption, Fi contains a witness for t wrt q̄i+1. Wlg assume,
U2(x1, x2) was replaced with U1(x1, x2), and U1(o, d) is a fact from the witness
that is assigned to U1(x1, x2). Consequently U1(o, d) is the new leaf in Fi+1,
Fi contains a wintess for q̄i+1. Considering that RngTmax (U1) v RngTmax (U2),
U1(o, d) will not violate any of datatype restriction from Rngq(U1(x1, x2)), be-
cause Rngq(U1(x1, x2)) = Rngq(U2(x1, x2)) and they are not violated by U2

according assumption.
Secondly assume, βi = B v ∃U and γi = U(o, dnew)
As γi = U(o, dnew) is a leaf of Fi then dnew doesn’t appear in any other mem-

bership assertion from Fi. This means that a variable y in an atom U(z, y) ∈ q̄i
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that corresponds to U(o, onew) is not distinguishable one. Additionally y is not
shared one, for the two reasons. Firstly there is no another atom U(z2, y) ∈ q̄i
that corresponds to U(o, dnew) as Reduction step is applied on q̄i. Secondly,
y can not appear in some other atom, for example U(x2, y) ∈ q̄i, because the
witness defines 1-1 (injection) relation between atoms in qi and nodes in Fi. So
after application of Reduction step, U(z, y) must be rewritten in U(z, i) ∈ q̄i
that has no assigned datatype atoms of the form Tj( i). Then the rewriting
using β to obtain q̄i+1 is correct.

From everything that has been shown in this chapter we conclude

Theorem 9. DL-Lite(HF)
core +D2 + UCQD is FOL-rewritable.

Finally we summarize the complexity measure of DL-Lite(HF)
core +D2 +UCQD.

The reasons given are the same as for the DL-Lite(HF)
core +D2 + UCQD, so please

refer for details.

• PerfectRef(q, T ) ∈ PTime(T ).
The meaning is that PerfectRef(q, T ) is a polynomial algorithm in the size
of T . This is a consequence of the formula 5.2.

• (Data complexity) Answering UCQDs in DL-Lite(HF)
core + D2 is in PTime

in the size of the ontology.

• (Schema complexity) Answering UCQDs in DL-Lite(HF)
core + D1 is in AC0

in the size of the ABox.

• (Combined complexity) Answering UCQDs in DL-Lite(HF)
core +D2 is NP−

complete in combined complexity.

6.2 Relaxing datatype conditions

In this section, we are proving that datatype conditions over D2 are necessary for
DL-Lite(HF)

core +D2 + UCQD to be FOL-rewritable. The proves are based on the

reduction of the coNP-hard problems to the query answering in DL-Lite(HF)
core +

D + UCQD, where D violates at least one condition from D2.
So far we have seen (section 5.2), that condition (infinite), is already neces-

sary condition for the framework DL-Lite(HF)
core +D1 + UCQ in order to be FOL-

rewritable. Consequently, it is a necessary condition for DL-Lite(HF)
core +D+UCQD

as well. Then only remains to show that violating either (infinite-diff.) or

(open-domain) in DL-Lite(HF)
core +D+ UCQD, query answering problem becomes

coNP-hard wrt data complexity.
Reductions are expressed using concept inclusions (B1 v B2), disjointness

between attributes (Disj(U1, U2)), and datatype range restriction (Rng(U) v Ti).
Role hierarchies and functional restrictions are not used. It means, that already
for DL-Litecore with attributes disjointness, conditions of type D2 are necessary
for the efficient answering of UCQDs

Interesting observation can be made about the datatypes that violate the
the conditions. For example, in the case of |T1 \ T2| = k, T1 has to appear in
the ontology but T2 doesn’t, in order prove coNP-hardness. The same situation

73



is for |T1 v T2 t T3|, where only T1 appears in terminological part while T2

and T3 appear only in the UCQD. This advocates, that T2 and T3 need not
to be considered as ”regular” datatypes, but as a restrictions(facets) over T1

to get coNP-hardness. This proves that our approach of introducing datatype
atoms in UCQs instead of restrictions (facets) only, is very optimal in the sense,
that we can’t make better characterization of necessary conditions by bounding
datatypes to terminological part and restrictions (with potentially more free-
dom) to queries.

Finally, we point out, that the condition (sup-union) is a special case of the
(infinite-diff.) condition. The condition (sup-union) is also necessary, however
it is not sufficient. In other words, there are frameworks that do not violate
(sup-union), but that are still not FOL-rewritable.

