
Noname manuscript No.
(will be inserted by the editor)

Mining System Logs to Learn Error Predictors: A Case
Study of a Telemetry System

Barbara Russo · Giancarlo

Succi · Witold Pedrycz

the date of receipt and acceptance should be inserted later

Abstract Predicting system failures can be of great benefit to managers that get a better command over system

performance. Data that systems generate in the form of logs is a valuable source of information to predict system

reliability. As such, there is an increasing demand of tools to mine logs and provide accurate predictions. However,

interpreting information in logs poses some challenges.

This study discusses how to effectively mining sequences of logs and provide correct predictions. The approach

integrates different machine learning techniques to control for data brittleness, provide accuracy of model selection

and validation, and increase robustness of classification results. We apply the proposed approach to log sequences

of 25 different applications of a software system for telemetry and performance of cars. On this system, we discuss

the ability of three well-known support vector machines - multilayer perceptron, radial basis function and linear

kernels - to fit and predict defective log sequences.

Our results show that a good analysis strategy provides stable, accurate predictions. Such strategy must at least

require high fitting ability of models used for prediction. We demonstrate that such models give excellent predictions

both on individual applications - e.g., 1% false positive rate, 94% true positive rate, and 95% precision - and across

system applications - on average, 9% false positive rate, 78% true positive rate, and 95% precision. We also show

that these results are similarly achieved for different degree of sequence defectiveness. To show how good are our

results, we compare them with recent studies in system log analysis. We finally provide some recommendations

that we draw reflecting on our study.

Keywords Software maintenance · Data Mining · System Logs · Log analysis · Information Gain · Classification

and Prediction of Defective Log Sequences

1 Introduction

System failures can cause unscheduled system down-

time and unplanned maintenance costs. When system

administrators can predict failures, they can better al-

locate resources and services to limit these costs. Data

that systems generate, typically in the form of logs,

can be used to gain a better insight into system behav-

ior and make failure predictions. Mining logs is not an

easy task, though, as information in logs does not have

a standard structure. There is an increasing demand of

better tools to mine logs that provide reliable failure

predictions (Oliner et al. 2008).

Logs track changes of system states, so-called events,

through monitoring tools and their logging service, e.g.,

Windows event logs or Linux Syslog (Featherstun and

Fulp 2010). Typically, a log event carries information on

the application that generated the event and its state,

the task and the user whose interaction with the system

triggered the event, and the time-stamp at which the

event is generated. As such, logs contain information on

system behavior generated by its users. Some behaviors

are desirable and some are not. In literature, undesir-

able behaviors are referred as system failures (Lo et al.

2009). System failures can be crashes that immediately

stop the system and are easily identifiable as well as de-

viations from the expected output that let the system

run and reveal only at completion of the system tasks.

The manifestations of failures in logs are events in

error state that we call errors. Errors act as alerts.

Alerts can have originated from a series of events pre-

ceding the error; so a single event may not suffice to pre-

2

dict system failures (Pinheiro et al. 2007; Jiang et al.

2009a), whereas a set of events preceding it may do

(Featherstun and Fulp 2010). These sets of events merit

the attention of system managers either because imme-

diate action must be taken or because there is an in-

dication of an underlying problem (Oliner and Stearley

2007).

Log analysis is a science that aims at interpreting

logs. One of the applications of log analysis is to feature

sequences of events that can be associated with system

/ computer failures (Oliner et al. 2012; Forrest et al.

1996; Pinheiro et al. 2007; Yamanishi and Maruyama

2005; Oliner and Stearley 2007; Li et al. 2007). A se-

quence is a set of events ordered by their time-stamp

and occurring within a given time window. In partic-

ular, log analysis classifies sequences by their number

of errors and use this information to make prediction

on future sequences. A solution of such classification

problem is a predictor, i.e., a machine that makes pre-

dictions, and a characterization of the sequences used

by the machine. The characterization can be employed

to isolate undesirable behaviors of the system. Accu-

racy of prediction is also known and can be used to

compare different solutions on novel data provided set-

tings and data are similar to the past as we illustrate

in Section 11.2. In these settings, log analysis has some

known challenges: 1) log data can be huge and manual

inspection can be unrealistic (Oliner et al. 2012; Na-

gappan et al. 2010), 2) logs can be coded in a cryptic

language that does not help their interpretation (Oliner

and Stearley 2007; Oliner et al. 2012), 3) the structure

of log sequences and its length can be hard to define

(Oliner et al. 2012; Featherstun and Fulp 2010). In this

study, we target some of these challenges.

Contribution to research progress in log analysis. For

this study, we learn error predictors from sequence ab-

stractions, i.e., representations of sequences in some for-

mal format that machines can read. The method we

propose builds predictors that managers and practition-

ers can easily use to perform risk analyses, as suggested

by Hall et al. (2012). Our approach uses three well-

known Support Vector Machines (SVMs) as predictors

and proposes:

– A sequence abstraction based on information carried

by logs

– An analysis walk path that integrates different sta-

tistical techniques to control for data brittleness and

accuracy of model selection and validation.

