
 
Get Your Hands Dirty with

Mining Software Repositories 
in 175 Minutes

Massimiliano Di Penta
University of Sannio, Italy

dipenta@unisannio.it
http://www.ing.unisannio.it/mdipenta

Purpose of this Tutorial

Use data from software repositories to:

• Study the evolution of software systems

• Provide useful recommendations to
developers

Practical hints plus examples of applications

Not about

• Machine learning and statistical data analysis

• Mining unstructured data  
(covered by Andi Marcus)

Outline

Introduction to MSR

Types of software repositories -  
How to mine them, promises and perils

Key ingredients for conducting MSR research

Examples of applications

Introduction to
Mining Software

Repositories

Key elements of
Mining Software

Repositories

Historical analysis

Static analysis

Dynamic analysis

Historical analysis

Product analysis

Analyze trails left by developers during their
maintenance activities

Analyze trails left by developers during their
maintenance activities

Process analysis

(learning from history)

Historical analysis

Static and dynamic analysis do not capture information
such as:

How does an artifact change during the time?

When was it changed?

Who changed it?

Why was it changed?

What artifacts changed together?

What is a software
repository?

Any data store containing artifacts
regarding the life cycle of one (or more)
software projects

?

Versioning systems: store changes to the code
(e.g. CVS, SVN, git, Mercurial)

Issue tracking systems: follow the resolution of
defects/requests for changes (e.g. Bugzilla, Jira)

Archived communication: record rationale for
decisions throughout the life of a project  
(e.g. Mailing Lists, Forums, Chat Logs)

Runtime data: system logs, execution traces,
power monitor data

Code repositories: forges, code search engines

data
extraction

Emails

Mining Software Repositories

Versioning

Issue
Reports

Software
History

change propagation

evolution visualization

change patterns

software complexity

fault prediction

effort estimation

Knowledge inference
Classification

Association rules
Clustering

Versioning Systems

Taxonomy
local

local

centralized

centralized

distributed

distributed

Delta
storage

DAG
storage

rcs

cvs

mercurial

svn

cp -r time machine

git

git

http://git-scm.com

• Developed by Linus Torvalds as a tool for
managing the Linux Kernel evolution

• Before Linux did not use a versioning
system

• Entire kernel development based on
patches

Git usage

working

directory
staging
area

local
repository

remote

directory

git add

git commit
git push
git merge

git fetch
git clone

git checkout

git merge

Local Remote

Promises and Perils

The Promises and Perils of Mining Git

Christian Bird⇤, Peter C. Rigby†, Earl T. Barr⇤, David J. Hamilton⇤, Daniel M. German†, Prem Devanbu⇤

⇤University of California, Davis, USA
†University of Victoria, Canada

{bird,barr,hamiltod,devanbu}@cs.ucdavis.edu {pcr,dmg}@cs.uvic.ca

Abstract

We are now witnessing the rapid growth of decentralized
source code management (DSCM) systems, in which every
developer has her own repository. DSCMs facilitate a style
of collaboration in which work output can flow sideways
(and privately) between collaborators, rather than always
up and down (and publicly) via a central repository. Decen-
tralization comes with both the promise of new data and the
peril of its misinterpretation. We focus on git, a very popular
DSCM used in high-profile projects. Decentralization, and
other features of git, such as automatically recorded con-
tributor attribution, lead to richer content histories, giving
rise to new questions such as “How do contributions flow
between developers to the official project repository?” How-
ever, there are pitfalls. Commits may be reordered, deleted,
or edited as they move between repositories. The semantics
of terms common to SCMs and DSCMs sometimes differ
markedly, potentially creating confusion. For example, a
commit is immediately visible to all developers in centralized
SCMs, but not in DSCMs. Our goal is to help researchers
interested in DSCMs avoid these and other perils when
mining and analyzing git data.

Out of a stem that scored the hand
I wrung it in a weary land.

A. E. Housman, A Shropshire Lad

1. Introduction

Since the turn of the century, researchers have taken
advantage of the data found in SCM repositories that has
been made freely available for Open Source Software (OSS)
projects. This data has been used to reconstruct the process
by which the software was created [1], [2]. Researchers have
also used this data to create recommender systems [3], [4],
[5], study evolution patterns [6], [7], [8], predict bugs [9],
[10], [11], and examine collaboration [12], [13], [14].

The number of software projects using DSCMs has in-
creased, and looks set to continue to do so. Figure 1 shows

0
50

0
10

00
15

00
20

00
25

00
30

00

N
um

be
r o

f P
ro

je
ct

s

Jun−06 Dec−06 Jun−07 Dec−07 Jun−08 Dec−08

Subversion
Git
Bazaar
CVS
Darcs
Hg

Figure 1. The Debian Project’s Use of SCMs.

the number of projects with Debian packages that report
using a given SCM over time1. As of February, 2009,
36% of the packages include SCM information. Although
incomplete, this data gives a strong indication that git is
second only to SVN in use and that its use is growing.
Indeed, git has also been adopted by a number of high profile
OSS projects such as X.org, Ruby on Rails, Wine, Samba,
Perl, and the Glasgow Haskell Compiler.

The repositories of these and other projects are of interest
to researchers, but their data differs in important ways from
that which is found in their centralized counterparts.

Massey and Packard [15] have presented a method of
converting CSCMs to git for mining data. However, to our
knowledge, only one paper [16] has examined data mined
from a git-based project. This paper presented results of
analysis of data drawn from the Linux git repository. We
have also found one article in the Linux Weekly News that
uses data mined from git to track how patches find their
way into the stable main line linux tree from subsystem git
repositories [17]. Neither the paper nor the article addresses
the core differences between git and centralized SCMs,

1. According to data provided by projects using the vcs- (SCM-)
headers introduced to Debian package descriptions in 2006.

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. Germán,
Premkumar T. Devanbu: The promises and perils of mining git. MSR 2009: 1-10

Promises - I

Mining more history from distributed
codebases

Promises - II

A richer history can be mined, including
implicit and explicit branches, merge points,
pulls from other repositories

Promises - III

Local storage of history

Promises - IV

Faster than other SCM and less space used

Promises - V

Easy migration from other SCM

Promises - VI

Track author information, not just committers

Perils - I

Implicit branches

Implicit Branch

t1

t2

t3

t4

t5

Alice first commit

Bob first commit

Alice second commit

Bob second commit

Alice merge commit

How it would be in
SVN

Alice first commit

Bob first commit

Alice second commit

Bob second commit

Alice updates

Perils - II

No linear history, but paths in the DAG

Perils - III

Repository owner can rewrite the history
through rebasing

Rebasing

C1

C2

C3

C4 C6

C5

origin max

git checkout -b max origin
...

git commit
...

Rebasing

C1

C2

C3

C4 C6

C5

origin max
C3’

C4’

git checkout max
 git rebase origin

Rebasing

C1

C2

C3

C4 C6

C5

Master Max’s BranchC3’

C4’

C5 and C6
will be

 abandoned

Perils - IV

Cannot determine whether a merge
occurred in a commit, and its source

Depends on the use or not of  
fast forward merges

Avoiding fast forward

t1

t2

t3

t4

Alice first commit

Bob first commit

Bob second commit

Alice merge commit

Generated commit message:
“Merge BobBranch into AliceBranch”

Avoiding fast forward

t1

t2

t3

t5

Alice first commit

Bob first commit

Bob second commit

Bob first commit

Bob second commit

git - Cloning a Repository

git clone <URL>

e.g.

git clone https://git.samba.org/samba.git

Import from CVS/SVN also possible

Import from CVS/SVN

CVS Import: git cvsimport -v -d <CVSROOT> <module>

e.g.  
git cvsimport -v -d  
:pserver:anonymous@cvs.drupal.org:/cvs/drupal-contrib
contrib

SVN Import: git svn clone <URL>

e.g.  
git svn clone  
http://argouml.tigris.org/svn/argouml/trunk

getting the log

git log --date=iso --stat HEAD

git log --name-status -date=iso --stat HEAD

commit e0e415e9877ec80db10b764ed969081c9ca91af5

Author: Eric Covener <covener@apache.org>

Date: 2013-03-04 21:54:24 +0000

 PR54587: LDAP connections used for authn were not respecting

 LDAPConnectionPoolTimeout due to confusion over what "bound" means.

 Added some LDAP trace at TRACE5 to track how LDAP connections are

 reused and rebound.

 git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1452551
13f79535-47bb-0310-9956-ffa450edef68

 include/ap_mmn.h | 3 ++-

 include/util_ldap.h | 2 ++

 modules/ldap/util_ldap.c | 43 ++++++++++++++++++++++++++++++++++++-------

 3 files changed, 40 insertions(+), 8 deletions(-)

git log --name-status
commit b911f3733c458dafacb90ee6b48de1f29c39a363
Author: Jim Jagielski <jim@apache.org>
Date: Tue Mar 5 17:29:28 2013 +0000

 Rough start for simple, tunneling websocket proxy support.
 Compiles at this stage and that's all I know :)

 git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/
trunk@1452911 13f79535-47bb-0310-9956-ffa450edef68

M modules/proxy/config.m4
A modules/proxy/mod_proxy_websocket.c

Some git log options
• Only the merges on the master:

git log --merges 

• Exclude merges

git log --no-merges 

• Only some branches:

git log master

git log exp

git log - changed files
git log --oneline —name-status

bdd2551 modified file b in the exp

M b.txt

8c3fa37 modified file a in the master

M a.txt

2ca854b added file b

A b.txt

327262c added file a

A a.txt

427afe8 Initial commit

git whatchanged
commit b911f3733c458dafacb90ee6b48de1f29c39a363

Author: Jim Jagielski <jim@apache.org>

Date: 2013-03-05 17:29:28 +0000

 Rough start for simple, tunneling websocket proxy support.

 Compiles at this stage and that's all I know :)

 git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1452911
13f79535-47bb-0310-9956-ffa450edef68

:100644 100644 a5535a2... 0878363... M modules/proxy/config.m4

:000000 100644 0000000... 1a6b694... A modules/proxy/mod_proxy_websocket.c

git whatchanged -p
commit 16d43c6001cd16a8117d57270cc7fefc443dbb14

Author: Jim Jagielski <jim@apache.org>

Date: Tue Mar 5 21:38:01 2013 +0000

 Work around blocking issues...

 git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1453022 13f79535-47bb-0310-9956-ff

diff --git a/modules/proxy/mod_proxy_websocket.c b/modules/proxy/mod_proxy_websocket.c

index 10ea8ec..c233070 100644

--- a/modules/proxy/mod_proxy_websocket.c

+++ b/modules/proxy/mod_proxy_websocket.c

@@ -123,7 +123,7 @@ static int proxy_websocket_transfer(request_rec *r, conn_rec *c_i, conn_rec *c_o

 "error on %s - ap_pass_brigade",

 name);

 }

- } else if (!APR_STATUS_IS_EAGAIN(rv)) {

+ } else if (!APR_STATUS_IS_EAGAIN(rv) && !APR_STATUS_IS_EOF(rv)) {

 ap_log_rerror(APLOG_MARK, APLOG_DEBUG, rv, r, APLOGNO()

 "error on %s - ap_get_brigade",

 name);

Pretty printing
git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 11 months ago : changed the version number

085bb3b - Scott Chacon, 11 months ago : removed unnecessary test code

a11bef0 - Scott Chacon, 11 months ago : first commit

%H Commit hash
%h Abbreviated commit hash
%T Tree hash
%P Parent hashes
%p Abbreviated parent hashes
%an Author name
%ae Author e-mail
%ad Author date
%ar Author date, relative
%cn Committer name
%cd Committer date
%cr Committer date, relative
%s Subject

git ID?
• A commit is identified by a SHA hash

• When using such IDs in git commands you
don’t need the full IDs

• Often the first 4-5 characters suffice,
provided they are unique

• To obtain a log with the shortest commit
id:

git log --abbrev-commit

Showing file revision

Show a given revision

git show <commitID>:<fname>

git show 62f17cf15e1:modules/proxy/mod_proxy_http.c

Previous revision

git show <commitID>^:<fname>

git show 62f17cf15e1^:modules/proxy/mod_proxy_http.c

..and downloading it

git checkout <commitID> <file>

e.g.
git checkout 62f17cf15e1modules/proxy/mod_proxy_http.c

git checkout 62f17cf15e1^ modules/proxy/mod_proxy_http.c

Comparing them...

git diff <commitID>

git diff <commitID1>:<file> <commitID2>:<file>

git diff <commitID>^:<file> <commitID>:<file>

blame

Given a file revision, for each line it reports
when such a line was last modified, and by
whom

git blame <filename>

or

git blame -w <filename>

(-w ignores whitespace changes)

git blame modules/proxy/mod_proxy_http.c
e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 1)/* Licensed to the Apache Software Foundation (ASF) under one or more

e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 2) * contributor license agreements. See the NOTICE file distributed with

e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 3) * this work for additional information regarding copyright ownership.

e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 4) * The ASF licenses this file to You under the Apache License, Version 2.0

e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 5) * (the "License"); you may not use this file except in compliance with

e17a716f (Roy T. Fielding 2006-07-11 20:33:53 +0000 6) * the License. You may obtain a copy of the License at

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 7) *

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 8) * http://www.apache.org/licenses/LICENSE-2.0

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 9) *

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 10) * Unless required by applicable law or agreed to in writing, software

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 11) * distributed under the License is distributed on an "AS IS" BASIS,

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 12) * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 13) * See the License for the specific language governing permissions and

c4ecf8b7 (Andre Malo 2004-02-06 22:58:42 +0000 14) * limitations under the License.