We distinguish two cases. First, when (sup-union) and (infinite-diff.) are
violated with two and three datatypes (n=2), and secondly when they are vio-
lated with at least four datatypes (n ≥ 3). In the first case we reduce coNP-hard
problem 2+2-CNF unsatisfiability ([22]), while in the second, we reduce coNP-
hard problem which is k-COLOR complement. Formal definitions are provided
within the proves.

Before presenting the formal proves, we elaborate the logical structure of
reduction by cases (=⇒ means follows with adoption on the proof):

• 2+2-CNF unsatisfiability. We encode the 2+2-CNF unsatisfiability prob-
lem in the case of Tsup v Ti t Tj in lemma 21). Then adopting the proof
we proved the corollaries 1, 2 and 3.

Tsup v Ti t Tj (lemma 21)

�� '/

+3 |T \ Ti| = k (corollary 1)

|Tsup \ (Ti t Tj)| = k (corollary 2) D = {T1, T2}(corollary 3)

• k-color complement. We encode the k-color complement into the scenario
of closed domain D = {T1, . . . , Tk} (∆IV =

⋃
1≤i≤k VSTi). Adopting the

lemma 22 proof we prove corollary 4.

D = {T1, . . . , Tk}, k ≥ 3 (lemma 22)

��

|Tsup \
k⊔
i=1

Ti| = k, k ≥ 3(corollary 4)

Lemma 21. Let O be a DL-Lite(HF)
core +D ontology defined over a datatype lattice

D where exists three different datatypes Tsup, Ti, Tj s.t. Tsup 6v Ti,Tsup 6v Tj and
Tsup v Ti t Tj. Then UCQD answering over O is not FOL-rewritable.

Proof. In order to show that a query answering in not FOL-rewritable in O =
〈T ,A〉 we will reduce coNP-hard problem to query answering problem over O,
varying the size of the ABox only, i.e. making data complexity coNP-hard.

74



TBox remains fixed. As data complexity FOL-rewritable problems are in AC0

this implies that query answering is not FOL-rewritable.
A coNP-complete problem that we are going to reduce is 2+2-CNF unsatis-

fiability. We adopted the proof idea from [10, p. 304].
A 2 + 2-CNF formula on an alphabet P = {l1, . . . , lm} is a CNF formula

F = C1 ∧ . . . ∧ Cn in which each clause Ci = Li1+ ∨ Li2+ ∨ ¬Li1− ∨ ¬Li2− has
exactly four literals, two positive ones, Li1+ and Li2+ , and two negative ones,
¬Li1− and ¬Li2− , where the propositional letters Li1+, L

i
2+,¬Li1− and ¬Li2− are

elements of P ∪ {true, false}.
Given a 2 + 2-CNF formula F as above, we associate with it an ontology

OF = 〈T ,AF 〉 and a boolean CQ q() as follows. OF has one constant for each
letter l ∈ P, one constant ci for each clause Ci, plus two constants true and
false for the corresponding propositional constants. The atomic concepts of OF
are O, the atomic roles are P1, P2, N1, N2, and the atomic attribute U . Also
we fix two constants truei ∈ LSTi s.t. (truei)

D ∈ Tsup , (truei)
D 6∈ Tj , and

falsej ∈ LSTj s.t. (truej)
D ∈ Tsup, (falsej)

D 6∈ Ti. By assumption, truei and
falsej exist. Then, we define:

T ={O v ∃U,Rng(U) v Tsup},
AF ={O(l1), . . . , O(lm)}

∪ {P1(ck, l
k
1+), P2(ck, l

k
2+), N1(ck, l

k
1), N2(ck, l

k
2)|1 ≤ k ≤ n}

∪ U(ltrue , truei)

∪ U(lfalse , falsej)

and a CQD :

q()←P1(c, f1), U(f1, vf1), Tj(vf1),

P2(c, f2), U(f2, vf2), Tj(vf2),

N1(c, t1), U(t1, vt1), Ti(vt1),

N2(c, t2), U(t2, vt2), Ti(vt2).