– A parametric classification problem that varies ac-

cording to different degree of defectiveness.

A sequence abstraction is a representation of log se-

quences according to given rules. In this study, we pro-

pose to read logs by application and represent log se-

quences by type and quantity of information carried by

its events. Context and system operational profile de-

fine rules to set the amount of such information. Unlike

recent studies (Fronza et al. 2011; Shang et al. 2013),

sequences with the same abstraction are not excluded

in our analysis. On the contrary, sequence abstractions

are weighted by the times they occur and the number of

users whose interaction with the system triggered the

events. Weights give to sequences abstractions different

relevance in the classification problem. In this study,

sequence type and its weights are the input features for

the SVMs.

RQ1: Is the amount and type of information carried

by a sequence enough to predict errors?

We aim at demonstrating that the abstraction we

propose suffices to obtain predictions superior to previ-

ous studies. Other abstractions may additionally con-

sider time ordering among the events (Fronza et al.

2013), use sliding time windows (Vilalta and Ma 2002),

also in combination with tag numbers (Featherstun and

Fulp 2010; Fulp et al. 2008), or filter sequences by thread.

Such abstractions are more complex to build and still

miss relevant cases like failures due to the interaction

of different threads, e.g., parallel access to the same re-

source.

Our analysis introduces to the use of different tech-

niques that researchers must consider ensuring the sci-

entific rigor of their solution. After data cleansing, our

approach provides a formal definition of input and out-

put of machine learners, reduces the input feature spaces

by selecting input variables relevant to failures leakage,

manipulates the original sequence sets to create samples

for model cross-validation, and applies the three SVMs

to full and reduced feature spaces. Each technique is

discussed against its typical challenges (Section 4). In

some cases, we compare different techniques solving the

same problem. In particular, we investigate the follow-

ing questions:

RQ2: Does feature reduction increase the quality of

prediction?

Specifically, we discuss whether selecting input vari-

ables with Information Gain (Quinlan 1987) improve

true positive rate, false positive rate, and precision of

the SVMs on novel data. Information Gain selects fea-

tures that contribute to the information of a given clas-

sification category. In our case, such category consists

of defective sequences.

RQ3: Does set balancing increase the quality of pre-

diction?

3

According to Zhang and Zhang (2007), if classifi-

cation categories are not equally represented in data

sets, classifiers might have low precision even though

true positive rate is high and false positive rate is low.

Such imbalanced data sets are very frequent in software

engineering data (Menzies et al. 2007b). Khoshgoftaar

et al. (1997) have introduced a technique of set balanc-

ing to improve the quality of prediction. We discuss this

technique with our data sets.

With our method, we recommend to select models

that accurately fit historical data before using them for

predictions. In principle, being not accurate in fitting

historical data gives researchers a larger set of mod-

els on which the chance to find a model with higher

prediction accuracy increases. It might also lead to the

undesirable consequence of model under-fitting or over-

fitting, i.e. to use models with a complexity that does

not correspond to the one of the actual system behavior

(Hall et al. 2012; Alpaydin 2010). Literature on mining

system logs typically neglects to report fitting accuracy

of predictors preventing the reader to really understand

the value of the research contribution.

In error prediction, classifying log sequences is a

parametric problem. The parameter defines the num-

ber of errors a sequence must contain in order to be

classified as defective. We call it cut-off. The cut-off

depends on two factors: research problem and data dis-

tribution. In some environments, only sequences with

two errors or more deserve some attention, (Oliner and

Stearley 2007). In general, the definition of defective

sequence depends on the degree of system reliability

we want to analyze. Varying the cut-off value changes

the sequence distribution over the classification groups,

which in turn influences convergence and precision of

predictors (Khoshgoftaar et al. 1997; Zhang and Zhang

2007). Studying prediction at different cut-off values

helps understanding convergence and prediction abil-

ity of classifiers: classifiers that perform the best for all

given cut-off values, solve the prediction problem in-

dependently from the level of reliability requested for

the system. To our knowledge, there is no literature in

log analysis with cut-off value two or more. On the op-

posite, literature on fault prediction is reach of studies

that classify software modules by two or more faults.

Table 1 reports some of them.

Overall, the major contributions of this work to the

classification problem are:

– Sequence abstraction. As we mentioned, we propose

to characterize sequences by the information they

carry - type of event, occurrences of events, occur-

rences of sequences, and number of users - eventu-

ally reducing it with statistical techniques. The re-

sult is promising and tells that more sophisticated

approaches for sequence abstraction, like consider-

ing time ordering, might not be necessary.

– Parametric definition of the classification groups.

