
Software Reliability and Testing - Barbara Russo
SwSE - Software and Systems Engineering research group

1

Verification and Validation

Software Reliability & Testing

2

• Software products is imperfect as it is created
by human beings

• Verification and Validation techniques are
methods to ensure the final product quality

Verification and Validation

Software Reliability & Testing

3

• Check of consistency of an implementation
with a specification

• It is about “How” i.e., the process of building
• Are we building the product right?" (B. Boehm)

• Example: A music player plays (it does play)
the music when I press Play

Verification

Software Reliability & Testing

4

• Check consistency between two descriptions
(roles) of the system at different stages of the
development process,
• e.g., UML class diagram and its code

implementation
• Specification document and UML class diagram

• Chain of Two Roles:
• Specification ⇒ Implementation (Specification) ⇒

Implementation

Verification

Software Reliability & Testing

5

• Degrees at which a software system fulfils the
user requirements

• It is about “What” - the product itself
• Are we building the right product ? (B. Boehm)

• Example: A music player plays a music (it
does not show a video) when I press Play

Validation

Software Reliability & Testing

6

• Requirements are goals of a software system
• Specifications are solution to achieve

requirements
• Software that matches requirements ⇒ useful

software
• Software that matches specifications ⇒

dependable software

Usefulness vs. dependability

Software Reliability & Testing

7

• Degree at which a software system complies
with its specifications (focus on verification)
• Specifications are solutions to a problem described

in requirements ⇒
• They are prone to defects as they have been written

by human beings

Dependability

Software Reliability & Testing

8

Software Reliability & Testing

9

• Validation involves stakeholders' judgment

• Exercise: Discuss a validation technique

Verification vs. Validation

Software Reliability & Testing

10

• Verification manly focuses on dependability
and concerns four software properties:
• Correctness: consistency with specification
• Reliability: statistical approximation to correctness;

probability that a system deviates from the expected
behaviour

Verification vs. Validation

Software Reliability & Testing

11

• Robustness: being able to maintain operations
under exceptional circumstances of not full-
functionality

• Safety: robustness in case of hazardous behaviour
(attacks)

Verification vs. Validation

Software Reliability & Testing

12

• Consistency: Specification vs specification, no
conflicts

• No ambiguity: open to interpretations,
uncertainty

• Adherence to standards: consistency with
benchmarks

Specification Self-consistency

Software Reliability & Testing

13

• How can we check whether our software
satisfies any of the dependability properties?

• For example, correctness: given a set of
specifications and a program we want to find
some logical procedure (e.g., a proof) to say
that the program satisfies the specifications

Checking dependability

Software Reliability & Testing

14

Some problems cannot be solved by any computer
program (Alan Turing)

Undecidability of problems

Software Reliability & Testing

15

Given a program P and an input I, it is not
decidable whether P will eventually halt when it
runs with that input or it runs forever

The halting problem

Software Reliability & Testing

16

• Undecidability implies that given a program P
and a verification technique T we do not know
whether the technique can verify the program
in finite time

• ... and even when checking is feasible it might
be very expensive

Checking a property with
algorithms

Software Reliability & Testing

17

• Thus, techniques for verification are inaccurate
• Optimistic and pessimistic inaccuracy of a

testing technique

Techniques for verification

Software Reliability & Testing

18

• Optimistic inaccuracy: technique that verifies a
property S can return TRUE on programs
that does not have the property (FALSE
POSITIVE)

Optimistic accuracy

Software Reliability & Testing

19

• Testing is an optimistic technique
• It returns that a program is correct even if no

finite number of tests can guarantee correctness

Example

Software Reliability & Testing

20

• Pessimistic inaccuracy: technique that verifies a
property S can return FALSE on programs
that have the property (FALSE NEGATIVE)

• Conservative technique

Pessimistic Inaccuracy

Software Reliability & Testing

21

• Automatic verification
• It is conservative as it typically uses rules (not

heuristics!)

Example

Software Reliability & Testing

22

Analysis of a property: confusion
matrix

Pred.
TRUE

Pred.
FALSE

TRUE TP FN

FALSE FP TN

Software Reliability & Testing

23

• Testing techniques are introduced to analyse the
dependability properties of a system

Analysis of a dependability
property

Software Reliability & Testing

24

• Optimistic analysis might also return TRUE for
non correct programs (it might be FP>0)

• Pessimistic analysis might also return FALSE
for correct programs (it might be FN>0)

Analysis of programs for
dependability

Software Reliability & Testing

25

• Dependability property = correctness
• Assume we know how many methods/classes

are correct/incorrect in our program (i.e., they
are aligned with specifications)

• Use test coverage technique to analyse the
correctness of methods/classes…

• Determine the accuracy of the technique with
the confusion matrix

Example

Software Reliability & Testing

26

[1] int foo (int a, int b, int c, int d, float e) {
[2] e;
[3] if (a == 0) {
[4] return 0;
[5] }
[6] int x = 0;
[7] if ((a==b) II ((c == d) && bug(a))) {
[8] x=1;
[9] }
[10] e = 1/x;
[11] return e;
[12] }

bug(a) = 1 is !a==0 else 0
Property: method correctness. Is this method correct? 100% statement coverage =>
correct. T(0,0,0,0,0) and T(1,1,0,0,0) cover method statements. Is it FP, FN, TP, TN?

Example

Software Reliability & Testing

27

• In complex system, verifying properties can be
infeasible

• Often this happens when properties are related
to specific human judgements, but not only

Substituting principle

Software Reliability & Testing

28

• Substituting a property with one that can be
easier verified

• Constraining the class of programs to verify
• Separate human judgment from objective

verification

Substituting principle

Software Reliability & Testing

29

• “Race condition": interference between writing
data in one process and reading or writing
related data in another process (e.g., an array
accessed different threads)

• Testing the integrity of shared data is difficult
as it is checked at run time

• Typical solution is to adhere to a protocol of
serialisation

Example - substitutability

Software Reliability & Testing

30

• When group of objects or states can be
transmitted as one entity and then at arrival
reconstructed into the original distinct objects

Serialisation

Software Reliability & Testing

31

• An object can be represented as a sequence of
bytes that includes the object's data as well as
information about the object's type and its types
of data

• After a serialised object has been written into a
file, it can be read from the file and
deserialised: the type information and bytes that
represent the object and its data can be used to
recreate the object in memory

Java object serialisation