Intuitively, O v ∃U should represent assignment of a variable l ∈ P to a
truth value where value(l) = true iff exists d ∈ Ti s.t. (l, 〈d〉) ∈ U(*). P1, P2

are binded to positive literals, while N1, N2 are binded to negative literals.
Intuitively, if () ∈ cert(q,OF ) holds then for each model I of OF there must be
one clause which assigns ”negative values” from Tj to literals in P1 and P2 and
”positive values” from Ti to literals in N1 and N2 by ”assignment” U . Notice
that Ti and Tj need not to be disjoint as the truth values of literals are greedily
defined on the side of ”positive values”(see above (*)). It is only important that
Ti and Tj ”cover” all values in Tsup.

Finally, constants true and false are encoded throughout literals ltrue and
lfalse respectfully.

Formally, F is unsatisfiable iff () ∈ cert(q,OF ).
(⇒:) Assume F is unsatisfiable and I |= OF . Let β be a truth assignment

over variables in P defined by: β(l) = true iff there exists di ∈ Ti s.t. (l, di)
I ∈

UI . Since F is unsatisfiable, there exists a clause Ck s.t. β(Ck) = false,
i.e. β(lk1+) = false, β(lk2+) = false, β(lk1−) = true, β(lk2−) = true. Therefore,
we know that for each d1

j , d
2
j s.t. (lk1+, d

1
j )
I , (lk1+, d

1
j )
I ∈ UI must be d1

j , d
2
j ∈
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Tj and that exists such d1
j , d

2
j . In addition, there must exists d1

i , d
2
i ∈ Ti s.t.

(li1+, d
1
i )
I , (li1+, d

1
i )
I ∈ UI .

Finally, there exists substitution θ = {c 7→ ck, f1 7→ lk1+, f2 7→ lk2+, vf1 7→
d1
j , vf2 7→ d2

j , t1 7→ lk1−, t2 7→ lk2−, vt1 7→ d1
i , vt2 7→ d2

i } that assigns variables in
q() s.t. q() evaluates to true in I.Notice that literals ltrue and lfalse complies
with the definition of θ.

(⇐:) Suppose that F is satisfiable, where β : P → {true, false} is satisfiable
assignment. Based on β we define a model I of OF that falsifies q().

OI ={lI |l ∈ P}
UI ={(lI , trueIi )|if β(l) = true} ∪ {(ltrue , truei)}∪

{(lI , falseIj )|if β(l) = false} ∪ {(lfalse , falsei)}
P I ={(aI1 , aI2 )|P (a1, a2) ∈ AF }, for P ∈ {P1, P2, N1, N2}

It is easy to verify that I is a model of OF .
On the other hand, if I satisfies q there must be at least one clause Ck for

which which I |= P1(ck, f1), U(f1, vf1), Tj(vf1), . . . , Ti(vt2). I determines exact
one substitution for variables of a fixed clause ck. If we substitute variables in
q() with the only possible substitution, since β(Ck) = true we know that at
least of the following conjunctions will not hold in I:

P I1 (cIk , (l
k
1+)I), UI((lk1+)I , vfI1 ), Tj(vfI1 ),

P I2 (cIk , (l
k
2+)I), UI((lk2+)I , vfI2 ), Tj(vfI2 ),

NI1 (cIk , (l
k
1−)I), UI((lk1−)I , vtI1 ), Ti(vtI1 ), or

NI2 (cIk , (l
k
2−)I), UI((lk2−)I , vtI2 ), Ti(vtI2 ).

We select an arbitrary clause ck it follows follows () 6∈ qI . To conclude,
() 6∈ cert(OF , q()).

Corollary 1. Let O be a DL-Lite(HF)
core + D ontology defined over a datatype

lattice D where exists datatypes Ti and Tsup, s.t. Ti v Tsup and the number of
values in Tsup that are not in Ti is finite. Then answering UCQD over O is not
FOL-rewritable.

Proof. The proof follows from the proof of lemma21, by adoption of the ABox
AF and the query q. By assumption VSrest = VSsup \ VSTi is a finite set of
the size k. AF is extended with assertions {V (l, d)|l ∈ O ∧ dD ∈ VSrest}. The
size of a new TBox is fixed as before, while the size of AF is linearly bigger for
k× |AF | ∈ O(|AF |) (data complexity). Query q() is changed but is still a fixed
size:

q()←P1(c, f1), U(f1, vf1), Ti(vf1),

P2(c, f2), U(f2, vf2), Ti(vf2),

N1(c, t1), U(t1, vt1), V (t1, vt1),

N2(c, t2), U(t2, vt2), V (t2, vt2).