We can identify classifiers that are good predictor

at different error degrees. We can also explore the

classification problem with different balance in the

output categories as changing the cut-off value can

potentially change the distribution of sequences over

them.

– Parametric splitting of the original data sets for

cross-validation. Parametric splitting contributes to

control the influence of splitting size on classification

performance and increments the number of sets on

which models can be cross-validated and evaluated.

As implication, a model that consistently performs

the best over set triplets obtained by different pa-

rameter values is a more reliable predictor for the

original data sets.

– Balance splitting of the original data sets to repre-

sent equally output categories. In this case, the best

result we get is to increase convergence of classifiers.

The technique is not applicable to all the data sets,

though.

Application of the method and context-specific questions.

To discuss all these issues and illustrate the application

of our method, we analyzed a real system for teleme-

try and monitoring of race cars. The specific system is

a suitable test bed for our method as it has stringent

requests of reliability. The company owning the sys-

tem was interested in a predictor that could be easily

used. Thereafter, we selected three well-known SVMs

and asked for our case study:

BQ1. Can we use Support Vector Machines to build

suitable predictors?

For the same reason, we were also interested in un-

derstanding whether a single type of learning machine

can be used for all applications of the system and for

different cut-off values:

BQ2. Is there any Support Vector Machine that per-

forms best for all system applications? Is there any ma-

chine that does it for different cut-off values?

These Business Questions address the specific re-

quests of the company, but can also contribute to un-

derstand abilities and limitations of our research work.

In the end, in our case study, we found classifiers that:

– At individual application, have prediction ability su-

perior to existing literature on log analysis reaching

performance of 1% false positive rate, 94% true pos-

itive rate, and 95% precision, Table 15.

– Across applications, on average, have prediction abil-

ity of 4% false positive rate, 41% true positive rate,

4

and 84% precision, Table 14. As we will see, this re-

sult is overall satisfactory despite the moderate low

value of the true positive rate. Namely, the value

is attained with high precision on twenty-five data

sets with highly varying distributions over the two

classification categories.

– When we restrict to models that predict with bal-

ance greater than the average, we are able to find ten

data sets for which best models have average perfor-

mance of 9% false positive rate, 78% true positive

rate, 95% precision, Table 17.

Overall, the major results that this study provided to

managers of the company are:

– Identify the type of events that mainly contributed

to the occurrence of errors in a sequence. We did

it for any number of errors the managers set for

a sequence to be defective (e.g., ”sequences of logs

must have at least three errors to raise any alarm”).

– Provide predictions on types of costs of maintenance

of the telemetry system or some of its applications.

We did it with the degree of confidence that even-

tually managers request (e.g., “provide predictions

that render the current behavior of at least of 70%”)

and a high degree of precision. In particular, we were

able to forecast the percentage of higher costs of

inspection, i.e. costs for developers to inspect se-

quences erroneously predicted as defective or costs

for non-budgeted maintenance activities, i.e. costs

for fixing errors that were not predicted.

– Characterize the above costs for different levels of

defectiveness set by the managers. We found that

costs for non-budgeted maintenance activity were

limited for sequence with one error but increasingly

higher when sequences have more errors. We also

found that costs of inspection for sequences erro-

neously predicted as defective are medium low when

they have one error and decreasingly lower when

they have more errors, which suggests to focus in-

spection on sequences with more than one error.

In Section 2, we discuss research relevant to this study.

In Section 3, we present the context of study. We out-

line the method in Section 4 and present data and pre-

processing techniques in Section 5. We introduce fea-

ture reduction and parametric sample splitting in Sec-

tions 6 and 7, respectively. Finally, we introduce clas-

sifiers and their measure of performance in Section 8.

We present our strategy for cross-validation in Section

9. We summarize our findings in Section 10 and answer

to research / business questions in Section 11. In this

section, we further compare our approach against exist-

ing literature on prediction in log analysis. In Section

12 and 13, we discuss the threats to validity and the

future of our study. Conclusions are finally drawn in

Section 14.

2 Related Work

Logs are one of the major data sources used in build-

ing prediction models in empirical software engineering

(Oliner et al. 2012). They store data coming from dif-

ferent types of applications giving access to quantita-

tive information about software, hardware, and systems

performance in real operational environments.

System logs have been extensively used in diagnos-

ing faults, scheduling applications and services of hard-

ware (Featherstun and Fulp 2010; Fulp et al. 2008; Fu

and Xu 2007), or in dependable computing, and in com-

puter networks management and monitoring (Fu and

Xu 2010, 2007; Yamanishi and Maruyama 2005; Stein-

der and Sethi 2004; Gross et al. 2002; Mannila et al.

1997). In software engineering, system logs have been

employed to model the workflow design of the activ-

ity processes (van der Aalst et al. 2003), like Petri nets

(Valette et al. 1989).