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 15) */

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 16)

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 17)/* HTTP routines for Apache proxy */

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 18)

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 19)#include "mod_proxy.h"

6f67de98 (Nick Kew 2007-10-09 15:59:32 +0000 20)#include "ap_regex.h"

5d855a48 (Roy T. Fielding 1999-08-24 06:55:44 +0000 21)

47716559 (Graham Leggett 2001-04-13 23:56:04 +0000 22)module AP_MODULE_DECLARE_DATA proxy_http_module;

47716559 (Graham Leggett 2001-04-13 23:56:04 +0000 23)

73ffcd0f (William A. Rowe Jr 2004-08-11 22:43:44 +0000 24)static apr_status_t ap_proxy_http_cleanup(const char *scheme,

73ffcd0f (William A. Rowe Jr 2004-08-11 22:43:44 +0000 25) request_rec *r,

56a7c0d8 (Graham Leggett 2002-03-09 07:15:33 +0000 26) proxy_conn_rec *backend);

Fix-inducing changes

f 1.8f 1.7f 1.6f 1.5

bug fixingfix inducing changesfix inducing change

Jacek Sliwerski, Thomas Zimmermann, Andreas Zeller: When do changes induce fixes? MSR 2005

Sunghun Kim, Thomas Zimmermann, Kai Pan, E. James Whitehead Jr.: Automatic Identification of
Bug-Introducing Changes. ASE 2006: 81-90

Using changes to predict
 fault-proneness

Machine learning
algorithm (SVM)

Independent
variables: features of
the change delta

Feature Group Example

Added Delta If, while, for, ==

Deleted Delta True, 0, <, ++, int

Directory/File Name Src, module, java

Change Log Fix, added, new

New Revision Source
Code

If, ||, != do, while, string,
false

Metadata
Author: hunkim, commit

hour:12

Complexity Metrics LOC: 34, Cyclomatic: 10

Sunghun Kim, E. James Whitehead Jr., Yi Zhang: Classifying Software Changes: Clean or
Buggy? IEEE Trans. Software Eng. 34(2): 181-196 (2008)

Does a
refactoring

induce bugs?

Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Orazio
Strollo: When Does a Refactoring Induce Bugs? An Empirical Study. SCAM 2012: 104-113

When does a Refactoring Induce Bugs?
An Empirical Study

Gabriele Bavota1, Bernardino De Carluccio1, Andrea De Lucia1

Massimiliano Di Penta2, Rocco Oliveto3, Orazio Strollo1

1University of Salerno, Fisciano (SA), Italy
2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

gbavota@unisa.it, bernardino.decarluccio@gmail.com, adelucia@unisa.it
dipenta@unisannio.it, rocco.oliveto@unimol.it, oraziostrollo@hotmail.com

Abstract—Refactorings are—as defined by Fowler—behavior
preserving source code transformations. Their main purpose is to
improve maintainability or comprehensibility, or also reduce the
code footprint if needed. In principle, refactorings are defined
as simple operations so that are “unlikely to go wrong” and
introduce faults. In practice, refactoring activities could have
their risks, as other changes.

This paper reports an empirical study carried out on three
Java software systems, namely Apache Ant, Xerces, and Ar-
goUML, aimed at investigating to what extent refactoring activi-
ties induce faults. Specifically, we automatically detect (and then
manually validate) 15,008 refactoring operations (of 52 different
kinds) using an existing tool (Ref-Finder). Then, we use the
SZZ algorithm to determine whether it is likely that refactorings
induced a fault.

Results indicate that, while some kinds of refactorings are
unlikely to be harmful, others, such as refactorings involving
hierarchies (e.g., pull up method), tend to induce faults very
frequently. This suggests more accurate code inspection or testing
activities when such specific refactorings are performed.

Index Terms—Refactoring, Fault-inducing changes, Mining
software repositories, Empirical Studies.

I. INTRODUCTION

Software systems are continuously subject to maintenance
tasks to introduce new features or fix bugs [1]. Very often
such activities are performed in an undisciplined manner due
to strict time constraints, to lack of resources/skills, or to
the limited knowledge some developers have of the system
design [2]. As a result, the code underlying structure, and
therefore the related design, tend to deteriorate.

This phenomenon was defined as “software aging” by
Parnas [3], and was also described in the law of increasing
complexity by Lehman [1]. Some researchers measured the
phenomenon in terms of change entropy [4], [5], while others
defined “antipatterns”, i.e., recurring cases of poor design
choices occurring as a consequence of aging, or when the
software is not properly designed from the beginning. Classes
doing too much (God classes or Blobs), poorly structured code
(Spaghetti code), or Long Message Chains used to develop
a certain feature are only few examples of antipatterns that
plague software systems [2].

In order to mitigate the above described issues, software
systems are, time to time, subject to improvement activities,

aimed at enhancing the code and design structure. Such activi-
ties are often referred to as refactoring. Refactoring is defined
by Fowler [2] as “a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior”. The aim of refactoring is to
improve the structure of source code—and consequently of
the system design—whenever its structure may possibly lead
to maintainability or comprehensibility problems. Fowler’s
catalogue [6] comprises a set of 93 refactorings, aimed at
dealing with different antipatterns in source code, such as,
extracting a class from a Blob, pulling up a method from a
subclass onto a superclass, or modifying the navigability of an
association between two classes.

In theory, a refactoring should not change the behavior
of a software system, but only help in improving some of
its non-functional attributes. In practice, a refactoring might
be risky as any other change occurring in a system, causing
possible bug introductions. Indeed, a recent study [10] showed
that even automated refactoring as performed by Integrated
Development Environments could be fault-prone as well.

While there are attempts to investigate the relation between
some refactorings and fault-proneness [8], [9] or change
entropy [7], to the best of our knowledge there is no study
aimed at thoroughly investigating whether a wide set of (even
undocumented) refactorings occurred in a software system dur-
ing its evolution induced bugs, and what kind of refactorings
might induce more bugs than others.

In this paper we report an empirical study aimed at investi-
gating to what extent refactoring induces bug fixes in software
systems. We use an existing tool, namely Ref-Finder [11],
to automatically detect refactoring operations of 52 different
types on 63 releases of three Java software systems, Apache
Ant1, ArgoUML2, and Xerces-J3. Of the 15,008 refactoring
operations detected by the tool, 12,922 operations have been
manually validated as actually refactorings. Then, we use the
SZZ algorithm [12], [13] to determine whether the 12,922

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/

2012 IEEE 12th International Working Conference on Source Code Analysis and Manipulation

978-0-7695-4783-1/12 $26.00 © 2012 IEEE

DOI 10.1109/SCAM.2012.20

104

Some results

• Changes to classes involved in a refactoring
have 23 times more chances to induce fixes

• 158 times in the worst case

• Most dangerous refactoring: Pull up method
and extract subclass

Versioning system application:
identifying logical coupling

Association rule
discovery

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, Andreas Zeller: Mining Version Histories to
Guide Software Changes. ICSE 2004: 563-572

Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, Mark Chu-Carroll: Predicting Source Code Changes by
Mining Change History. IEEE Trans. Software Eng. 30(9): 574-586 (2004)

A

B

C

D

E

A

C

B

D

B

D

C

A

S1 S2 S3 S4 S7

E

S5 S6 S8 S9

Changes occurring in snapshots

Fi
le

s

D
D

E

B

A

C

A

C

Association Rule
Discovery in R

library(arules)

t<-read.transactions("itemsets.csv",sep=",",  
rm.duplicates=TRUE)

m<-apriori(t,parameter=list(supp=0.2,conf=0.8))

inspect(m)

 lhs rhs support confidence lift

1 {"C"} = {"A"} 0.375 1 2

2 {"B"} = {"D"} 0.375 1 2

A,C
B,D
A,D
B,D
E
A,C
B,D,E
C
A,C

itemsets.csv

Support, Confidence, Lift

Supp(rule) =

Conf(X => Y) =
Supp(X [Y)

Supp(X)

lift(X => Y) =
Supp(X [Y)

Supp(X) · Supp(Y)

% of instances where the rule occur

Historical smell detection

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2014.2372760, IEEE Transactions on Software Engineering

Mining Version Histories for
Detecting Code Smells

Fabio Palomba1, Gabriele Bavota2, Massimiliano Di Penta2,
Rocco Oliveto3, Denys Poshyvanyk4, Andrea De Lucia1

1University of Salerno, Fisciano (SA), Italy
2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

4The College of William and Mary, Williamsburg, VA, USA

fpalomba@unisa.it, gbavota@unisannio.it, dipenta@unisannio.it,
rocco.oliveto@unimol.it, denys@cs.wm.edu, adelucia@unisa.it

Abstract—Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly
increase change- and fault-proneness. While most of the detection techniques just rely on structural information, many code smells
are intrinsically characterized by how code elements change over time. In this paper, we propose HIST (Historical Information for
Smell deTection), an approach exploiting change history information to detect instances of five different code smells, namely Divergent
Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted
on twenty open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above.
The results indicate that the precision of HIST ranges between 72% and 86%, and its recall ranges between 58% and 100%. Also,
results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely
based on code analysis of a single system’s snapshot. Then, we conducted a second study aimed at investigating to what extent
the code smells detected by HIST (and by competitive code analysis techniques) reflect developers’ perception of poor design and
implementation choices. We involved twelve developers of four open source projects that recognized more than 75% of the code smell
instances identified by HIST as actual design/implementation problems.

Index Terms—Code Smells, Mining Software Repositories, Empirical Studies.

F

1 INTRODUCTION
Code smells have been defined by Fowler [15] as symp-
toms of poor design and implementation choices. In
some cases, such symptoms may originate from activities
performed by developers while in a hurry, e.g., imple-
menting urgent patches or simply making suboptimal
choices. In other cases, smells come from some recurring,
poor design solutions, also known as anti-patterns [9].
For example a Blob is a large and complex class that
centralizes the behavior of a portion of a system and
only uses other classes as data holders. Blob classes can
rapidly grow out of control, making it harder and harder
for developers to understand them, to fix bugs, and to
add new features.