The rest of the proof is the same as in Lemma 21.
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Corollary 2. Let O be a DL-Lite(HF)
core + D ontology defined over a datatype

lattice D where exists three different datatypes Tsup, Ti, Tj s.t. Tsup 6v Ti, Tsup 6v
Tj and the number of values in Tsup that are not neither in Ti nor in Tj is a
finite number. Then answering UCQD over O is not FOL-rewritable.

Proof. Follow from the proof of Lemma21, by adoption of an ABox AF and
TBox T . By assumption VSrest = VSsup \ (VSTi ∪ VSTj ) is a finite set of the
size k. AF is extended with assertions {V (l, d)|l ∈ O ∧ d ∈ VSrest}. TBox is
extended with {V v ¬U}. The size of a new TBox is fixed as before, while the
size of AF is linearly bigger for k × |AF | ∈ O(|AF |) (data complexity).

The rest of the proof is the same as in Lemma 21. Intuitively V will deter-
mine inclusion O v ∃U to ”assigns” l ∈ O to values from Ti or Tj (and not their
difference with Tsup) which leads exactly to the case we have in Lemma 21.

Corollary 3. Let O be a DL-Lite(HF)
core + D ontology defined over a datatype

lattice D where D = {Ti, Tj} and Ti 6v Tj,Tj 6v Ti. Then answering UCQD over
O is not FOL-rewritable.

Proof. The proof follows from the proof of lemma 21., by replacing Rng(U) v
Tsup with Rng(()U) v Td. The rest of the proof proceed in the same fashion.

Lemma 22. Let O be a DL-Lite(HF)
core +D ontology defined over a datatype lattice

D where D = {T1, . . . , Tk}, for k ≥ 3, where at least two are not subtype of any
other. Then answering UCQD over O is not FOL-rewritable.

Proof. We assume, that each datatype Ti (1 ≤ i ≤ k) is not a sub-type of any
other datatype Tj (i 6= j) in D. If this is not a case then we can extract a
subset of datatypes from D that posses this property. If there is exactly two
datatypes with such property then we can apply lemma 3. Otherwise we set k
to the subset size and in the following operate only on the subset.

The k-coloring problem is problem of asking whether an undirected graph
G = 〈V,E〉 admits coloring with k ≥ 3 colors. A graph admits k-coloring if
exists a coloring function β : V → {c1, . . . , cn} s.t. for each (vi, vj) ∈ E holds
β(vi) 6= β(vj). In simple words, if there exists coloring of the graph vertices
such that no two adjacent vertices have the same color. Deciding whether
an undirected graph G = 〈V,E〉 admits k-coloring (k ≥ 3) in NP-complete.
Then deciding opposite, whether an undirected graph does not admit k-coloring
(k ≥ 3) in coNP-hard.

We will reduce the k-coloring complement problem of a graphs G = 〈V,E〉
to the problem of answering UCQDs over DL-Lite(HF)

core + D ontologies. With

OG = 〈T ,AG〉 we denote a DL-Lite(HF)
core +D ontology that encodes the graph.

For every graph only AG(data complexity measure) will change linearly in the
size of the input G, while the TBox T and the UCQD q() are fixed. As a
consequence, data complexity of answering UCQDs will be coNP-hard. Then
UCQD answering is not FOL-rewritable in DL-Lite(HF)

core +D.
Assume we are given an undirected graph G = 〈V,E〉. We define an ontology

OG = 〈T ,AG〉.
T = {V v ∃U},

AG = {V (vi)|vi ∈ V } ∪ {E(vi, vj)|(vi, vj) ∈ E}
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and a UCQD :

q()←U(x1, c1), U(x2, c2), E(x1, x2), T1(c1), T1(c2).

. . .

q()←U(x1, c1), U(x2, c2), E(x1, x2), Tk(c1), Tk(c2).

Where U is an atomic attribute, V is an atomic concept, and E is an atomic
role. Intuitively, V v ∃U ∈ T will simulate an assignment of the colors to the
vertices. Each datatype Ti simulates a color ci. In addition we distinguish k
constants for each datatype: ci ∈ LSTi .

Now we claim:

G does not admit k-coloring iff () ∈ cert(OG, q())

(⇒:) Suppose () ∈ cert(OG, q()). Now let β : V → {c1, . . . , cn} be an
arbitrary color assignment. Now we construct a model Iβ of OG. For every
vartex vIβ = v. Furthermore,

V Iβ ={v|v ∈ V }
UIβ ={(v, ci)|if β(v) = ci}
EIβ ={(vi, vj)|(vi, vj) ∈ E}

Obviously, Iβ |= OG. By assumption qIβ = {()}, so there exists i (1 ≤ i ≤ k),
s.t.