Oliner et al. (2012), overviewed some of the most

common applications of log analysis discussing limita-

tions and challenges. According to the authors, log anal-

ysis is usually performed to understand system perfor-

mance, like estimating and predicting system failures.

A typical approach to estimate system failures via log

analysis is to identify abnormal system behavior against

the system operational profile, which describes the sys-

tem expected behavior (Oliner et al. 2012; Forrest et al.

1996; Oliner and Stearley 2007). As we cannot access to

information on the operational profile (e.g., operational

states) without disclosing protected information, we de-

cided to describe the abnormal behaviors with sequence

abstractions that include events in error state.

Oliner et al. (2012) have also warned researchers to

use results of log analysis without considering the evo-

lution of the system under study. Specifically, they say

that “over the course of a system’s lifetime, anything

from software upgrades to minor configuration changes

can drastically alter the meaning or character of the

logs.” This makes any log analysis harder to implement.

In our work, we limited the influence of system evolu-

tion, by observing the system within a short period in

which no specific upgrade, test, or drastic change hap-

pened.

To predict system failures, we follow the strategy of

Munson and Khoshgoftaar (1992) that originally clas-

sifies software modules by their changes and, recently,

has been used to classify defective software modules

(Nagappan et al. 2010, 2008; Nagappan and Ball 2005).

5

Table 1: Some literature on data mining for classifica-

tion of defective modules

Study cut-off defective modules

Khoshgoftaar et al. (1997) 3 14 %
Liu et al. (2010) 1 5-20 %
Denaro and Pezzè (2002) 4 about 23%
Porter and Selby (1990) N/A 25%
Xing et al. (2005) 10 40%
Le Gall et al. (1990) N/A 5-20 %
Nagappan et al. (2010) 1 N/A
Menzies et al. (2007b) 1 0.4-49%

Per this strategy, there is an a priori classification of

modules into two mutually exclusive groups. A crite-

rion variable is used for the group assignment. For ex-

ample, a module is classified with a code of zero if it has

been found defective, or with a code of 1 otherwise. A

classifier computes the posterior probabilities of group

membership. For example, Munson and Khoshgoftaar

(1992), and Nagappan et al. (2008), use the logistic

probability of module attributes. The module is then

assigned to the group for which it has the greatest prob-

ability of membership. False and true positive rates,

precision and true positive rate are then calculated to

evaluate the performance of the posterior probabilities

against the a priori classification. In this notation, what

we propose is a priori classification whose criterion vari-

able depends on a cut-off value. Thus, for example, a

sequence is classified with a code of zero if it has less

than a cut-off value, and with a code of 1 otherwise.

Table 1 lists cut-off values in benchmark literature on

classification of software modules. For log sequences, to
the best of our knowledge, there is no research with

cut-off greater than one (Fulp et al. 2008; Featherstun

and Fulp 2010). Increasing the cut-off value allows to

study classification problems in which the distribution

of groups is highly imbalanced, as in the original paper

of Munson and Khoshgoftaar (1992).

Imbalanced data can be also an issue when we want

to assess the performance of posterior probabilities. Ac-

cording to Zhang and Zhang (2007), the measures in-

troduced in Menzies et al. (2007b), (true and false pos-

itive rate and balance) are not sufficient in case of im-

balanced data. When data is imbalanced, Zhang and

Zhang prove models can be able to detect faults (true

positive rate (TPr) is high) and raise few false alarms

(false positive rate (FPr) is small) but still be very poor

in performance (precision is small). According to Men-

zies et al. (2007a), precision is an unstable measure and

should not be used alone. The authors show that preci-

sion computed for different types of learning machines

and applied on the same data sets shows the highest

variation among the performance measures and using

it is more risky. The authors also illustrate how classifi-

cation results with low precision and high true positive

rate are useful and very frequent in software engineer-

ing. Table 1 shows further studies that we found to

support this claim.

Few recent studies have classified log sequences to

predict system failures. Table 2 illustrates the major

characteristics of these studies according to sequence

abstraction, models used, set up, and performance mea-

sures. Among these studies we selected the ones that

use SVM to serve as baseline for our work: Liang et al.

(2007); Fulp et al. (2008); Fronza et al. (2011, 2013). As

all these papers do not report the goodness of the fit-

ted model, we can only use them to compare our result

on prediction performance. The major difference among

the studies is the way sequences are abstracted and fea-

tures to feed the SVMs are defined. None of the stud-

ies pay specific attention to cross-validation, imbalance

distribution over the output groups, or consider feature

reduction. None of them include number of users or du-

plicates in the definition of sequence abstraction, which,

according to Oliner and Stearley (2007), are useful to

stress the relevance of an alarm..

