
Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

1

Automated testing

2

• The term DevOps emerged a decade ago as an
amalgamation of Development and Operations

• A reaction to a perceived disconnect between
developers and operators within the same
organization

• Adopted to develop and operate software
solutions in the cloud

DevOps

3

• Virtualized infrastructure enables perform
deployment and configuration using pre-
configured scripts

• This allows organizations to deploy new
versions several times a day

• Operations can be configured to provide
feedback from daily operations, which in turn
supports development and deployment of new
and enhanced features at a rapid pace

Automation in development

4

• Manual testing is more prone to human error
• To reduce QA effort
• Reduce waiting time to know build quality
• Categorize tests and run against build (smoke/

regression test)
• Schedule tests and make them under control

(nightly regression)

Why did we set up an automated
system to run tests?

5

Continuous Development lifecycle

6

• Continuous Integration
• Automated Testing and Artifact Creation (e.g.,

build creation)
• Continuous Delivery

• Automated deployment to test and staged
environments

• Manual deployment to production
• Continuous Deployment

• Automated Deployment to production

DevOps

7

• In Continuous Integration, several builds in a
day are executed (nightly builds as well)

• Each build should pass through various
sandboxed environments leading up to
production and stages (stable, develop, master)

Continuous Development

8

• In Continuous Delivery, code changes are
continuously deployed, although the
deployments are triggered manually

• If the entire process of moving code from
source repository to production is fully
automated, the process is called Continuous
Deployment

Continuous Delivery

9

• Strategy for software releases for which
commits that pass automated testing are
automatically released into the production
environment

Continuous Deployment

10

• Deployment process involves
• Continuous development and
• Continuous testing

• Developers and testers work together to release
high-quality product in shorter time to market

Continuous deployment

11

• A test environment is where test are performed.
No real environment bounds tests

• A staging environment (stage) is a nearly exact
replica of a production environment

• Staging environments are made to test codes,
builds, and updates to ensure quality under a
production-like environment before application
deployment

Test and staging environments

12

13

• Clean up your project
• How many branches do you have?
• Did you merge your branch into master before

deploy?
• Did you create test environment? (e.g., test

package)

Exercise

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

14

Automation in distributed
environment - Pipelines

15

• Pipelines are top-level components of
continuous integration, delivery, and
deployment

• A pipeline is a group of job/tasks that get
executed in stages also called batches

• All jobs in stages run sequentially/parallel
based on the runners available

Pipelines

16

• If all jobs succeed, then the pipeline moves to
the next stage

• If it fails, next stage will not get executed

Pipelines

17

• Build
• Test
• Deploy
• Review
• Dynamic Application Security Testing (DAST)
• Staging
• Canary

Typical stages

18

• Progressively deploy (e.g., push to master)
code changes to a small number of users
(unaware and not volunteers)

Canary test

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Fast & frequent releases

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Pipeline automation

Fast & frequent releases

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Pipeline automation

Fast & frequent releases

Service-focused

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Pipeline automation

Fast & frequent releases

Complex tests for every release
Service-focused

20

• Imagine a pipeline consisting of four stages, executed in
the following order:

• build, with a job called build
• test, with two jobs called test1 and test2.
• staging, with a job called deploy-to-stage.
• production, with a job called deploy-to-

production

Simple pipeline example

21

• About two thirds of the overall build time is
spent on testing (ICSE2021)

Pipeline and testing

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

22

Maven

23

• Build is the process of converting code files
into deployable software

Build

24

• validate: validate the project is correct and all necessary information is available
• compile: compile the source code of the project
• test: test the compiled source code using a suitable unit testing framework. These

tests should not require the code be packaged or deployed, test-compile Compile
test but not execute

• package: take the compiled code and package it in its distributable format, such as a
JAR

• verify: run any checks on results of integration tests to ensure quality criteria are met
• install: install the package into the local repository, for use as a dependency in other

projects locally
• deploy: done in the build environment, copies the final package to the remote

repository for sharing with other developers and projects
• clean: remove all files generated by the previous build

Maven Build Lifecycle - phases

25

• A phase is responsible for a specific step in the
lifecycle

• The manner in which it carries out those
responsibilities may vary

• To specify a phase
mvn <goal>

• or for plugin
mvn <plugin-group-id>:<plugin-artifact-id>[:<plugin-version>]:<goal>

• example
mvn org.openclover:clover-maven-plugin:check

A lifecycle phase

26

• A phase is made up of goals
• A goal represents a specific task (finer than a

build phase) which contributes to the building
and managing of a project

• This is done by declaring the goals bound to
those build phases

Build Goals

27

mvn compile org.openclover:clover-maven-plugin:clover clean

Example phasephase
Goal	of	the	plug-in

28

in Eclipse

28

in Eclipse

29

• If you do not know a goal of a plugin try a
term, the console will list all the available ones!