Iβ |= ∃x1, x2, c1, c2.U(x1, c1), U(x2, c2), E(x1, x2), Ti(c1), Ti(c2).

In other words, there exists vertices vi and vj s.t. (vi, vj) ∈ E and β(vi) = ck =
β(vj). So β is not proper coloring. On the other hand, we select β arbitrary, so
G does not admit k-coloring.

(⇐:) Assume G does not admit k-coloring and let I |= OG. Now we define
color assignment β based on the I interpretation of U .

For every v ∈ V define β(v):

If exists c ∈ VST1
s.t. (vI , c) ∈ UI then β(v) = c1

else if exists c ∈ VST2
s.t. (vI , c) ∈ UI then β(v) = c2

. . .

else if exists c ∈ VSTk−1
s.t. (vI , c) ∈ UI then β(v) = ck−1

else if exists c ∈ VSTk s.t. (vI , c) ∈ UI then β(v) = ck.

β is correctly defined as for each v ∈ V it assigns exactly one color and
for each v ∈ V there must exists at least one value c s.t. (vI , c) ∈ UI . By
assumption G is not k-colorable so there exists vi and vj s.t. (vi, vj) ∈ E and
β(vi) = cz = β(vj) (1 ≤ z ≤ k).

On the other hand, I is a model of OG, so (vIi , v
I
j ) ∈ EI , and by definition

of β exists c1z, c
2
z ∈ V STz s.t. (vIi , c

1
z) ∈ UI and (vIj , c

2
z) ∈ UI . Then () ∈ q()I .

We selected I arbitrary, so () ∈ cert(OG, q()).

Corollary 4. Let O be a DL-Lite(HF)
core + D ontology defined over a datatype

lattice D where exists Tsup, T1, . . . , Tk (k ≥ 2) s.t. Tsup 6v Ti (1 ≤ i ≤
k), V STsup

\
⋃k
i=1 VSTi is finite. Then query answering over O is not FOL-

rewritable.
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Proof. We distinguish three special cases.
If exists Ti that contains all other Ti’s, then we apply the lemma 1.
Otherwise, if there exists exactly two Ti’s that contain all other Ti’s, then

we apply lemma 3.
Otherwise, there must exists at least three different Ti’s that are not proper

sub-type of some other Ti. Then we adopt the proof of lemma 22., by adding
{ρ(U) v Tsup , U v ¬Udiff} to TBox and {Udiff(v, d)|v ∈ V ∧ d ∈ V STsup

\⋃k
i=1 VSTi} to ABox. In the rest, we can proceed in the same fashion as in the

proof of the lemma.
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Chapter 7

Conclusions and Future
work

7.1 Conclusion

In this thesis we were aiming at providing a solid base for the investigation of
datatypes in the context of DL-Lite DLs. For this purpose we define a language
for describing datatypes, as well as the constructors for defining new datatypes
based on defined ones.

Additionally, we were aiming at exploring the computational effects that
datatypes can have on the desired properties. The main computational prop-
erties of our concern are FOL-rewritability of ontology satisfiability and FOL-
rewritability of query answering. We wanted to explore necessary and sufficient
conditions over datatypes so that a DL preserves ”nice” computational proper-
ties. Or on the contrary, we were trying to realize the source of the problems
that increase the complexity.

For these reasons, we have studied restrictions imposed over datatypes under
which we can guarantee the desired computational properties. These conditions
are formalized through the structure of a datatype lattice, a finite set of primitive
and derived datatypes. We classify datatype lattices, in three classes named D0,
D1 and D2 (D0 ⊃ D1 ⊃ D2), based on the conditions that a datatype lattice
satisfies or not.

Traditionally, DL-Lite candidates for OBDA were investigated based only
on the ontology expressibility [10, 4]. Furthermore, they were investigated wrt
a fixed query language (UCQ) and without considering datatypes. We define a
more abstract view over the OBDA scenario, by identifying datatypes and query
language as important parts of OBDA, that can vary in expressivity based on
the needs. We denote such a framework with DL+D+Q. The first component is
a language DL, that describes the ontology language together with the interface
for combining ontologies with datatype lattices. The second component D is the
type of admissible datatype lattices. The last component is a query language
Q. In this terminology the traditional view on OBDA can be described as
DL+ ∅+ UCQ.