Liang et al. (2007) code sets of events in a time

window of given size by the counts of events at differ-

ent severity levels (e.g., warning, error, etc.) and of dif-

ferent event textual description. Fulp et al. (2008) use

two different abstractions: vector of multiplicities of dif-

ferent event types and spectrum-kernel representation

introduced in Leslie et al. (2002) to describe the amino

acid composition of proteins. In both abstractions, se-

quence length is not determined by the context and au-

thors need to set up different experiments to compare

SVM performance over sliding time-windows. Feather-

stun and Fulp (2010) use sliding time window also in

combination with tag numbers.

Fronza et al. (2011, 2013) use context rules to de-

termine the sequence length as in our study. Like in our

case, they use system logs and break sequences by a spe-

cific event task (e.g., “log-in”) or at the end of the day.

They do not break sequences at the event in error state,

though. Thus, sequences might contain further events

after the error event. In Fronza et al. (2013), the item

set of events is manipulated with Random Indexing

(Sahlgren 2005) to encode time ordering in sequences.

Fronza et al. (2011) predict defective sequences with

models of survival analysis (Cox proportional hazard

model) and SVMs (Linear and Radial Basis Function

kernels). The use of the Cox model requires some tech-

nical assumptions that reduce the number of features

available for the analysis.

6

Table 2: Comparison Studies on system logs

Study Sequence abstraction Model(s) Set up Measures of prediction perfor-
mance

Fronza et al. (2011) Context rules and vectors of event
multiplicities. Duplicates are dis-
carded

SVM with Linear and Radial Ba-
sis Function vs. Cox Proportional
Hazard Model (Cox 1972) as in Li
et al. (2007)

Six real data sets from one sys-
tem. Sequences are sampled with
Monte Carlo method to obtain 60-
40% cross-validation

Cox model outperform SVMs,
but still perform unsatisfactory in
some data sets. Best result: Cox
model TPr = 97%, FPr = 25%

Fronza et al. (2013) Context rules and Random In-
dexing Sahlgren (2005) to include
time ordering. Duplicates are dis-
carded

Regular vs. Weighted (i.e., un-
even cost matrix) SVMs with Lin-
ear, Polynomial, and Radial Basis
Function kernels

Six real data sets, the same sets
of Fronza et al. (2011). Sequences
are sampled with Monte Carlo
method to obtain 60-40% cross-
validation

Weighted SVMs outperform reg-
ular SVMs. No unique classifier
type has been found across all
six data sets. Best result RBF
Weighted TPr = 93%, FPr = 2%

Vilalta and Ma (2002) Sequence patterns as matching
events in time windows preceding
a target event

Association rules and sliding time
windows

Synthetic and real data. For each
sequence 50% of events serve
for training and 50% for test-
ing. Replicated on 30 different se-
quences

MR and FNr. MR reduces with
the number of events in a pat-
tern. FNr significantly decreases
as time window size increases. The
way it drops depends on the target
event

Salfner et al. (2006) Short time series of error mes-
sages are clustered by similarity
and used to train and predict de-
lays in response time

Three time models: Semi-Markov
chain with enriched state charac-
terization, reliability growth Pois-
son model, Dispersion Frame
heuristic technique

One real data set. Time series
analysis on 30 sec. time windows

Precision= 80%, TPr = 92.3%,

and F-Measure= 85%.

Li et al. (2007) Frequent failure signatures: se-
quence of ordered or partially or-
dered event sequence segments in
sliding time window. Defined sim-
ilarly as in Vilalta and Ma (2002)

Cox Proportional Hazard Model,
Cox (1972)

One synthetic and one real data
set

Akaike Information Criterion. The
model predicts effectively on long
event sequences

Liang et al. (2007) Sequence of events defined by
severity levels and text message
and defined in a sliding time-
window

RIPPER (a rule-based classifier),
SVM with the Radial Basis Func-
tion kernel, and two Nearest
Neighbor models

Real data set from IBM Blue-
Gene/L super computer. Data col-
lected during 22-weeks split into
training weeks (19 weeks) and
testing weeks (three weeks). 15
tests varying the testing weeks.

The customized Nearest Neigh-
bor model outperforms the other
classifiers. Predictive ability de-
pends on time window. The
longer the window the better is
the prediction for all the classi-
fiers. Customized Nearest Neigh-
bor method: F-Measure ≥ 60%,
Precision ≥ 50%, and TPr ≥ 70%

Fulp et al. (2008) Log sequences as vector of event
(tag) multiplicities encoded in a
given base (spectrum-kernel rep-
resentation) or as in Liang et al.,
Liang et al. (2007). Target events
are disk failures

One SVM, Linear kernel Two Linux-based computer clus-
ters. Half of the disk failure sets
are randomly selected for training
and the other half is used for test-
ing. Hold-out repeated 100 times

Best results with spectrum-kernel
representation: TPr = 75% as and
about FPr = 25%

7

The authors obtain a very good performance of the

Cox model on only one of their six data sets. This

might be due to several contextual / construction rea-

sons as, for example, to some kind of ”brittleness” of

data, i.e. changes in data used to learn predictors (Men-

zies et al. 2007b), or inaccuracy of data pre-processing

(Gray et al. 2011).