Note

30

• Write in any of the phases we have seen a goal
for a plugin of your choice

Exercise

31

• It may be bound to zero or more build phases

mvn compile org.openclover:clover-maven-plugin:clover clean

• The order of execution depends on the order in which the
goals and the build phases are invoked

• A goal not bound to any build phase could be executed
outside of the build lifecycle by direct invocation

mvn org.openclover:clover-maven-plugin:clover

Goals

32

• Profiles are a natural way of addressing the
problem of different build configuration
requirements for different target environments

mvn groupId:artifactId:goal -P profile-1,profile-2

mvn test -P unit

Profiles

33

in Eclipse

34

mvn -Denv=test integration-test
• Available lifecycle phases for this environment are:
• validate, initialize, generate-sources, process-sources, generate-

resources, process-resources, compile, process-classes, generate-test-
sources, process-test-sources, generate-test-resources, process-test-
resources, test-compile, process-test-classes, test, prepare-package,
package, pre-integration-test, integration-test, post-integration-test,
verify, install, deploy, pre-clean, clean, post-clean, pre-site, site, post-
site, site-deploy

Setting a test environment

35

Running all Unit Tests - one way

36

Run a single test class or method -
JUnit

37

Run it with Maven

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

38

How to build pipelines in Maven

39

• POM stands for Project Object Model
• It is an XML representation of a Maven project

held in a file named pom.xml

Project Object Model

40

1. <project xmlns="http://maven.apache.org/POM/4.0.0"
2. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3. xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
4. http://maven.apache.org/xsd/maven-4.0.0.xsd">
5. <modelVersion>4.0.0</modelVersion>
6.
7. <!-- The Basics —>
8. <!-- Mandatory —>
9. <groupId>…</groupId>
10. <artifactId>…</artifactId>
11. <version>…</version>

13. <scope>…</scope>
14. <dependencies>…</dependencies>
15. <properties>…</properties>
16.
17. <!-- Build Settings -->
18. <build>…</build>
19. <reporting>…</reporting>
20.
21. <!-- Environment Settings -->
22. <profiles>…</profiles>
23. </project>

POM - design

41

<dependency>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 <version>5.5.2</version>
 <scope>test</scope>
</dependency>

Example - library in dependencies

42

POM profiles

43

It refers to the classpath of the task at hand (compiling and
runtime, testing, etc.)
We will use:
▪ compile - the default scope, used if none is specified.

Compile dependencies are available in all classpaths.
▪ runtime - the dependency is not required for compilation,

but only for execution
▪ test - the dependency is only available for the test

compilation and execution phases

Scope

44

• Project build
<build>...</build>

• Profile build
<profiles>
 <profile>
 <id>test</id>
 …
 <build>

 <!-- "Profile Build" contains a subset of "Project Build"s elements —>
 …
 </build>

 </profile>
</profiles>

Build

45

<build>
<defaultGoal>install</defaultGoal>
<directory>${basedir}/target</directory>
<finalName>${artifactId}-${version}</finalName>

</build>

Build - example ‘install’
workspace

46

<plugins>
<plugin>

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 </plugin>
</plugins>

Build - example ‘plugins’

47

1. <settings>
2. ...
3. <activeProfiles>
4. <activeProfile>profile-1</activeProfile>
5. </activeProfiles>
6. ...
7. </settings>

Automatically activate profiles

48

• If you want your JUnit 5 test cases to be
executed with maven build, you will have to
configure maven-surefire-plugin with junit-
platform-surefire-provider dependencies

Surefire plugin to test

49

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.22.1</version>
 <configuration>
 <excludes>
 <exclude>**/*IntegrationTest.java</exclude>
 </excludes>
 </configuration>
</plugin>

wildcards

50

• To execute unit tests
• It generates reports in two different file formats:

• Plain text files (*.txt)
• XML files (*.xml)

• By default, these files are generated in target/
surefire-reports folder

${basedir}/target/…/TEST-*.xml

• The Surefire Plugin can be invoked by calling the
test phase

Maven Surefire Plugin

51

52

Detailed	XML	
test	reports

short	test	
reports

53

Add a profile - UnitTest

54

• UnitTest
• IntegrationTest
• RegressionTest

Naming convention

55

• https://www.youtube.com/watch?
v=R2ok6mKU0TI

•

Time to watch a video

https://www.youtube.com/watch?v=R2ok6mKU0TI
https://www.youtube.com/watch?v=R2ok6mKU0TI
https://www.youtube.com/watch?v=R2ok6mKU0TI
https://www.youtube.com/watch?v=R2ok6mKU0TI