Previous studies have found that smells hinder com-
prehension [1], and possibly increase change- and fault-
proneness [24], [25]. In summary, smells need to be care-
fully detected and monitored and, whenever necessary,
refactoring actions should be planned and performed to
deal with them.

This paper is an extension of “Detecting Bad Smells in Source Code Using
Change History Information” that appeared in the Proceedings of the
28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), Palo Alto, California, pp. 268-278, 2013 [40].

There exist a number of approaches for detecting
smells in source code to alert developers of their pres-
ence [31], [34], [49]. These approaches rely on structural
information extracted from source code, for example, by
means of constraints defined on some source code met-
rics. For instance, according to some existing approaches,
such as DECOR [34], LongMethod or LargeClass smells are
based on the size of the source code component in terms
of LOC, whereas other smells like ComplexClass are based
on the McCabe cyclomatic complexity [33]. Other smells,
such as Blob, might use more complex rules.

Although existing approaches exhibit good detection
accuracy, they still might not be adequate for detecting
many of the smells described by Fowler [15]. In partic-
ular, there are some smells that, rather than being char-
acterized by source code metrics or other information
extracted from source code snapshots, are intrinsically
characterized by how source code changes over time. For ex-
ample, a Parallel Inheritance means that two or more class
hierarchies evolve by adding code to both classes at the
same time. Also, there are smells that are traditionally
detected using structural information, where historical
information can aid in capturing complementary, addi-
tionally useful properties. For example, a Feature Envy

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys Poshyvanyk, Andrea De Lucia:
Mining Version Histories for Detecting Code Smells. IEEE Trans. Software Eng. 41(5): 462-489 (2015)

Example: Parallel
Inheritance Detection

Pairs of classes for which the addition of a
subclass for one class implies the addition of a
subclass for the other class  

t1 t2 t3

Threat: Irrelevant changes

• We count commits as proxy of amount of changes

• Many commits are related to formatting, change of
copyright year, commenting, refactoring

David Kawrykow, Martin P. Robillard:
Non-essential changes in version histories. ICSE 2011: 351-360

Pruning out them…

• Kawrykow et al. (2011) developed an
approach to identify non-essential changes  
(3%-15% of total in their study)

• They pruned out them to build better
change impact prediction  
(-20% of erroneous and -4% of true
recommendations)

However… hard to tell
what is irrelevant and

what not…

Mining text from SCM

SCM contain a lot of unstructured data

Besides code identifiers and comments,
above all commit notes

Example

• Add Checkclipse preferences to all projects
so Checkstyle is preconfigured

• Fix for issue 4503.

• Fix for issue 4517: "changeability" on
association ends not displayed properly.
This was never adapted since UML 1.3 &
NSUML were replaced.

What kind of problem do you see here?

Be aware!

• Commit notes are often insufficient to
know everything about a change

• Need to merge with issue tracker data

Issue Trackers

Bugzilla
 (Mozilla) Watch Movie Here

JIRA

Downloading issue reports

Some trackers allow export but... often you need to download
them as web pages

What you need:

• Generic URL of the issues:

• https://bugzilla.mozilla.org/show_bug.cgi?id=33467

• List of bug ids (e.g. results of a query, or from commit
notes)

• wget

• lynx

Let’s download it...

wget -q --no-check-certificate -O 33467.html  
https://bugzilla.mozilla.org/show_bug.cgi?id=33467

quiet mode https certif.
not checked output file

URL

once you have the IDs, you can do a simple
script to automate this

Parse the HTML

Why not if you really want to do it...

Alternative: render the bug report into a
textual file

lynx -dump 33467.html 33467.txt

Output…

 #[1]Top [2]Bugzilla@Mozilla

 Bugzilla@Mozilla - Bug 33467

 Cookie Manager should allow direct entry of
entries to reject/allow -

 add site button

 Last modified: 2004-06-03 02:32:11 PDT

 * [3]Home

 * | [4]New

 * | [5]Browse

 * | [6]Search

 * | ____________________ Search

 [[7]help]

 * | [8]Reports

 * | [9]Requests

 * | [10]Product Dashboard

 * | [11]Help

 * | [12]New Account

 * | [13]Log In Sign in with Persona or

 ____________________ ____________________
[_] Remember Log in

 [14][x]

 * | [15]Forgot Password Login:
____________________ Reset Password

 [16][x]

 [17]Last Comment [18]Bug 33467 - Cookie Manager
should allow direct

 entry of entries to reject/allow - add site
button

 Summary: Cookie Manager should allow direct
entry of entries to

 reject/allow - add sit...

 [19]Status: VERIFIED FIXED

 Whiteboard:

 [20]Keywords: helpwanted

 [21]Product: Core

 [22]Classification: Components

 [23]Component: Networking: Cookies

 Version: Trunk

 Platform: All All

 [24]Importance: P3 enhancement with [25]6 votes
([26]vote)

76

Linking issues to commits
“fix 367920 setting pop3 messages as junk/not junk ignored
when message quarantining turned on sr=mscott”

Solution: Regular expression matching e.g.
$l=~/BR (\d+)/ || $l=~/fix\s+(\d+)/i ||
$l=~/PR\s+(\d+)/ || $l=~/Bugzilla\s+(\d
+)/i || $l=~/Bug\s+(\d+)/i || $l=~/^\#(\d
+)/i

Explicit link  
 

Missing Link

Threat: Missing Links

nmbd_incomingdgrams.c: Fix bug with Syntax 5.1 servers reported by SGI where
they do host announcements to LOCAL_MASTER_BROWSER_NAME<00 rather
than WORKGROUP<1d

Quieten level 0 debug when probing for modules. We shouldn't display so loud an
error when a smb_probe_module() fails. Also tidy up debugs a bit. Bug 375.

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar T. Devanbu, Abraham Bernstein: The
missing links: bugs and bug-fix commits. SIGSOFT FSE 2010: 97-106

Beyond Explicit links

Rongxin Wu, Hongyu
Zhang, Sunghun Kim,
Shing-Chi Cheung:
ReLink: recovering
links between bugs
and changes.
SIGSOFT FSE 2011:
15-25

Application:
defect prediction

Purpose of defect prediction

Can we really build models predicting
future faults in our system?

No!

However, we can predict which artifacts
will likely exhibit faults

• These artifacts must be better
tested/validated

Predicting variables
you can use

• Code metrics

• Past bugs

• Process metrics (e.g. data)

• Features from fix-inducing changes

• ….

Want to learn more?

Recent tutorial at ESEC-FSE by Leandro
Minku

http://www.cs.bham.ac.uk/~minkull/
publications/fse15-tutorial.pdf

Threat: Incorrect
Classification

• Issue tracking systems contain various kinds of
changes

• Classified using inadequate fields, or just poorly
and subjectively classified

Results of a manual classification

We manually classified
1,800 randomly
selected bugs from
Mozilla, Eclipse, JBoss

0

150

300

450

600

Mozilla Eclipse JBoss

156

24

121

99

382

209

345194270

Bugs Non bugs
Others

Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, Yann-Gaël Guéhéneuc: Is it
a bug or an enhancement?: a text-based approach to classify change requests. CASCON 2008: 23

It’s not a Bug, it’s a Feature:
How Misclassification Impacts Bug Prediction

Kim Herzig
Saarland University

Saarbrücken, Germany
herzig@cs.uni-saarland.de

Sascha Just
Saarland University

Saarbrücken, Germany
just@st.cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract—In a manual examination of more than 7,000 issue
reports from the bug databases of five open-source projects,
we found 33.8% of all bug reports to be misclassified—that
is, rather than referring to a code fix, they resulted in a new
feature, an update to documentation, or an internal refactoring.
This misclassification introduces bias in bug prediction models,
confusing bugs and features: On average, 39% of files marked
as defective actually never had a bug. We estimate the impact of
this misclassification on earlier studies and recommend manual
data validation for future studies.

Index Terms—mining software repositories; bug reports; data
quality; noise; bias

I. INTRODUCTION

In empirical software engineering, it has become common-
place to mine data from change and bug databases to detect
where bugs have occurred in the past, or to predict where they
will occur in the future. The accuracy of such measurements
and predictions depends on the quality of the data. Therefore,
mining software archives must take appropriate steps to assure
data quality.

A general challenge in mining is to separate bugs from
non-bugs. In a bug database, the majority of issue reports
are classified as bugs—that is, requests for corrective code
maintenance. However, an issue report may refer to “perfective
and adaptive maintenance, refactoring, discussions, requests
for help, and so on” [1]—that is, activities that are unrelated
to errors in the code, and would therefore be classified in a
non-bug category. If one wants to mine code history to locate
or predict error prone code regions, one would therefore only
consider issue reports classified as bugs. Such filtering needs
nothing more than a simple database query.

However, all this assumes that the category of the issue
report is accurate. In 2008, Antoniol et al. [1] raised the
problem of misclassified issue reports—that is, reports clas-
sified as bugs, but actually referring to non-bug issues. If
such mix-ups (which mostly stem from issue reporters and
developers interpreting “bug” differently) occured frequently
and systematically they would introduce bias in data mining
models threatening the external validity of any study that
builds on such data: Predicting the most error-prone files, for
instance, may actually yield files most prone to new features.
But how often does such misclassification occur? And does it
actually bias analysis and prediction?

TABLE I
PROJECT DETAILS.

Maintainer Tracker type # reports

HTTPClient APACHE Jira 746
Jackrabbit APACHE Jira 2,402
Lucene-Java APACHE Jira 2,443
Rhino MOZILLA Bugzilla 1,226
Tomcat5 APACHE Bugzilla 584

These are the questions we address in this paper. From
five open source projects (Section II), we manually classified
more than 7,000 issue reports into a fixed set of issue report
categories clearly distinguishing the kind of maintenance work
required to resolve the task (Section III). Our findings indicate
substantial data quality issues:
Issue report classifications are unreliable. In the five bug

databases investigated, more than 40% of issue reports
are inaccurately classified (Section IV)

Every third bug is not a bug. 33.8% of all bug reports do
not refer to corrective code maintenance (Section V).

After discussing the possible sources of these misclassifica-
tions (Section VI), we turn to the consequences. We find that
the validity of studies regarding the distribution and prediction
of bugs in code is threatened:
Files are wrongly marked to be error-prone. Due to mis-

classifications, 39% of files marked as defective actually
have never had a bug (Section VII).

Files are wrongly predicted to be error-prone. Between
16% and 40% of the top 10% most defect-prone files
do not belong in this category after reclassification
(Section VIII).

Section IX details studies affected and unaffected by these
issues. After discussing related work (Section X) and threats
to validity (Section XI), we close with conclusion and conse-
quences (Section XII).

II. STUDY SUBJECTS

We conducted our study on five open-source JAVA projects
described in Table I. We aimed to select projects that were
under active development and were developed by teams that
follow strict commit and bug fixing procedures similar to in-
dustry. We also aimed to have a more or less homogenous data

Kim Herzig, Sascha Just, Andreas Zeller: It's not a bug, it's a feature: how misclassification impacts bug
prediction. ICSE 2013: 392-401

It’s not a bug…

• Confirmed our results: 1/3 of bug reports
are not about bugs

• When predicting the top 10% defect-prone
files, 16% to 40% do not belong to that
category

Mailing Lists

Availability

• Mailing list archives in Web-based form
(more difficult to grab), e.g. SourceForge

• ...or in archives

• Emails are often in MBOX format

• Use specific Parsers

• Mail::Box::Parser in Perl

• Tika in Java http://tika.apache.org

Bob Ted

CarolAlice

Communication
Network

Identifying a
communication network

• Use message-ID and “In-Reply-To” to link
emails

• Then, for each email, identify the Sender

• Finally, add a link between senders of linked
emails

Example
From lisa at usna.navy.MIL Thu Jul 1 15:42:27 1999

From: lisa at usna.navy.MIL (Lisa Becktold {CADIG STAFF})

Date: Tue Dec 2 03:03:10 2003

Subject: nmbd/nmbd_processlogon.c - CODE 12???