Lo et al. (2009) compare two different sequence ab-

stractions in the classification of execution traces of

software programs: one derived from the information

of a sequence (as in our sequence type, but not con-

sidering sequence occurrences or users) and the other

derived from iterative patterns defined as sub-sequences

with the same initial and final points. The authors prove

that feeding learning machines with the latter abstrac-

tion increases the performance of the models by 24,68%.

They use synthetic and real data on which they run test

cases for specific bugs they injected. They run their

analysis with LIBSVM library (Chang and Lin 2011)

and a non-specified type of kernel. Their new abstrac-

tion is particularly suitable for execution traces where

the level of details in logs allows, for example, identify

closed substructures (e.g., loops) attributable to spe-

cific behaviors (e.g., failures) or define the length of a

sequence by the structure of test cases. System logs,

instead, have a higher level of detail that cannot be

used to identify small substructures. Encoding execu-

tion logs into features readable by SVMs needs sophisti-

cated techniques (e.g. text mining) as log messages are

often in free-format text. To standardize them, Jiang

et al. (2008, 2009b) and Shang et al. (2013) divided

static from dynamic information in logs and aggregate

sequences by their dynamic information. The resulting

sequence abstraction neglects any form and informa-

tion from duplicates: for example, two similar sequences

with just different users are counted as one. As we men-

tioned, we instead weight sequences by the number of

users they have. In terms of dynamic and static infor-

mation, our abstraction has memory of the dynamic

information. Given the different level of details in sys-

tem and execution logs, our form of abstraction does

not require as much effort as for execution logs. For

example, in our case study, task descriptions are stan-

dardized into one / two words, Table 1. This reduces

by far concerns on log encoding.

3 Context

Our analysis has been performed with industrial data of

a large company producing cars. The company prefers

to be anonymous and for the rest of the paper, it will

be referred to as SoftCar. SoftCar has an internal unit

dedicated to the development and maintenance of soft-

ware for production, test, and telemetry of cars’ perfor-

mance. Managers of SoftCar want to understand sys-

tem and applications’ performance to characterize se-

quences of events that lead to errors and predict cost of

inspection. SoftCar uses the Microsoft Team Founda-

tion Server (TFS), a client server software to manage

and track the activities of its 92 applications used in

the development and maintenance of software. In par-

ticular, TFS uses Windows Event Viewer as monitoring

tool.

3.1 Logs

From TFS, we collected logs stored in seven servers and

sent by 974 PCs used by 876 different users in three-

months (December 2008-February 2009). Overall, we

were able to collect 3,01 GB of data for 50 different

applications used in the three months period. Data has

been stored in a MySQL database and mined with the

R tool1.

Each event carries information on its arrival time

(Date), the application that triggered it (Application),

the machine from which it was triggered (Computer

ID), the server that has stored it (Server ID), the user

that logs it (User ID), a project identifier (Area name),

its task (Event type), and its state (State). In addi-

tion, some of the log entries (not all) include also an

event message (Event description). Events are stored

in servers and sent by applications from different com-

puters and different users. The Area name is a typical

built-in description in TFS that describes the project

competence and will not be used in this work. Table 3

illustrates a sample of an original system log file.

With filtering system logs by application name, we

obtain a data set per Application. Each data set con-

sists of sequences of events performed by some logged-

in users from some computers and recorded into one or

more servers of the company. Sequences are defined as

sequential set of events.

Defective sequences are sequences containing at least

one event with state “Error”. Defective sequences can

have more than one event in error state. The example in

Table 3 shows two full sequences: the former starting at

2009-03-02 07:05:45 and ending at 2009-03-02 07:05:46

and the latter starting at 2009-03-02 07:06:45 and end-

ing at 2009-03-02 07:14:58. The former is composed by

two events of different types stored in the same server

and sent from one PC and user. The latter is a sequence

with two errors composed by four events of three differ-

ent types stored in the same server, sent by two different

1 http://www.r-project.org/

8

Table 3: Sample application logs of the telemetry system

Date Server ID PC ID User ID State Type Event Description

2009-03-02 07:05:45 1472 36248 26209 Information Log In Application LogOn
2009-03-02 07:05:46 1472 36248 26209 Timer Systems Application Connection Init.
2009-03-02 07:06:45 1472 26210 1863 Information Log In Time Stamp
2009-03-02 07:06:45 1472 26210 1863 Information General Generic Information
2009-03-02 07:10:20 1472 5776 19039 Error General Generic Error
2009-03-02 07:14:58 1472 5776 19039 Error Performance Generic Error

PCs and users. We formalize these concepts in Section

5.1.