To support our investigation, we explored two significant candidates for the
OBDA framework. Namely, DL-Lite(HF)

core +D1 + UCQ and DL-Lite(HF)
core +D2 +
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UCQD. In both cases we proceed in two steps. In the first one, we prove that
satisfiability of ontologies is FOL-rewritable. And in the second one, we show
that a framework is eligible for the OBDA scenario, i.e., that is FOL-rewritable.
For the second case we extend standard UCQs with datatypes (constraints) and
obtain a query language called UCQD.

Moreover, we showed that in case of DL-Lite(HF)
core +D1 + UCQ datatype con-

ditions defined over D1 are necessary if we want to preserve FOL-rewritability.
We proved the same for the case of D2 conditions in DL-Lite(HF)

core +D2 + UCQD.

7.2 Future work

Extensions of the work presented in the thesis can go in two directions. The first
is further exploring and characterizing the DL + D +Q framework. In partic-
ular, finding maximal triples for query languages, DL languages , and datatype
lattices , that are FOL-rewritable. The second direction is an implementation
of DL+D +Q implementation. We present each in a more detail:

Extending DL+D +Q

Already in the DL-Lite family we have DL constructors that we haven’t consid-

ered in the thesis. For example, an expressive DL-Lite member is DL-Lite
(HN )
horn

[4], which includes concept expressions of the form ≥ k R (generalize ∃R),
where ≥ k R means that there exists at least k succors via role R. In addition,

DL-Lite
(HN )
horn allows conjunction of concepts on the lhs of a concept inclusion,

B1u . . .uBk v B. Most importantly, DL-Lite
(HN )
horn is FOL-rewritable for UCQs.

Further more, one can extend the datatype interface. For example, by allow-
ing the expressions of the form B v ∀U.Ti. Even modest usage of the ∀ quan-
tifier over roles would spoil FOL-rewritability of query answering for DL-Lite
members (NLogSpace-hard for data complexity [10]). However, defined over
attributes only, it has potential to be introduced for ”free”.

Another expressive feature in DLs are datatype linear equations. They are
used to express dependencies between the values on different attributes over a
single individual. They have been theoretically founded in EL by means of Con-
crete Domains [8]. For example, consider an ontology that models substances,
where an attribute MeltingPoint defines the melting temperature of a substance
and an attribute BoilingPoint defines the boiling temperature of a substance.
To relate those two we add an inclusion

NormalSupstance v ∀(MeltingPoint ≤ BoilingPoint),

which states that for each normal substance the melting point should always be
less or equal than the boiling point. Datatype linear equations are included in
OWL2 syntax, equipped with standard arithmetic comparisons and arithmetic
operators. 1

Lastly, we can consider extending the query language Q. We notice that a
perfect reformulation of a UCQ (resp., a UCQD) is again a UCQ (resp., a UCQD),
which is less expressive then FOL queries (full SQL). Then we can ask, what
would be queries of maximal expressiveness that are still FOL-rewritable over

1http://www.w3.org/TR/owl2-dr-linear/
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particular DL-Lite members. For example, a simple extension of CQs can be
obtained by adding concepts of the form ≥ k R (similar the to SQL count(*)
function).

Implementing DL+D +Q

In a real scenario, data in a repository are not stored as ABox instances, i.e.,
tables with one or two columns. Additionally, data in a repository are typed
and do not represent objects directly. So in order to implement OBDA we
will have to define a mapping language that will solve the problem, so called
impedance mismatch problem. The authors in [10], propose a GAV mapping
language between databases and ontologies. In short, the language has two
components, the mapping definitions that assign database columns to ontology
datatypes, and the second one that defines mappings from database data to
ontology ABox. In such settings, there is a need for verification methods over
mapping definitions (without employing ABox), that can be in collision with
the TBox and datatypes dependencies.

On the other hand, a serious issue of OBDA applicability is the size of a per-
fect reformulation, which is exponential in the size of the input query (eq. 5.2
and 6.2). However, potentially many CQs in a perfect reformulation are incon-
sistent wrt terminological part. It means they are redundant in query evaluation
over the ABox and we can discard them without evaluation. Different optimiza-
tion techniques have been employed to reduce the number of redundant queries
in perfect reformulation [20]. By introducing datatypes, there is a potential
to enhance optimization techniques, based on both the inner properties of a
datatype lattice and on the mapping definitions that include datatypes.
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