56

• We have seen that we can implement pipelines
in Maven

• Exercise run Maven to test your project
• Import the example of POM file from ole
• Customize and run for your project
• Refactor some of the classes changing the name with

postfix IntegrationTest
• Re-run test with Maven excluding Unit Tests
• Report any issue

Pipelines in shared environments

57

Pipelines in gitlab

58

• A pipeline is a group of job/tasks that get
executed in stages also called batches

• All jobs in stages run sequentially/parallel
based on the runners available

Pipelines in gitlab

59

• The au of automation pipeline is performed
with a yaml file for the configuration and a
runner for the execution

Pipeline configuration

60

• YAML is a data serialization language that is
utilized to create configuration files and works
with any programming language

• It’s a superset of JSON
• It can do everything that JSON can and more
• Newlines and indentation mean something in

YAML (not in JSON)

YAML - Yet Another Markup
Language

61

• Pipelines’ major components: jobs and stages
• Pipelines are configured using a YAML file

called .gitlab-ci.yml within each project
• Jobs and stages are defined in the .gitlab-ci.yml

file for each project
• https://docs.gitlab.com/ee/ci/yaml/

README.html

Pipelines’ configuration

https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html
https://docs.gitlab.com/ee/ci/yaml/README.html

62

• “stages” term is used to define stages that can
be used by jobs

• Stages allow multiple pipelines
• The ordering of elements in stages defines the

ordering of jobs’ execution:
• Jobs of the same stage are run in parallel
• Jobs of the next stage are run after the jobs from

the previous stage complete successfully

Stages (careful not for
environments!)

63

• The .gitlab-ci.yml file defines the structure and
order of the pipelines and determines:
• What to execute using GitLab Runner.
• What decisions to make when specific

conditions are encountered
• For example, when a process succeeds or fails

.gitlab-ci.yml

https://docs.gitlab.com/runner/
https://docs.gitlab.com/runner/

64

• Build (default if no stages are defined in yml)
• Test (default if no stages are defined in yml)

(assigned to a job when no stage specified for a job)
• Deploy (default if no stages are defined in yml)
• Review
• Dynamic Application Security Testing (DAST)
• Staging
• Canary

Typical stages

65

• Jobs are defined with constraints stating under
what conditions they should be executed

• They must contain at least the script clause

Jobs

job1:
 script: test.sh

job2:
 script: mvm install

66

• Not limited in how many can be defined
• If all the jobs in a stage

• Succeed, the pipeline moves on to the next stage
• Fail, the next stage is not (usually) executed and the pipeline

ends early

Jobs

67

• Job A(1,3), B(2,4) and C(6,7)

0 1 2 3 4 5 6 7
 AAAAAAA
 BBBBBBB
 CCCC

• Total duration: 4-1 + 7-6 = 4

Job duration

68

Examples

69

image: maven:latest

variables:
 MAVEN_CLI_OPTS: "-s ./Applications/maven/conf/settings.xml --batch-mode"

cache:
 paths:
 - target/

stages:
 - build
 - test
 - doc
 - deploy
 - trigger

build:
 stage: build
 script:
 - mvn $MAVEN_CLI_OPTS compile

test:
 stage: test
 script:
 - mvn $MAVEN_CLI_OPTS test
 artifacts:
 paths:
 - target/

Globally	defined

shell	commandsshell	commands

70

Push .gitlab-ci.yml to GitLab

After you’ve created a .gitlab-ci.yml, you should add it to your Git
repository and push it to GitLab.

git add .gitlab-ci.yml
git commit -m "Add .gitlab-ci.yml"
git push origin master

Create the yml file and push it

71

72

• The next step is to configure a runner so that it
picks the pending jobs

Runner

73

• An agent written in Go
• It runs jobs in stages
• After installation, Runners must be registered

• as shared (multiple projects with same
requirements) or specific (individual project)

• gitlab has a default Runner, but you can create
yours

Runner

74

• GitLab Runner is used to run jobs and send
the results back to GitLab

• Runners run the code defined in .gitlab-ci.yml
• Jobs are executed within the environment of the

Runner
• Multiple jobs in the same stage are executed by

Runners in parallel, if there are enough
concurrent Runners

GitLab Runner

https://docs.gitlab.com/ee/ci/runners/README.html
https://docs.gitlab.com/ee/ci/runners/README.html
https://docs.gitlab.com/ee/ci/runners/README.html
https://docs.gitlab.com/ee/ci/runners/README.html

75

76

77

78

• Registering a Runner is the process that binds
the Runner with a GitLab instance