4 Method Outline

Our goal is to select classifiers that predict defective

sequence types with the best accuracy possible. The

method is an enhancement of the analysis pattern pre-

sented in Russo (2013). It combines data pre-processing,

feature reduction, parametric sample splitting, classi-

fication, and cross-validation. The method is applied

to every application A and with three types of classi-

fiers: a neural network multilayer perceptron with back-

propagation algorithm and sigmoid activation function

(MP), a neural network radial basis function (RBF),

and a linear network (L).

In the following, we introduce the different stages of

our method. Each stage is further detailed and imple-

mented in our case study in the corresponding Sections

5-9.

4.1 Data Pre-processing, Section 5.

A classifier is a model that splits input into predefined

output categories (or groups). The set of all inputs is

called feature space. The output consists of categories

that group input according to a certain membership cri-

terion. As we mentioned, the action to associate each

feature with its true category is called a priori clas-

sification. The major goal of data pre-processing is to

determine the feature space and the output categories.

In this case study, there are as many feature spaces

as the number of applications used in the system: 50

feature spaces of which 25 have representatives in both

categories. As there is little overlap of event types across

applications (see Section 5.1), we decided to replicate

our analysis on each application independently.

We define the two output categories in terms of the

cut-off parameter, c. Any new value of c determines a

new classification problem. For example, if c = 3, we

classify features into the ones that have more and those

that have strictly less than three events in error state.

4.2 Feature Reduction, Section 6.

Feature spaces can be reduced to decrease the com-

plexity of classifiers (known as overdimensionality of

the feature space). In their systematic literature review

on fault prediction performance in software engineering,

Hall et al. (2012) report that feature reduction improves

performance of models. Typically, features can be re-

duced in two ways: with wrappers that use classifiers

for heuristic search in the space of all possible feature

subsets or with filters that apply statistical analysis to

reduce the number of features selected and then build

the classifier with them.

We chose the latter approach and filtered the fea-

ture spaces using Kullback Leibler Information Gain

(IG) (Quinlan 1987; Menzies et al. 2007b). In informa-

tion theory, IG is typically used to define a measure of

correlation, which also generalizes the usual product-

moment correlation coefficient (Kent 1983). IG mea-

sures the bits required to encode a class after observing

the effect of a variable. Variables are ranked according

to the gain from the most informative and SVMs learn

from subsets defined by the top ranked variables. IG is

fast and simple. Unlike other techniques like standard

principal component analysis, IG also captures non-

linear dependencies among variables. Variables that do

not contribute to information are eliminated.

In our study, we further compare the performance

of SVMs on full and reduced feature spaces to discuss

whether feature reduction with IG can increase classi-

fier performance (RQ2). With IG, we may also know

which are the most informative features and identify

sequence characteristics (e.g., event types) that con-

tribute to the prediction of errors in logs the most.

4.3 Parametric Sample Splitting, Section 7

To perform any classification, we need to control curse

of dimensionality (Aliferis et al. 2010). This phenomenon

occurs since the data points required for modeling grow

exponentially with the number of variables (Bishop 1996;

Alpaydin 2010). Hence, models obtained from limited

9

data may perform poorly. Techniques of sample ma-

nipulation often in combination with feature reduction

(Section 6) limit this effect and identify the minimum-

size subset of variables that exhibit the maximal pre-

dictive performance (Guyon and Elisseeff 2003).

To control for curse of dimensionality in the case of

MP, Khoshgoftaar et al. (1997) run the classifier on a

triplet of sets (training / test / validation sets) obtained

from the original set with a particular splitting tech-

nique. The three sets provide fresh data for training,

fitting and generalizing models. We adopt this triplet

strategy and we additionally vary the construction of a

splitting according to a parameter. We call it paramet-

ric splitting. With parametric splitting, the behavior

of classifiers is observed over different triplets obtained

from the same original data set. A coherent response

of a classifier over the different triplets indicates the

independency of the result from the specific splitting

technique. We applied parametric splitting to two well-

known techniques of splitting.

4.4 Classification, Section 8.

SVM is one of the top 10 data mining algorithms (Wu

et al. 2007). SVM solves a mathematical optimization

problem to find the separating hyper-plane that has

largest distance to the nearest training data point of

any classification group (functional margin between two

groups).

In this study, we consider the basic Linear (L), the

Radial Basis Function (RBF), and the Multilayer Per-

ceptron (MP) learners. The three machines classify in-

put for full and reduced feature spaces. For each fea-

ture space and cut-off, they are cross-validated on four

triplets of sets obtained splitting the original data sets

by sample balancing or incremental percentage split-

ting. The classification identifies model(s) that best fit

and predict defective features for each cut-off value. We

use true and false positive rates, balance, misclassifica-

tion rate, and precision to compare classifiers. We dis-

cuss the relation among these measures specifically for

imbalanced sets. Finally, the resulting performance is

compared with the baseline literature (Table 9) in clas-

sification of system log sequences.