Message-ID: <99Jul1.114236-0400edt.4995-357+39@jupiter.usna.navy.mil

Hi:

I have Samba 2.1.0-prealpha running on a Sun Ultra 10. My NT PC joined

the domain without a problem, but I can't logon. Every time I attempt

to log into the Samba domain, the NT screen blanks as it usually does

during login, but then the "Begin Login" screen reappears.

I see this message in my samba/var/log.nmb file whenever I try to
login:

Example
From: allen at driversoft.com (Allen Reese)

Date: Tue Dec 2 03:03:10 2003

Subject: nmbd/nmbd_processlogon.c - CODE 12???

In-Reply-To: <99Jul1.114236-0400edt.4995-357+39@jupiter.usna.navy.mil

Message-ID: <Pine.LNX.4.04.9907011046420.7499-100000@rat.driversoft.com

about 6 months ago I had a similar problem where login's wouldn't work du

to an NT machine fighting with my server over who got to be the lmb. I

set the registry key on all of my NT boxes and that fixed it for me.

Allen Reese

Senior Software Engineer

Driversoft, Inc.

allen@driversoft.com

On Fri, 2 Jul 1999, Lisa Becktold {CADIG STAFF} wrote:

 Hi:

 I have Samba 2.1.0-prealpha running on a Sun Ultra 10. My NT PC joined

Result

Allen Lisa

Resolving ambiguities
• People use multiple names:

M. Di Penta, Max Di Penta, Di Penta

• And multiple emails:

dipenta@unisannio.it, dipenta@gmail.com

• Sometimes emails do not contain names, only email
addresses

• When mining issue trackers, names may be the only
resource

Christian Bird, Alex Gourley, Premkumar T. Devanbu, Michael Gertz, Anand Swaminathan:
Mining email social networks. MSR 2006: 137-143

Gerardo Canfora, Luigi Cerulo, Marta Cimitile, Massimiliano Di Penta: Social interactions
around cross-system bug fixings: the case of FreeBSD and OpenBSD. MSR 2011: 143-152

Heuristics
• Use of Initials, first name may be full or abbr.  

M. Di Penta = Max Di Penta

• Middle Name Missing 
John Fitzgerald Kennedy = John Kennedy

• First name missing  
Di Penta = Max Di Penta

• Mapping names-emails/IDs (if needed):

M. Di Penta → mdipenta@foo.bar

Di Penta → dipenta@foo.bar

Analyze projects
social network

• Not going to provide you with much details
on that

• Treat the data as a list of edges and a list of
nodes

• igraph and sna packages in R

• Further reading: J. P. Scott. Social Network
Analysis: A Handbook (2nd edition). Sage
Publications Ltd, Englewood Cliffs, NJ, 2000.

Example
FROM,TO

sebastian h,szymon brandys

bill higgins,michael valenta

anders peterson,jeff mcaffer

jean michel lemieux,rafael chaves

....

NAME,COMMITTER,HASFIXED,ISGOOD,ISBAD

sebastian h,NO,NO,NO,NO

szymon brandys,YES,NO,YES,NO

bill higgins,NO,NO,NO,NO

michael valenta,YES,NO,NO,YES

....

tedges<-read.csv(“edges.csv"); #loads edges
tnodes<-read.csv(“nodes.csv”); #loads nodes
builds graph
g<-graph.data.frame(tedges, directed=TRUE, vertices=tnodes);
a<-get.adjacency(g); #adjacency matrix for sna
deg<-degree(a); #sna degree
bw<-betweenness(a); #sna betweenness

edges.csv nodes.csv

Application: latent structure
of software projects

Christian Bird, David S. Pattison, Raissa M. D'Souza, Vladimir Filkov, Premkumar T.
Devanbu: Latent social structure in open source projects. SIGSOFT FSE 2008: 24-35

The social structure of the project reflects 
 developers’ collaboration

Identifying mentors in
software projects

Enough expertise
about the topic of interest
for the newcomer…

Demonstrated ability to help
other people…

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, Sebastiano Panichella: Who
is going to mentor newcomers in open source projects? SIGSOFT FSE 2012: 44

Mentor Identification
in Academia

http://arnetminer.org

 Mentor Identification
Criteria

f1 Mentor/mentee exchanged many emails

f2 Mentor more active than mentee

f3 Mentor more senior (in the project) than mentee

f4 Mentee exchanged her first emails mainly with the mentor

f5 Mentor did a high number of commits

Time

Alice

t0

DICE
 SIMILARITY

Recommending Mentors
Past mentors

85%$

30%$

100%$

64%$

94%$

81%$

24%$

100%$

77%$
82%$

0%$

10%$

20%$

30%$

40%$

50%$

60%$

70%$

80%$

90%$

100%$

110%$

Apache$ FreeBSD$ PostgreSQL$ Python$ Samba$

Top$1$$ Top2

Recommendation Accuracy

Pr
ec
is
io
n

0%#

6%#

50%#

0%#

35%#

8%#

3%#

25%#

7%#

35%#

0%#

10%#

20%#

30%#

40%#

50%#

60%#

Apache# FreeBSD# PostgreSQL# Python# Samba#

Top#1## Top#2#

Why don’t just using Top
Committers?

Pr
ec
is
io
n

Threat: secret life

• Software repositories do not capture everything
of a software project

• Not all discussions, not all decisions, and after
all also not all changes

• This could be especially true in industrial projects

• Should be less common in FLOSS

Jorge Aranda, Gina Venolia: The secret life of bugs: Going past the errors and omissions in
software repositories. ICSE 2009: 298-308

Different ways of
identifying emerging

teams

Sources

• Mailing lists

• Issue trackers

• Chat log

• Code changes (commits of multiple authors
in the same time window)

Social networks from
issue trackers

• Identifying communication trickier than for
mailing lists

• Assumption: whoever posts a comment
communicates with those who previously
posted a comment

Example (Firefox #1432)

Angus Davis 1998-11-21 17:22:59 PST  
This also occurs when logging into Netcenter…….

Gagan 1998-11-23 14:09:59 PST  
Looks like this might be related to Steve Morse's recent work….

Stephen P. Morse 1998-11-23 14:41:59 PST  
Yes, this is from single signon. …..

Gagan 1998-11-23 15:48:59 PST  
As much as I agree with morse, I am getting inclined towards suggesting
that we should leave SingleSignon for Dec.

Also in this case Mining
Unstructured Data

Techniques can Help!

Chat
 Logs

Identifying
collaborations through

code changes

Example

Bob AliceJim Jane

F1

F2

F3

✔

✔

✔

✔

✔

Example

Bob

Alice

Jim

Example

Bob AliceJim Jane

F1

F2

F3

✔

✔

✔

✔

✔

✔

Example

Bob

Alice

Jim

Jane

Be careful

• People may modify the same artefacts but
never get in touch

• The finer the granularity of the analysis (e.g.
method level) the better

Overlap between
sources

Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta, Gerardo Canfora, Giuliano Antoniol: How
Developers' Collaborations Identified from Different Sources Tell Us about Code Changes. ICSME 2014:
251-260

How Developers’ Collaborations Identified from
Different Sources Tell us About Code Changes

Sebastiano Panichella1, Gabriele Bavota1, Massimiliano Di Penta1, Gerardo Canfora1, Giuliano Antoniol2
1Dept. of Engineering, University of Sannio, Italy, 2 École Polytechnique de Montréal, Canada

Abstract—Written communications recorded through chan-
nels such as mailing lists or issue trackers, but also code co-
changes, have been used to identify emerging collaborations in
software projects. Also, such data has been used to identify the
relation between developers’ roles in communication networks
and source code changes, or to identify mentors aiding newcomers
to evolve the software project. However, results of such analyses
may be different depending on the communication channel being
mined. This paper investigates how collaboration links vary
and complement each other when they are identified through
data from three different kinds of communication channels, i.e.,
mailing lists, issue trackers, and IRC chat logs. Also, the study
investigates how such links overlap with links mined from code
changes, and how the use of different sources would influence
(i) the identification of project mentors, and (ii) the presence
of a correlation between the social role of a developer and her
changes. Results of a study conducted on seven open source
projects indicate that the overlap of communication links between
the various sources is relatively low, and that the application of
networks obtained from different sources may lead to different
results.

Keywords—Developers, Developer Social Network, Empirical

Study

I. INTRODUCTION

The communication among projects’ members plays a
paramount role in any successful software project. Indeed,
team coordination and communication has always been the
crux of people involved in software project management [1].
Notwithstanding the nature of a project (i.e., open source ver-
sus industrial/closed source), its domain, or size, the involved
people need to exchange information effectively, minimizing
the communication overhead and making sure they are up to
date with the project status.

In everybody’s experience, different communication chan-
nels play different, sometimes complementary sometimes al-
ternative, roles: news can be gathered from the radio, by
reading a newspaper, watching a TV broadcast or surfing
blogs. Each channel has its pros and cons: TV/radio tend to
be timely; Internet in addition has less control; newspapers
could provide a deeper and focused treatment of some topics.
Besides that, which communication channel is preferred is a
mere personal choice influenced by various factors, such as
the information need, the age, the culture or the life style.
Much in the same way, people contributing to a project
may prefer a particular communication channel. For example,
general discussions about a project’s perspective, software
design, or future development strategies may happen in mailing
lists, whereas discussions related to specific features or to the
resolution of bugs occur on issue trackers. Another factor is
the size, structure and general organization of the project. For

example, some projects tend to have in the past most of the
discussion over mailing lists, and only in recent years they
tend to use issue trackers much more. Finally, in industrial
projects part of the discussion occurs through face-to-face or
phone meetings [2].

In recent and past years, (written) communication has been
analyzed by several authors for different purposes and ex-
ploited to support software evolution tasks. For example, Bird
et al. [3] and Hong et al. [4] studied to what extent emerging
teams identified from email and issue tracker communication
reflect the latent structure of software projects. Bird et al. [5]
found a correlation between social network metrics and change
activities. Finally, Bettenburg et al. [6] and Kumar et al. [7]
studied how social network metrics could be used for bug
prediction purposes. Canfora et al. [8] used data from mailing
lists and issue trackers to recommend mentors.

The studies mentioned above have analyzed projects’ com-
munication by observing one or two sources of communica-
tion. The conjecture we want to investigate is that, different
communication channels would provide different views of
developers’ interaction. As a consequence, the use of such
information in recommender systems could produce different
results.

To this aim, we analyze written communication between
developers (i.e., people changing the code) recorded through
mailing lists, issue trackers, IRC chat logs, and code co-
changes. The overarching goal is to provide evidence that by
analyzing a single communication channel one may obtain a
misleading portrait of people interaction, and that in general
different combinations of the sources may provide different
views of the project’s interaction.

By analyzing the communication occurring in seven open
source projects we show that (i) not all developers use all
communication sources; (ii) people interacting using a given
channel may or may not communicate through other channels;
(iii) the identification of key project roles—such as devel-
opers with a high communication degree or mentors [8]—
leads to different results if done over different communication
channels; (iv) a study performed in the literature [5] would
have achieved different findings when looking into different
communication channels.

Paper structure. Section II presents the details of the
empirical study design, selected system, approach adopted to
collect and analyze data. Section III reports empirical findings
and is followed by Section IV where we discuss the threats
to validity. After a discussion of related work in Section V,
Section VI concludes the paper and outlines directions for
future work.

Study overview

Data from 7 projects (Apache HTTPD, CXF,
Hibernate, Infinispan, Lucene, Samba, Weld)

Research questions:

1.Overlap in terms of nodes (contributors)

2.Overlap in terms of edges

3.Topic variation

4.Impact on social network metrics and mentor
identification

Main findings

Not all contributors use all channels

• Overlap between 40% (issue tracker and chat)
and 86% (issue tracker and mailing lists)

The overlap between networks built upon
channels is fairly limited

• Between 20% (mail and chat) and 38% (issue
tracker and mailing lists)

Also…

• Topic model analysis revealed that contributors
discuss significantly different topics across
different channels

• Social network analysis metrics (degree,
betweenness, etc.) significantly change

• Complementing different sources may be useful
to better identify mentors

Much more beyond
versioning systems,

issue trackers, emails...