• Read more:
• https://docs.gitlab.com/runner/register/

index.html

Register the runner

https://docs.gitlab.com/runner/register/index.html
https://docs.gitlab.com/runner/register/index.html
https://docs.gitlab.com/runner/register/index.html
https://docs.gitlab.com/runner/register/index.html

79

• cd ~
• gitlab-runner install
• gitlab-runner start

Start the Runner

80

• When commit is pushed to the repository,
GitLab will look for .gitlab-ci.yml from the
root directory and trigger a build according to
the settings configured

• GitLab Runner uses this file to manage
project’s jobs which defines how the project
should be built

Executing the pipeline

81

• Each instance of GitLab CI has an embedded
debug tool called Lint, which validates the
content of your .gitlab-ci.yml

Lint

82

• Write the yml file for the simple pipeline
example

• build, with a job called compile
• test, with two jobs called test1 and test2
• staging, with a job called deploy-to-stage
• production, with a job called deploy-to-prod

Exercise

83

• https://gitlab.inf.unibz.it/help/ci/yaml/
README.md

Pipelines in gitlab

https://gitlab.inf.unibz.it/help/ci/yaml/README.md
https://gitlab.inf.unibz.it/help/ci/yaml/README.md
https://gitlab.inf.unibz.it/help/ci/yaml/README.md
https://gitlab.inf.unibz.it/help/ci/yaml/README.md

84

• create you first yml file

image: maven:latest

variables:
 MAVEN_CLI_OPTS: "-s .m2/settings.xml --batch-mode"
 MAVEN_OPTS: "-Dmaven.repo.local=.m2/repository"

cache:
 paths:
 - .m2/repository/
 - target/

stages:
 - build
 - test
 - deploy

Exercise

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

85

Issue trackers

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

86

How can we increase our ability
to discover and fix bugs?

top 10 bugs

• https://www.youtube.com/watch?
v=AGI371ht1N8

https://www.youtube.com/watch?v=AGI371ht1N8
https://www.youtube.com/watch?v=AGI371ht1N8
https://www.youtube.com/watch?v=AGI371ht1N8
https://www.youtube.com/watch?v=AGI371ht1N8

88

• We can increase our ability to fight bugs by
learning from data shared over the Internet

• Examples:
• Q&A websites: Stack overflow
• Code repositories: github
• Issue trackers: JIRA, Bugzilla, Issuezilla,

Google issue tracker

Big data shared over the Internet

89

• A software package and a database that tracks
and maintain lists of bugs and their fixes over
time. Bug history:
• Chats (comments) on bugs and how to fix them
• Bug fixes …

• Most of the software projects publicly share
over the Internet the information stored in their
issue trackers

Issue Tracker

90

• Entering of dysfunctions, errors and requests
• Moderation: distribution and assignment of issues
• Statistical analysis of the number of tickets
• Automatic generation of tickets by alarming systems
• Per issue comments
• Priority assignment
• Report: Detailed descriptions of the problem being

experienced, attempted solutions or workarounds, and other
relevant information. Reference to commits

• Maintaining of a history of changes (file change set)

Features

91

• Funded: 2002
• Founders: Scott Farquhar, Mike Cannon-

Brookes
• Revenue: 619.9 million USD (July 2017)

Atlassian

https://www.google.it/search?client=safari&rls=en&q=atlassian+founders&stick=H4sIAAAAAAAAAOPgE-LUz9U3SDLOsCzXUs9OttJPKi3OzEstLoYz4vMLUosSSzLz86zS8kvzUlKLAE8Mr9Y2AAAA&sa=X&ved=0ahUKEwjqk6HdjMjVAhWC6xQKHT7VDKIQ6BMIywEoADAb
https://www.google.it/search?client=safari&rls=en&q=atlassian+founders&stick=H4sIAAAAAAAAAOPgE-LUz9U3SDLOsCzXUs9OttJPKi3OzEstLoYz4vMLUosSSzLz86zS8kvzUlKLAE8Mr9Y2AAAA&sa=X&ved=0ahUKEwjqk6HdjMjVAhWC6xQKHT7VDKIQ6BMIywEoADAb

92

Using bugs to catch bugs: JIRA

92

Using bugs to catch bugs: JIRA

JIRA

93

JIRA

93

94

• Enable issue tracker on your project
• goto Settings>General and enable Issues
• Create a set of labels for your project containing at

least
• Bug, feature, enhancement

• Create the issue for Milestone ‘Unit tests are
complete’
• ‘Create unit test for method placeBid’
• Assign it to one member

Exercise

95

• Select a project of another team
• Read the work done and create an issue with

“bug” “feature” or “enhancement”

Exercise - unit test

