
Technology transfer to industry

One of the key concerns in academia

How to develop and deploy technology in industry

Academia 4.0?

Industry 4.0

Industry point of view

- Needed **characteristics** of a technology:
 - Adaptability
 - Robustness
 - Maturity
 - Readiness
- Relevance is an issue, acceptance is another, connected one

Industry's point of view

- (Perceived) Relevance in industry, e.g.,
 - Meeting business goals
 - Meeting needs of organisation and people
 - Enhance processes and systems
 - Enhance job quality and performance

Industry's point of view

- Technology Acceptance
- Perceived easy-of-use
 - Degree at which use of technology will be free of effort
- Perceived usefulness
 - Degree at which use of technology would enhance user's job performance

Industry's point of view

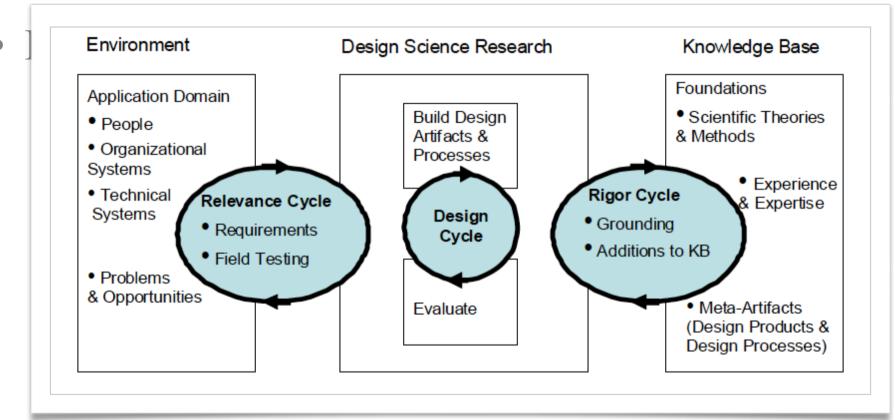
- Not a proof of concept or prototype
 - Academia typically develops prototypes and proof-of concepts
 - Industry needs full working products that can be used with no help from the researchers
 - Academia cannot be a competitor of industry on the market

Academia's point of view

- Academia is called for rigor and generalisation
 - Methods and processes for development and deployment together with evaluations
 - Extensions of the industry problems to researchable and generalisable research topics

Knowledge exploitation

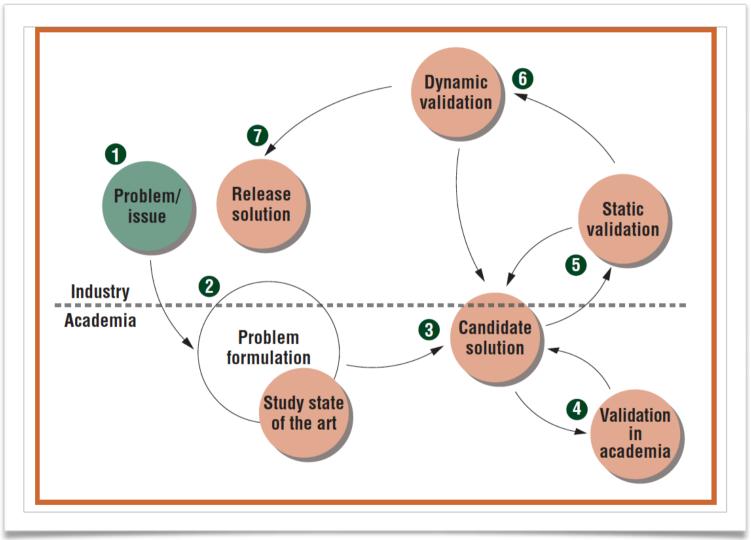
How to exploit domain knowledge to overcome the above challenges of technology transfer?


Design Science

Improve the environment by introducing new and innovative artefacts and the processes for building them

Simon, 1996

Design Science


Hevner, 2007

Design Science

- Relevance. Identify and represent problems in industry that can have research potentiality
- Rigor. Provide foundations to the problem with theories and engineering principles
- Design. Construction and evaluation of an artefacts that meet relevance and rigor balancing between effort for construction and evaluation

Technology Transfer Model

Major types of research

- Theoretical Research is hypothetical and draws upon / integrates theoretical framework to explain a phenomenon. Typically, top down
- Empirical research builds theories from data and tests the feasibility of a solution using empirical evidence. Typically, bottom up
- They can be basic or applied

Empirical Research

This-year focus

Empirical research

- Gain knowledge by means of direct and indirect observation or experience
- Perform quantitative or qualitative analysis
- Start with clearly defined **empirical questions** (answerable with the evidence collected)
- Use research design according to the questions being investigated

The de Groot's Empirical Cycle

- Observation: Collecting and organising empirical facts
- Induction: Formulating hypotheses
- **Deduction**: Deducing consequences of hypotheses as testable predictions
- Testing: Testing the hypotheses with new empirical material
- Evaluation: Evaluating the outcome of testing

Example

- Empirical question:
- Is the iPhone XS user friendly?
- **Observation**: Collecting and organising empirical facts:
- Select a sample of subjects that have an iPhone
- Interview them on the user friendliness of the smartphone
- Analyse the responses and organise them by the characteristics of the subjects (e.g., technical skills).

Example

- User friendliness of iPhone XS depends on technical skills of the users
- **Deduction**: Deducing consequences of hypotheses as testable predictions:
- Subjects that have already used a smartphone (mimimal technical skill) consider the iPhone XS user friendly

Example

- Testing: Testing the hypothesis with new empirical material
- Verify the hypothesis against the consequences on a new sample compounded of two groups: subjects that have and the ones that have not used a smartphone before.
- Evaluation: Evaluating the outcome of testing
- Interview each group on user friendliness and measure the gap

Exercise

- Compare Shneiderman' method and de Groot's methods for the testable hypothesis:
- User friendliness of iPhone XS depends on technical skills of the users
 - Subjects that have already used a smartphone consider the iPhone XS user friendly

Replication

Let's compare de Groot's and Shneiderman's theories

• Observation — Start with a practical problem & existing theory

• Induction ____ Write a lucid & testable Hypothesis

• Deduction Alter a small number of independent variables (treatment)

1esting Select & assign subjects

Control other variables

Measure small number of dependent variables

Apply statistical test

Solve problem, refine theory, produce guidance for future researchers

Let's compare de Groot's and Shneiderman's theories

- de Groot's cycle starts from the observation to identify a practical problem; but a problem can be found in other ways
- In de Groot's cycle, hypotheses are derived by induction (from observations)
- Both models assume that there is cause and an effect; but there are other types of research for example simply descriptive

Let's compare de Groot's and Shneiderman's theories

- Sheinederman's model considers testing as measurement and statistical test; but there are other types of testing like expert opinion
- Shneierman's model includes recommendations for researchers