Security Advisories

May
(or may
not) be

linked to
issue reports

Forums

• Projects have specialized discussion forums

• Plus, there are some general-purpose forums

• People ask questions, provide answers

• Questions/Answers get votes

• Discussions organized according to tags

• Contributors profiled with statistics, ratings,
and “badges”

Stack Overflow

Watch SO Movie Here

Prompter

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Michele
Lanza: Mining StackOverflow to turn the IDE into a self-confident programming
prompter. MSR 2014: 102-111

1

2

http://prompter.inf.usi.ch/

CODES: mining method
descriptions from StackOverflow

Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus, Gerardo Canfora:
Mining source code descriptions from developer communications. ICPC 2012: 63-72

Mining in the mobile era

Mobile App Market Revenue

http://venturebeat.com/2014/04/29/mobile-apps-could-hit-70b-in-revenues-by-2017-as-non-game-categories-take-off/

Bi
lli

on
s

of
 $

Opportunities
for the miner

Reviews and user ratings

Seminal work (one of..)

Mark Harman, Yue Jia, Yuanyuan Zhang: App store mining and
analysis: MSR for app stores. MSR 2012: 108-111

App Store Mining and Analysis: MSR for App Stores

Mark Harman, Yue Jia, and Yuanyuan Zhang
University College London, Malet Place, London, WC1E 6BT, UK.

Abstract—This paper introduces app store mining and
analysis as a form of software repository mining. Unlike other
software repositories traditionally used in MSR work, app
stores usually do not provide source code. However, they do
provide a wealth of other information in the form of pricing
and customer reviews. Therefore, we use data mining to extract
feature information, which we then combine with more readily
available information to analyse apps’ technical, customer
and business aspects. We applied our approach to the 32,108
non-zero priced apps available in the Blackberry app store
in September 2011. Our results show that there is a strong
correlation between customer rating and the rank of app
downloads, though perhaps surprisingly, there is no correlation
between price and downloads, nor between price and rating.
More importantly, we show that these correlation findings
carry over to (and are even occasionally enhanced within) the
space of data mined app features, providing evidence that our
‘App store MSR’ approach can be valuable to app developers.

I. INTRODUCTION

App stores provide a rich source of information about apps
concerning their customer-, business- and technically- focussed
attributes. Customer information is available concerning the
ratings accorded to apps by the users who have downloaded
them. This provides both qualitative and quantitative data about
the customer perception of the apps. Business information
is available concerning the downloads and price of apps.
Technical information is also available in the descriptions of
apps, but it is in free text format, so data mining is required
to extract the technical details required for analysis.

This is perhaps a unique situation in the history of software
engineering: never before has there been a nexus of readily
available information that combines the users’ view, the
developers’ claims and the sales information pertinent to
a large corpus of software products from many different
providers. The combination of these three types of information
provides a rich and inter-related set of data from which we
can analyse and understand this new software engineering
paradigm of app development. We argue that app store data
mining and analysis will support the nascent app development
industry, providing insights into the added value of features
under consideration for new products and next releases.

To support these claims, we mine and analyse relationships
between the technical, business and user perspectives for the
Blackberry app store, showing how the findings can be used
to inform and guide developers and managers. We study the
relationships between three areas of interest: technical (through
features offered), customer perceptions (through ratings and
download rankings) and business (through price). In order to
focus on the relationship between all three of these concerns,
we consider only those apps for which there is a non-zero price.

This is the first time that such an empirical analysis of app
relationships has been attempted in the literature. With this

paper we seek to introduce the study of what might be termed
‘App Store Repository Mining’, which is closely related to
more traditional approaches to Mining Software Repositories,
as we explained in the Related Work Section (Section V).

II. APP ANALYSIS FRAMEWORK

Our approach to app store analysis consists of the four
phases shown in Figure 1. The first phase extracts raw data
from the app store (in this case BLACKBERRY APP WORLD1,
though our approach can be applied to other app stores with
suitable changes to the extraction front end). In the second
phase we parse the raw data extracted in the first phase to
retrieve all of the available attributes of each app relating
to price, ratings and textual descriptions of the app itself. The
third phase uses data mining to extract feature information from
the textual descriptions and the final phase computes metrics
concerning the technical, business and customer information
extracted. The rest of this section explains the first three steps
of our extraction and analysis approach in more detail.

Figure 1. Overall App Analysis Architecture: A four phase approach
extracts, refines and stores app information for subsequent analysis.

Phase 1 (Data Extraction): We implemented a web crawling
system to collect the raw webpage data from the app store.
The crawler first collects all category information of the app
store and then scans each category page to find the list of
addresses of all the apps in each category, using this to locate
and extract raw data on each app within each category.
Phase 2 (Parsing): The raw data is parsed according to a set
of pattern templates, the attributes of which specify a unique
searchable signature for each attribute of interest. Some at-
tribute fields are populated by humans, so we created templates
that account for the various ways in which the human might
provide the equivalent information. However, once this manual
step is complete the entire process is fully automated (until such
time that the app store changes structure). We developed pat-
terns to capture information about Category, Description, Price,
Customers’ Rating, and the Rank of Downloads of each app. To
apply our approach to a different app store we need modify only
the data extractor and the parsing phase to accommodate the dif-
ferent app store structure and data representations respectively.
Phase 3: (Data Mining Features): There are many ways
to define a ‘feature’. For our purposes, feature information

1http://appworld.blackberry.com/webstore/

978-1-4673-1761-0/12/$31.00 c� 2012 IEEE MSR 2012, Zurich, Switzerland108

What they found…

Price is not correlated with rating, nor
with the number of downloads

The Impact of API-Change and
Fault-Proneness on the User

Ratings of Android Apps

API Change and Fault Proneness:

A Threat to the Success of Android Apps

Mario Linares-Vásquez1, Gabriele Bavota2, Carlos Bernal-Cárdenas3

Massimiliano Di Penta2, Rocco Oliveto4, Denys Poshyvanyk1

1The College of William and Mary, Williamsburg, VA, USA
2University of Sannio, Benevento, Italy

3Universidad Nacional de Colombia, Bogotá, Colombia
4University of Molise, Pesche (IS), Italy

mlinarev@cs.wm.edu, gbavota@unisannio.it, cebernalc@unal.edu.co,
dipenta@unisannio.it, rocco.oliveto@unimol.it, denys@cs.wm.edu

ABSTRACT
During the recent years, the market of mobile software appli-
cations (apps) has maintained an impressive upward trajec-
tory. Many small and large software development companies
invest considerable resources to target available opportuni-
ties. As of today, the markets for such devices feature over
850K+ apps for Android and 900K+ for iOS. Availability,
cost, functionality, and usability are just some factors that
determine the success or lack of success for a given app.
Among the other factors, reliability is an important criteria:
users easily get frustrated by repeated failures, crashes, and
other bugs; hence, abandoning some apps in favor of others.

This paper reports a study analyzing how the fault- and
change-proneness of APIs used by 7,097 (free) Android apps
relates to applications’ lack of success, estimated from user
ratings. Results of this study provide important insights into
a crucial issue: making heavy use of fault- and change-prone
APIs can negatively impact the success of these apps.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement

Keywords
Mining Software Repositories, Empirical Studies, Android,
API changes

1. INTRODUCTION
According to a recent study by VisionMobile [27], the mo-

bile handset industry has been growing at 23% Compound

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

Annual Growth Rate (CAGR) in revenues since 2009. The
“App” economy is a tremendous success: iOS, BlackBerry,
and Android were the most lucrative software platforms in
2012, with average monthly revenue of over $4,800, $3,700,
and $3,300 per app, respectively [26]. Additionally, the de-
velopers’ mindshare index during the last three years (2010-
2012) shows that iOS and Android are the top two software
platforms being used by developers worldwide [26, 27].
What are the hidden forces that contribute to the app

economy’s success? Typical answers are: ubiquitous com-
puting, low cost of handsets (especially, the Android de-
vices), monetization models, customers’ loyalty to brands
such as iPhone or BlackBerry, etc. However, beyond ex-
plaining the “hidden forces” that drive consumer/developer
decisions and define the reasons for the success of the apps,
that success can be influenced by the software infrastructure
that developers use to build apps (i.e., Application Program-
ming Interfaces - APIs).
APIs encapsulate the complexity of low-level program-

ming details, and provide developers with a high-level model
for using the underlying hardware. However, the ease-of-use
of these APIs is impacted by factors related to API design
and quality. For instance, top categories of API learning
obstacles are related to learning resources (e.g., documenta-
tion, or code examples) and API structure (e.g., design or
name of API elements) [19]. Also, APIs not ensuring back-
ward compatibility support are typically hard to use because
their instability [28], and API breaking-changes could intro-
duce bugs in the client code. Moreover, since developers
often assume correctness behind underlying APIs, faults in
APIs can drastically impact the client code quality as per-
ceived by the end-users. For example, Zibran et al. [29]
found that among 1,513 bug reports related to various com-
ponents of Eclipse, GNOME, MySQL, Python 3.1, and An-
droid projects, 562 bug-reports were related to API usability
issues; and about 175 (31.1%) of those issues were related
to API correctness. Although one can possibly assume that
API instability (change-proneness) and fault-proneness may
impact the success of software applications, to the best of our
knowledge such relations have not been empirically investi-
gated yet.
The goal of this paper is to provide solid empirical ev-

idence about the relation between the success of apps (in
terms of user ratings), and the change- and fault-proneness
of the underlying APIs. The study has been conducted on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00

http://dx.doi.org/10.1145/2491411.2491428

477

Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano  
Di Penta, Rocco Oliveto, Denys Poshyvanyk: API change and fault proneness: a
threat to the success of Android apps. ESEC/SIGSOFT FSE 2013: 477-487

Rating and Fault Prone APIs

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●●●●●●

●
●

●

●
●●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●●●●

●

●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

> 4 < 3 and <= 4 < 2 and <= 3 <= 2

0
10

20
30

40
50

Average app rating

Av
er

ag
e

bu
g−

fix
es

 in
 u

se
d

AP
Is

6.7
9.5

14.7

23.4

Wilcoxon U test yield significant differences, medium effect size

Average app rating

A
ve

ra
ge

 #
 o

f b
ug

 fi
xe

s
in

 u
se

d
A

PI
s

CRISTAL:
Crowdsourcing RevIews to
SupporT Apps evoLution

Fabio Palomba, Mario Linares-Vasquez, Gabriele Bavota,  
Rocco Oliveto, Massimiliano Di Penta, Denys Poshyvanyk and Andrea De Lucia

What happens if negative
reviews are implemented?

●

●

●●

●

low medium high

−0
.5

0.
0

0.
5

1.
0

Level of negative reviews implemented

C
ha

ng
e

Av
g.

 R
at

in
g:

 P
re

vi
ou

s
vs

 C
ur

re
nt

 R
el

ea
se

●

●

●

Low: ≤Q1 Medium: Q1-Q3 High: >Q3

Mining Mobile Apps:
Challenges and Perils

Ad (side) effects

Many app dependencies are not towards
libraries/services implementing features

Negative role on…..

Effects on rating

Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, Thorsten Berger, Steffen Dienst, Ahmed E.
Hassan: Impact of Ad Libraries on Ratings of Android Mobile Apps. IEEE Software 31(6): 86-92 (2014)

86 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /14 / $ 31. 0 0 © 2 014 I E E E

FEATURE: MOBILE APPS

Impact of
Ad Libraries
on Ratings
of Android
Mobile Apps
Israel J. Mojica Ruiz, McAfee

Meiyappan Nagappan, Rochester Institute of Technology

Bram Adams, École Polytechnique de Montréal

Thorsten Berger, University of Waterloo

Steffen Dienst, University of Leipzig

Ahmed E. Hassan, Queen’s University

// App developers use several third-party

ad libraries to monetize their apps. This

article examines the relationship between

the number of ad libraries in Android apps

and the user ratings of these apps. //

MOBILE APPS ARE software ap-
plications for mobile devices, such
as smartphones, tablets, and other
personal digital assistants. The
growing demand for mobile apps
has led to rapidly increasing down-
loads—from 7 billion apps in 2009
to an estimated 102 billion app
downloads across all platforms in
2013 (www.gartner.com/newsroom/
id/2592315). This rapid growth is
attracting many amateur and pro-
fessional developers, who strive to
profi t from developing such apps.
Developers commonly monetize
their apps by displaying advertise-
ments to end users. These advertise-
ments are provided by third-party
ad companies such as Google Mo-
bile Ads (https://developer.android.
com/google/play-services/ads.html)
and Flurry’s AppSpot.

The primary method to integrate
ads in a mobile app is through the
use of one of the ad company’s ad li-
braries. However, the success rate in
receiving an ad from an ad company
when an ad is requested (fi ll rate) is
low when it comes to mobile app ads.
In the fi rst half of 2011, the average
fi ll rate for the top 40 ad networks
was less than 18 percent. This low
fi ll rate is mainly because the num-
ber of ads being requested by apps
is increasing faster than the num-
ber of ads available in the market.1

Hence, to achieve a high fi ll rate, app
developers might need to integrate
multiple ad libraries from different
ad companies. Developers aren’t re-
stricted to a single ad company, so
connecting with a large number of
ad companies helps ensure a higher
fi ll rate and, hence, higher revenues.

In this article, we empirically ex-
amine if a relationship exists be-
tween the number of ad libraries in-
tegrated in an app and the app’s user
rating. Earlier work looked at the re-

s6nag.indd 86 10/3/14 3:54 PM

Effects on performance and
consumption

Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan and William G. J. Halfond Truth in Advertising: The
Hidden Cost of Mobile Ads for Software Developers. ICSE 2015

Truth in Advertising: The Hidden Cost of Mobile
Ads for Software Developers

Jiaping Gui⇤, Stuart Mcilroy†, Meiyappan Nagappan‡ and William G. J. Halfond⇤
⇤University of Southern California, Los Angeles, CA, USA

Email: {jgui, halfond}@usc.edu
†Queen’s University, Kingston, Canada

Email: mcilroy@cs.queensu.ca
‡Rochester Institute of Technology, Rochester, NY, USA

Email: mei@se.rit.edu

Abstract—The “free app” distribution model has been ex-
tremely popular with end users and developers. Developers use
mobile ads to generate revenue and cover the cost of developing
these free apps. Although the apps are ostensibly free, they in
fact do come with hidden costs. Our study of 21 real world
Android apps shows that the use of ads leads to mobile apps
that consume significantly more network data, have increased
energy consumption, and require repeated changes to ad related
code. We also found that complaints about these hidden costs
are significant and can impact the ratings given to an app. Our
results provide actionable information and guidance to software
developers in weighing the tradeoffs of incorporating ads into
their mobile apps.

Index Terms—Mobile advertisements, mobile devices

I. INTRODUCTION

Mobile advertising has become an important part of many
software developers’ marketing and advertising strategy [1].
This development has come about in just a matter of a few
years. In 2010, the mobile advertising industry’s revenue was
just over half a billion dollars [2], but by 2013 it reached over
17 billion dollars [3], and in the first quarter of 2014, had
already reached over 11 billion dollars [4]. By 2017, analysts
predict that revenue from mobile advertising will exceed that
of TV advertisements [5] and account for one in three dollars
spent on advertising [6].

The presence of mobile ads has become pervasive in the app
ecosystem with, on average, over half of all apps containing
ads [7]. This has been driven by the development of large
scale advertising networks, such as Google Mobile Ads and
Apple iAD, that facilitate the interaction between developers
and advertisers. To earn ad revenue, developers display ads in
their apps by making calls to APIs provided by an advertising
network. When the ads are displayed on an end user’s device,
the developer receives a small payment. A typical business
model for a developer is to place ads in their apps and then
release the app for free with the hope that the ad revenue will
offset the cost of the app’s development. In general, this model
is perceived as a win-win situation for both developers and
end users: developers receive a steady, and sometimes large,
ad-driven revenue stream, and end users receive a “free” app.

A key problem in this model is that it depends on the
perception that, aside from app development, there are no

additional costs to either the end user or software developer.
While this is true for direct costs, this fails to account for
the indirect hidden costs of embedding mobile ads in an app.
On the end users’ side, indirect hidden costs come in several
forms: loading ads from a remote server requires network
usage, for which many users are billed by the amount of bytes;
loading and rendering ads requires CPU time and memory,
which can slow down the performance of an app; and finally,
all of these activities require battery power, which is a limited
resource on a mobile device. Developers have hidden costs
as well. It is necessary to maintain the code that interacts
with the advertisements, which requires developer effort. The
ratings and reviews a developer receives can also be affected.
Studies have shown that over 70% of users find in-app ads
“annoying” [8] and such users may give an app a lower rating
or write negative reviews. This negative response may then
affect the number of downloads of an app, which in turn can
affect the developer’s future ad revenue.

In this paper we present the results of our investigation into
the hidden costs of mobile advertising for software developers.
To carry out this investigation, we performed an extensive
empirical analysis of 21 real world apps from the Google Play
app store that make use of mobile advertising. Our analysis
considered five types of hidden costs: app performance, energy
consumption, network usage, maintenance effort for ad-related
code, and app reviews. The results of our investigation show
that there is, in fact, a high hidden cost of ads in mobile apps.
Our results show that apps with ads consume, on average: 48%
more CPU time, 16% more energy, and 79% more network
data. We also found that developers, on average, make ad
related changes in 23% of their releases. The presence of
mobile ads also has a rating and review cost, as we found
that complaints related to ads and these hidden costs were
relatively frequent and had a measurable impact on an app’s
rating. Overall, we believe that these findings are significant
and will help to inform software developers so they can better
weigh the tradeoffs of incorporating ads into their mobile apps,
understand the impact ads have on their end users, and improve
end users’ app experience.

Mining challenge: limited
availability of repositories

Even for open source apps, you
might not be able to find all kinds
of software repositories

Often the observable history is
fairly limited

EmailsVersioning

Issue
Reports

Don’t in mining mobile apps

• In most cases apps are small projects

• They have been developed by small (or singleton)
teams

• Some MSR research questions might be less
relevant in this context

• Bug triaging / identifying experts

• (maybe) Identifying fault prone components

Not all reviews are equal
AR-Miner: Mining Informative Reviews for Developers from

Mobile App Marketplace

Ning Chen, Jialiu Lin†, Steven C. H. Hoi, Xiaokui Xiao, Boshen Zhang
Nanyang Technological University, Singapore, †Carnegie Mellon University, USA
{nchen1,chhoi,xkxiao,bszhang}@ntu.edu.sg, †jialiul@cs.cmu.edu

ABSTRACT
With the popularity of smartphones and mobile devices, mo-
bile application (a.k.a. “app”) markets have been growing
exponentially in terms of number of users and download-
s. App developers spend considerable e↵ort on collecting
and exploiting user feedback to improve user satisfaction,
but su↵er from the absence of e↵ective user review ana-
lytics tools. To facilitate mobile app developers discover
the most “informative” user reviews from a large and rapid-
ly increasing pool of user reviews, we present “AR-Miner”
— a novel computational framework for App Review Min-
ing, which performs comprehensive analytics from raw user
reviews by (i) first extracting informative user reviews by
filtering noisy and irrelevant ones, (ii) then grouping the in-
formative reviews automatically using topic modeling, (iii)
further prioritizing the informative reviews by an e↵ective
review ranking scheme, (iv) and finally presenting the group-
s of most “informative” reviews via an intuitive visualization
approach. We conduct extensive experiments and case s-
tudies on four popular Android apps to evaluate AR-Miner,
from which the encouraging results indicate that AR-Miner
is e↵ective, e�cient and promising for app developers.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Algorithm and Experimentation

Keywords
User feedback, mobile application, user reviews, data mining

1. INTRODUCTION
The proliferation of smartphones attracts more and more

software developers to devote to building mobile applica-
tions (“apps”). As the market competition is becoming more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31-June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

intense, in order to seize the initiative, developers tend to
employ an iterative process to develop, test, and improve
apps [23]. Therefore, timely and constructive feedback from
users becomes extremely crucial for developers to fix bugs,
implement new features, and improve user experience ag-
ilely. One key challenge to many app developers is how to
obtain and digest user feedback in an e↵ective and e�cient
manner, i.e., the “user feedback extraction” task. One way
to extract user feedback is to adopt typical channels used
in traditional software development, such as (i) bug/change
repositories (e.g., Bugzilla [3]), (ii) crash reporting systems
[19], (iii) online forums (e.g., SwiftKey feedback forum [6]),
and (iv) emails [10].

Unlike the traditional channels, modern app marketplaces,
such as Apple App Store and Google Play, o↵er a much eas-
ier way (i.e., the web-based market portal and the market
app) for users to rate and post app reviews. These reviews
present user feedback on various aspects of apps (such as
functionality, quality, performance, etc), and provide app
developers a new and critical channel to extract user feed-
back. However, comparing with traditional channels, there
are two outstanding obstacles for app developers to obtain
valuable information from this new channel. First of all, the
proportion of “informative” user reviews is relatively low. In
our study (see Section 5.1), we found that only 35.1% of
app reviews contain information that can directly help de-
velopers improve their apps. Second, for some popular apps,
the volume of user reviews is simply too large to do manu-
al checking on all of them. For example, Facebook app on
Google Play receives more than 2000 user reviews per day,
making it extremely time consuming to do manual checking.

To our best knowledge, very few studies were focused on
extracting valuable information for developers from user re-
views in app marketplace [28, 21, 22]. This paper formal-
ly formulates this as a new research problem. Specifically,
to address this challenging problem and tackle the afore-
mentioned two obstacles, we propose a novel computation-
al framework, named “AR-Miner” (App Review Miner), for
extracting valuable information from raw user review da-
ta with minimal human e↵orts by exploring e↵ective data
mining and ranking techniques. Generally speaking, giv-
en a bunch of user reviews of an app collected during a
certain time interval, AR-Miner first filters out those “non-
informative” ones by applying a pre-trained classifier. The
remaining “informative” reviews are then put into several
groups, and prioritized by our proposed novel ranking mod-
el. Finally, we visualize the ranking results in a concise and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568263

767

Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, Boshen Zhang: AR-miner: mining
informative reviews for developers from mobile app marketplace. ICSE 2014: 767-778

Informative reviews…

Functional None of the pictures will load in my news feed.

Performance It lags and doesn't respond to my touch which
almost always causes me to run into stuff.

Feature (change)
request

Amazing app, although I wish there were more
themes to choose from

Please make it a little easy to get bananas please
and make more power ups that would be awesome.

Remove ads So many ads its unplayable!

Fix permissions This game is adding for too much unexplained
permissions.

Non-Informative

Purely emotional
 Great fun can't put it down!

This is a crap app.

Description
of app/actions

I have changed my review from 2 star to 1 star.

Unclear issue
description

Bad game this is not working on my phone.

Questions How can I get more points?

Green (or Energy)
Mining

Green mining

http://softwareprocess.es/static/GreenMining.html

Abram Hindle: Green mining: A methodology of relating software change to power consumption.
MSR 2012: 78-87

Identifying Energy Greedy APIs

Mining Energy-Greedy API Usage Patterns in Android

Apps: An Empirical Study

Mario Linares-Vásquez1, Gabriele Bavota2, Carlos Bernal-Cárdenas3

Rocco Oliveto4, Massimiliano Di Penta2, Denys Poshyvanyk1

1The College of William and Mary, Williamsburg, VA, USA 2University of Sannio, Benevento, Italy
3Universidad Nacional de Colombia, Bogotá, Colombia 4University of Molise, Pesche (IS), Italy

mlinarev@cs.wm.edu, gbavota@unisannio.it, cebernalc@unal.edu.co,
rocco.oliveto@unimol.it, dipenta@unisannio.it, denys@cs.wm.edu

ABSTRACT
Energy consumption of mobile applications is nowadays a hot
topic, given the widespread use of mobile devices. The high
demand for features and improved user experience, given
the available powerful hardware, tend to increase the apps’
energy consumption. However, excessive energy consumption
in mobile apps could also be a consequence of energy greedy
hardware, bad programming practices, or particular API
usage patterns. We present the largest to date quantitative
and qualitative empirical investigation into the categories
of API calls and usage patterns that—in the context of the
Android development framework—exhibit particularly high
energy consumption profiles. By using a hardware power
monitor, we measure energy consumption of method calls
when executing typical usage scenarios in 55 mobile apps from
di↵erent domains. Based on the collected data, we mine and
analyze energy-greedy APIs and usage patterns. We zoom
in and discuss the cases where either the anomalous energy
consumption is unavoidable or where it is due to suboptimal
usage or choice of APIs. Finally, we synthesize our findings
into actionable knowledge and recipes for developers on how
to reduce energy consumption while using certain categories
of Android APIs and patterns.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement

Keywords
Energy consumption, Mobile applications, Empirical Study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
In recent years, we are observing rapid evolution of mobile

devices in terms of available hardware, operating systems,
and, as a consequence of that, the growing lists of features
that mobile applications’ (apps) users demand. These mod-
ern apps have virtually the same features as their equivalent
desktop applications. For instance, many top video games
for mobile devices provide similar levels of user experience as
compared to those console analogs. Such evident step-ahead
has, however, a price to be paid. Nowadays, multi-core
processors, high-performance Graphical Processing Units
(GPUs), and large screens on mobile devices are becoming
more energy demanding as ever. Also, apps fully exploiting
available hardware can easily drain devices’ batteries in no
time.

From a user’s perspective, this produces tangible and perti-
nent problems. The use of energy-draining apps could quickly
leave a user with empty battery, preventing her from using
the smartphone even for phone calls. In addition, having and
running such apps might require frequent battery re-charges.
This represents a problem because modern battery’s life is
quite limited, often to a finite amount of charging cycles (for
Lithium-ion batteries), ranging between 300 and 500 cycles
(with only 100-200 cycles after a mid-life point) and gradually
decreasing with time [4, 5].
A practical, although näıve advice for preventing rapid

discharges and for improving batteries’ life, is to use mobile
devices only for low energy consuming scenarios. However,
while it might be obvious that some apps are likely to be
power demanding—e.g., video games or those apps using
devices such as Global Positioning Systems (GPS)—it can
often happen that some apps might quickly drain the battery
without any apparent reason [32, 33]. For instance, several
studies identified misuses of wakelocks that keep hardware
components unnecessarily awake as causes of high energy
consumption in mobile devices [22, 32, 33, 35].

Also, programming errors, hardware interactions, and API
misuses can cause high levels of energy consumption (also
known as energy bugs) in mobile apps [32]. To identify such
problems, e↵ective strategies for measuring energy consump-
tion in mobile devices are needed. In the literature, several
di↵erent strategies have been proposed, based on real mea-
surements [6, 11, 21, 23, 25, 40] and power modeling [19,
20, 33, 34, 43, 46]. While previous work attempted at char-
acterizing energy bugs in mobile devices [6, 7, 19, 33, 40],
most of these classifications have been done either by mining
software repositories (e.g., bug reports, forums, commit logs)

1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597085

2

Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Massimiliano Di Penta, Denys Poshyvanyk: Mining energy-
greedy API usage patterns in Android apps: an empirical study. MSR 2014: 2-11

Ok these are the obvious
things…

Android Energy-Greedy APIs
GUI & Image manipulation

Database

Activity & Context

Services

Web

Media & Animation

Data structure manipulation

File manipulation

Geo location

Networking 2

2

3

3

5

7

13

17

30

49

Mining biometric info

Stuck and Frustrated or In Flow and Happy:
Sensing Developers’ Emotions and Progress

Sebastian C. Müller, Thomas Fritz
Department of Informatics, University of Zurich, Switzerland

{smueller, fritz}@ifi.uzh.ch

Abstract—Software developers working on change tasks com-
monly experience a broad range of emotions, ranging from hap-
piness all the way to frustration and anger. Research, primarily in
psychology, has shown that for certain kinds of tasks, emotions
correlate with progress and that biometric measures, such as
electro-dermal activity and electroencephalography data, might
be used to distinguish between emotions. In our research, we
are building on this work and investigate developers’ emotions,
progress and the use of biometric measures to classify them
in the context of software change tasks. We conducted a lab
study with 17 participants working on two change tasks each.
Participants were wearing three biometric sensors and had to
periodically assess their emotions and progress. The results show
that the wide range of emotions experienced by developers is
correlated with their perceived progress on the change tasks. Our
analysis also shows that we can build a classifier to distinguish
between positive and negative emotions in 71.36% and between
low and high progress in 67.70% of all cases. These results
open up opportunities for improving a developer’s productivity.
For instance, one could use such a classifier for providing
recommendations at opportune moments when a developer is
stuck and making no progress.

I. INTRODUCTION

Frustration, anger, happiness and enthusiasm are emotions
that software developers frequently experience during their
work [1]. These emotions are commonly intertwined with the
progress one makes, such as experiencing positive emotions
leading to more progress [2] or the state of being stuck
and making no progress leading to frustration [3]. Research
in psychology has already shown that there is a correlation
between these two dimensions, the emotions and the progress
people experience for certain kinds of tasks (e.g. [4]). To help
ensure a developer’s time is spent as productive as possible,
an indicator for a developer’s emotions could thus be used to
prevent interruptions when a developer is “in flow”, making
a lot of progress and should not be disturbed, or to provide
recommendations at opportune moments when the developer
is getting frustrated and close to being stuck.

With the recent advances in biometric (aka psycho-
physiological) sensor technology, an increasing amount of
research in psychology has shown that a person’s biometric
features, such as skin temperature, facial expression or res-
piration rate, can be used to detect and distinguish between
emotions (e.g. [5], [6]). Psychology research has also shown
that biometric measures can be used to determine a flow or
stuck state (e.g. [3], [7]). However, these studies are focused on
small analytical tasks or physics exercises and do not provide

any evidence on its applicability to software development
tasks, in particular, given the complexity and emotions as well
as cognitive skills these kinds of tasks stress in humans.

In software engineering, only little research has focused
on developers’ emotions and the use of biometric measures.
For emotions, researchers have looked at the emotions that
developers experience [1], [8], how they might affect produc-
tivity [9], [10], and whether one could use interaction logs to
predict them [11], [12]. Using biometric sensors, in particular
eye-tracking and fMRI, researchers have mainly studied how
software developers comprehend code or use tools [13]–[15].
In a previous study, we looked at the use of biometric sensors
to assess the difficulty of small code comprehension tasks [16].

In the research presented in this paper, we built upon exist-
ing work in software engineering and psychology and further
investigate emotions and progress developers experience, as
well as the use of biometric sensors to predict them in the
context of change tasks. In particular, we are interested in the
following three research questions:

RQ1: What is the range of developers’ emotions during change
tasks and are developers’ emotions correlated with their
perceived progress?

RQ2: What are aspects and practices that affect developers’
emotions and progress during change tasks?

RQ3: Can we use biometric sensors to determine developers’
emotions and progress during change tasks?

To address our research questions, we performed a study
with 17 participants. In this study, participants worked on two
change tasks for 30 minutes each while we recorded various
biometric measures and periodically probed the participants
for their emotions and progress. The results of our study
show that developers experience a broad range of positive
and negative emotions during change tasks that are similar
to the ones experienced in other situations and that these
emotions are highly correlated with progress, further support-
ing Graziotin et al.’s finding [9]. The results also show that
the localization and understanding of relevant code are the
most common aspects for emotions and progress to change.
Using the biometric data gathered throughout the study, we
trained a machine learning classifier that is able to distinguish
between positive and negative emotions with an accuracy of
71.36% and between low and high progress with an accuracy
of 67.70%.

This paper makes the following contributions:

Sebastian C. Müller, Thomas Fritz: Stuck and Frustrated or in Flow and Happy: Sensing
Developers' Emotions and Progress. ICSE (1) 2015: 688-699

Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann, Thomas Leich, Gunter
Saake, André Brechmann: Understanding understanding source code with functional magnetic
resonance imaging. ICSE 2014: 378-389

Understanding Understanding Source Code with

Functional Magnetic Resonance Imaging

Janet Siegmund

⇡
,

⇤
Christian Kästner

!
, Sven Apel

⇡
, Chris Parnin

�
, Anja Bethmann

✓
,

Thomas Leich

�
, Gunter Saake

�
, and André Brechmann

✓

⇡
University of Passau, Germany

!
Carnegie Mellon University, USA

�
Georgia Institute of Technology, USA

✓
Leibniz Inst. for Neurobiology Magdeburg, Germany

�
Metop Research Institute, Magdeburg, Germany

�
University of Magdeburg, Germany

ABSTRACT
Program comprehension is an important cognitive process that in-
herently eludes direct measurement. Thus, researchers are strug-
gling with providing suitable programming languages, tools, or
coding conventions to support developers in their everyday work.
In this paper, we explore whether functional magnetic resonance
imaging (fMRI), which is well established in cognitive neuroscience,
is feasible to more directly measure program comprehension. In a
controlled experiment, we observed 17 participants inside an fMRI
scanner while they were comprehending short source-code snip-
pets, which we contrasted with locating syntax errors. We found a
clear, distinct activation pattern of five brain regions, which are re-
lated to working memory, attention, and language processing—all
processes that fit well to our understanding of program comprehen-
sion. Our results encourage us and, hopefully, other researchers to
use fMRI in future studies to measure program comprehension and,
in the long run, answer questions, such as: Can we predict whether
someone will be an excellent programmer? How effective are new
languages and tools for program understanding? How should we
train developers?

1. INTRODUCTION
As the world becomes increasingly dependent on the billions

lines of code written by software developers, little comfort can be
taken in the fact that we still have no fundamental understanding of
how developers understand source code.

Understanding program comprehension is not limited to theory
building, but can have real downstream effects in improving educa-
tion, training, and the design and evaluation of tools and languages
for programmers. If direct measures of cognitive effort and diffi-
culty could be obtained and correlated with programming activity,
then researchers could identify and quantify which types of activi-
ties, segments of code, or kinds of problem solving are troublesome
or improved with the introduction of a new language or tool.

In studying programmers, decades of psychological and observa-
tional experiments have relied on indirect techniques, such as com-
⇤This author published previous work as Janet Feigenspan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Mirror
Screen

Head coil

while ….

That‘s a loop...

currValue =

1… 2… 4…

(a) Prestudy (b) fMRI measurement

(c) Activation pattern(d) Cognitive proc.(e) Other fMRI studies

(f) Interpretation for
program comprehension

Figure 1: Workflow of our fMRI study.

paring task performance or having programmers articulate their
thoughts in think-aloud protocols. Each method, when skillfully
applied, can yield important insights. However, these common
techniques are not without problems. In human studies of program-
ming, individual [13] and task variance [18] in performance often
mask any significant effects hoping to be found when evaluating,
say, a new tool. Think-aloud protocols and surveys rely on self-
reporting and require considerable manual transcription and analy-
sis that garner valuable but indefinite and inconsistent insight.

In the past few decades, psychologists and cognitive neurosci-
entists have collectively embraced methods that measure physio-
logical correlates of cognition as a standard practice. One such
method is functional magnetic resonance imaging (fMRI), a non-
invasive means of measuring blood-oxygenation levels that change
as a result of localized brain activity.

In this paper, we report on results and experience from applying
fMRI in a program-comprehension experiment. While our experi-
ment is a first step toward measuring program comprehension with
fMRI, and as such inherently limited, we believe this study can il-
luminate a path toward future studies that systematically explore
hypotheses and that can be used to build stronger theories of pro-
gram comprehension.

Preprint accepted at ICSE 2014.

Mining Forges and
Code Search Engines

Some Examples

The Maven Repository http://search.maven.org

SourceForge http://sourceforge.net

GitHub https://github.com

OpenHub https://www.openhub.net

Mining GitHub:
Promises and Perils

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Germán, Daniela
Damian: The promises and perils of mining GitHub. MSR 2014: 92-101

The Promises and Perils of Mining GitHub

Eirini Kalliamvakou

University of Victoria

ikaliam@uvic.ca

Georgios Gousios

Delft University of Technology

G.Gousios@tudelft.nl

Kelly Blincoe

University of Victoria

kblincoe@acm.org

Leif Singer

University of Victoria

lsinger@uvic.ca

Daniel M. German

⇤

University of Victoria

dmg@uvic.ca

Daniela Damian

University of Victoria

danielad@cs.uvic.ca

ABSTRACT
With over 10 million git repositories, GitHub is becoming
one of the most important source of software artifacts on
the Internet. Researchers are starting to mine the infor-
mation stored in GitHub’s event logs, trying to understand
how its users employ the site to collaborate on software.
However, so far there have been no studies describing the
quality and properties of the data available from GitHub.
We document the results of an empirical study aimed at un-
derstanding the characteristics of the repositories in GitHub
and how users take advantage of GitHub’s main features—
namely commits, pull requests, and issues. Our results indi-
cate that, while GitHub is a rich source of data on software
development, mining GitHub for research purposes should
take various potential perils into consideration. We show,
for example, that the majority of the projects are personal
and inactive; that GitHub is also being used for free storage
and as a Web hosting service; and that almost 40% of all pull
requests do not appear as merged, even though they were.
We provide a set of recommendations for software engineer-
ing researchers on how to approach the data in GitHub.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Management—Software con-
figuration management

General Terms
Software Engineering

Keywords
Mining software repositories, git, GitHub, code reviews.

1. INTRODUCTION
GitHub is a collaborative code hosting site built on top

of the git version control system. GitHub introduced a

⇤Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR14 Hyderabad, India
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

“fork & pull” model in which developers create their own
copy of a repository and submit a pull request when they
want the project maintainer to pull their changes into the
main branch. In addition to code hosting, collaborative code
review, and integrated issue tracking, GitHub has integrated
social features. Users are able to subscribe to information by
“watching” projects and “following” users, resulting in a feed
of information on those projects and users of interest. Users
also have profiles that can be populated with identifying
information and contain their recent activity within the site.

With over 10.6 million repositories1 hosted as of January
2014, GitHub is currently the largest code hosting site in the
world. Its popularity, the integrated social features, and the
availability of metadata through an accessible api have made
GitHub very attractive for software engineering researchers.
Existing research has been both qualitative [4, 7, 16, 17, 19]
and quantitative [10, 24, 25, 26]. Qualitative studies have fo-
cused on how developers use GitHub’s social features to form
impressions and draw conclusions on other developers’ and
projects’ activity to assess success, performance, and possi-
ble collaboration opportunities. Quantitative studies have
aimed to systematically archive GitHub’s publicly available
data and use that to investigate development practices and
network structure in the GitHub environment.

As part of our research on collaboration on GitHub [15],
we conducted an exploratory online survey in 2013 to as-
sess the reasons for developers using GitHub and how it
supports them in working with others. Through analyzing
the survey data we noticed that GitHub repositories were
also used for purposes other than strictly software devel-
opment. Many respondents were using repositories to host
personal projects, without any plans to collaborate on their
work. This signalled that there might be unseen, significant
perils in using GitHub data “as-is” for software engineering
research. The variety of repository contents and activity, as
well as developers’ intentions, can alter research conclusions
if care is not taken to first establish that the data fits the
research purpose.

The potential risks of misinterpretation in publicly mined
data has also been noted with regard to SourceForge mined
data [14]. Furthermore, Bird et al. [6] described the promises
associated with exploiting the information stored in a decen-
tralized version control system. We, therefore formulated
the following research question to address with this study:

RQ: What are the promises and perils of mining GitHub
for software engineering research?

1https://github.com/features

Promises - I

Many projects to mine (>20 Millions, 9
Millions of users)

Promises - II

Full integration of SCM and Issue tracker

Promises - III

Pull request data, including code reviews

Promises - IV

Gist data

Gist

https://gist.github.com/discover

Code snippets pasted by developers

Available and searchable on GitHub

Gist

Perils - I

Presence of forked or personal
repositories

Perils - II

Projects with very few commits or inactive

Perils - III

Presence of non-software projects

Perils - IV

Projects conduct development elsewhere

Perils - V

Pull requests available for few projects

Selecting your dataset

Selection of objects  
for your studies

• Huge amount of data available

• Intensity (specialized) vs. variation
(diversified) sampling

Meiyappan Nagappan, Thomas Zimmermann, Christian Bird: Diversity in software engineering
research. ESEC/SIGSOFT FSE 2013: 466-476

Diversity in Software Engineering Research

Meiyappan Nagappan
Software Analysis and Intelligence Lab
Queen’s University, Kingston, Canada

mei@cs.queensu.ca

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

Christian Bird
Microsoft Research
Redmond, WA, USA

Christian.Bird@microsoft.com

ABSTRACT
One of the goals of software engineering research is to achieve gen-
erality: Are the phenomena found in a few projects reflective of
others? Will a technique perform as well on projects other than the
projects it is evaluated on? While it is common sense to select a
sample that is representative of a population, the importance of di-
versity is often overlooked, yet as important. In this paper, we com-
bine ideas from representativeness and diversity and introduce a
measure called sample coverage, defined as the percentage of pro-
jects in a population that are similar to the given sample. We intro-
duce algorithms to compute the sample coverage for a given set of
projects and to select the projects that increase the coverage the
most. We demonstrate our technique on research presented over
the span of two years at ICSE and FSE with respect to a population
of 20,000 active open source projects monitored by Ohloh.net.
Knowing the coverage of a sample enhances our ability to reason
about the findings of a study. Furthermore, we propose reporting
guidelines for research: in addition to coverage scores, papers
should discuss the target population of the research (universe) and
dimensions that potentially can influence the outcomes of a re-
search (space).

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Metrics

General Terms
Measurement, Performance, Experimentation

Keywords
Diversity, Representativeness, Sampling, Coverage

1. INTRODUCTION
Over the past twenty years, the discipline of software engineering
research has grown in maturity and rigor. Researchers have worked
towards maximizing the impact that software engineering research
has on practice, for example, by providing techniques and results
that are as general (and thus as useful) as possible. However,
achieving generality is not easy: Basili et al. [1] remarked that
“general conclusions from empirical studies in software engineer-
ing are difficult because any process depends on a potentially large
number of relevant context variables”.

With the availability of OSS projects, the software engineering re-
search community has moved to more extensive validation. As an
extreme example, the study of Smalltalk feature usage by Robbes

et al. [2] examined 1,000 projects. Another example is the study
by Gabel and Su that examined 6,000 projects [3]. But if care isn’t
taken when selecting which projects to analyze, then increasing the
sample size does not actually contribute to the goal of increased
generality. More is not necessarily better.

As an example, consider a researcher who wants to investigate a
hypothesis about say distributed development on a large number of
projects in an effort to demonstrate generality. The researcher goes
to the json.org website and randomly selects twenty projects, all of
them JSON parsers. Because of the narrow range of functionality
of the projects in the sample, any findings will not be very repre-
sentative; we would learn about JSON parsers, but little about other
types of software. While this is an extreme and contrived example,
it shows the importance of systematically selecting projects for em-
pirical research rather than selecting projects that are convenient.
With this paper we provide techniques to (1) assess the quality of a
sample, and to (2) identify projects that could be added to further
improve the quality of the sample.

Other fields such as medicine and sociology have published and
accepted methodological guidelines for subject selection [2] [4].
While it is common sense to select a sample that is representative
of a population, the importance of diversity is often overlooked yet
as important [5]. As stated by the Research Governance Framework
for Health and Social Care by the Department of Health in the UK:

“It is particularly important that the body of research evi-
dence available to policy makers reflects the diversity of the
population.” [6]

Similarly the National Institutes of Health in the United States de-
veloped guidelines to improve diversity by requiring that certain
subpopulations are included in trials [4]. The aim of such guidelines
is to ensure that studies are relevant for the entire population and
not just the majority group in a population.

Intuitively, the concepts of diversity and representativeness can be
defined as follows:

x Diversity. A diverse sample contains members of every
subgroup in the population and within the sample the
subgroups have roughly equal size. Let’s assume a pop-
ulation of 400 subjects of type X and 100 subjects of type
Y. In this case, a perfectly diverse sample would be 1×X
and 1×Y.

x Representativeness. In a representative sample the size
of each subgroup in the sample is proportional to the size
of that subgroup in the population. In the example above,
a perfectly representative sample would be 4×X and 1×Y.

Note that based on our definitions diversity (“roughly equal size”)
and representativeness (“proportional”) are orthogonal concepts. A
highly diverse sample does not guarantee high representativeness
and vice versa.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

Much more...

Build your own list!

Key Ingredients of a
Mining Software
Repository Study

Some key ingredients...

MailsVersioning

Bug
tracking

Quantitative+  
qualitative analysis

Interviewing/ 
surveying developers

Appropriate statistics

Qualitative vs
Quantitative Analyses

Quantitative: to get numerical relations
among variables

Qualitative: to interpret a phenomenon
just observing it in its context

Qualitative Analysis of
repository data

• Dig into data, code, emails, bug reports

• Not necessarily statistical sampling, but rather
purposeful sampling

• Use of techniques inspired to grounded theory, e.g.
open coding

Examples - Commit

• Understand the purpose of a commit

• Look at the message and/or actual change

“...I had previously fixed the identical bug in
oper_select_candidate, but didn't realize that the
same error was repeated over here...”

Examples - Discussion

• Understand what developers discuss over
mailing lists

• We found that certain API cause bugs,
when and how are developers facing the
problem?

Characteristics of a good
categorisation

• Categories should be internally consistent

• Reasonably inclusive

• Multiple people should be involved

• Categories should be credible for
developers

Contacting
project members

• Don’t be surprised if you get about 10% of the
responses

• Don’t expect them to perform long and
tiresome tasks

More about qualitative analysis

Massimiliano Di Penta, Damian Tamburri: Combining
Quantitative and Qualitative Methods in
Empirical Software Engineering Tutorial @ESEC-
FSE 2015  
 
http://tinyurl.com/esecfseqq

Summary

data
extraction

Emails

Mining Software Repositories

Versioning

Issue
Reports

Software
History

change propagation

evolution visualization

change patterns

software complexity

fault prediction

effort estimation

Knowledge inference
Classification

Association rules
Clustering

Some key ingredients...

MailsVersioning

Bug
tracking

Quantitative+  
qualitative analysis

Interviewing/ 
surveying developers

Appropriate statistics

Threat: Incorrect Classification

• Bug tracking systems contain various kinds of
changes

• Classified using inadequate fields, or just poorly
and subjectively classified

Identifying Mentors in
software projects

Enough expertise
about the topic of interest
for the newcomer…

Demonstrated ability to
help other people…

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, Sebastiano Panichella: Who
is going to mentor newcomers in open source projects? SIGSOFT FSE 2012: 44