4.5 Cross-validation, Section 9.

The goal of cross-validation is to determine the best

predictors. Cross-validation consists of model training

and generalization. A model learns its weights and pa-

rameters on a training set (Training) and calculates its

prediction performance on the new instances of a vali-

dation set (Generalization) (Bishop 1996).

To apply cross-validation, we need to have two sam-

ples from the same population, which in many cases

are not available. When the original data set is large

enough, a typical solution is to randomly split it. In this

study, as we are using MP, we follow the approach in

Khoshgoftaar et al. (1997) and Khoshgoftaar and Lan-

ning (1995), and randomly split the original data sets

into a fit set and a validation set and then randomly

split the fit set into a training set and test set. The test

set is used to determine the quality if fit of a trained

classifier. At the end, we get a triplet of sets.

– Training. The model is trained on the training set

to identify its internal structure. Typically, it is trained

more times and evaluated against a loss function

to determine the model weights corresponding that

produce the mean absolute error. In our analysis,

we perform the training on 500 epochs (an epoch is

one pass through all training instances).

– Quality of fit. For a given training set and test

set, a trained model is evaluated on the test set for

quality of fit (accuracy in estimation). We call level

of quality of fit the measure of this accuracy.

– Topology selection. MP neural network has

additional parameters that determine its topol-

ogy. Number of hidden layers (hl), number of

hidden nodes (h), momentum (m), and learning

rate (l) define the topology. For a given topol-

ogy and set pair, training and test set, the neu-

ral network is first trained on the training set

and then evaluated on the test set. We repeat

the procedure for all combinations of topology

parameters. The model with the best misclassi-

fication rate defines the best topology.

A positive delta indicates when one model outper-

forms the others in quality of fit for given training

and test sets. The number of positive deltas over

the different triplets of a splitting type measures the

overall predominance of a model in quality of fit.

– Generalization The models with high quality of

fit are then evaluated on the new instances of the

validation set for generalization (accuracy of predic-

tion).

5 Data Pre-Processing

5.1 Sequence Abstraction

One of the major challenges in log analysis is to de-

fine sequence abstraction as logs typically contain un-

structured data. Although there are several proposals to

10

standardize logs, (Jiang et al. 2008), no specific stan-

dard has been extensively adopted. In this study, we

follow the process of log standardization proposed in

Jiang et al. (2008) and create sequences with the highest

possible interpretability while keeping minimal knowl-

edge and effort required to build them. Specifically, we

inspected logs and interviewed system users to set se-

quence length and rules to determine it. Then we re-

viewed the information in logs and decided to catego-

rize logs in sequences by their event type so that a se-

quence is a finite set of events of different types. Other

studies use the longer event description to characterize

such logs (Salfner et al. 2006). We find though that the

description of the event task is synthetic (one or two

words) and more standardized and, as such, requires

less knowledge and effort to be parsed. What resulted

is described in the following.

Let EA be the set of all the events for a given ap-

plication A. UEA is the set of unique event types in A

and µA its cardinality. For each application A, UEA is

uniquely defined. For example, in Table 4, there are six

events and four unique event types, namely, {Log in,

General, Performance, Systems}.

Table 4: Information used to build sequence abstrac-

tions from Table 3

Seq. Ev. Date User State Type

s1 e1 2009-03-02 07:05:45 26209 Information Log In
e2 2009-03-02 07:05:46 26209 Timer Systems

s2 f1 2009-03-02 07:06:45 1863 Information Log In
f2 2009-03-02 07:06:45 1863 Information General
f3 2009-03-02 07:10:20 19039 Error General
f4 2009-03-02 07:14:58 19039 Error Perform.

In our system, only two-third of the applications

share any event type and they share at most three

unique event types (one is “Login”). Overall, we have

found 125 distinct event types with average 6.4 event

types per application and variation range 1-87 event

types per application, Fig. 1.

The set of sequences SA is a partition of EA. The

partition is defined by rules that identify sets of se-

quential events of the application A. The rules aim at

determining the start and the end of a sequence. To de-

termine the rules we performed a context analysis in-

terviewing local experts. At the end, we came up with

the following context rules:

– A sequence starts with an event of type “Log-in”,

– A sequence starts with the beginning of the day, or

Fig. 1: Number of applications (y-axis) with a given

number of event types in our system

– A sequence starts with an event after one or more

consecutive events in “Error” state.

– A sequence ends with one or more consecutive events

in “Error” state,

– A sequence ends immediately before an event of

type “Log-in”, or

– A sequence ends with the end of the day.

Each sequence is a set of events eventually repeated.

For example, in Table 4, there are two sequences, s1
and s2. s1 has two events of type “Log-in” and “Sys-

tems.” s2 has four events of three types {General, Log-

in, Performance} and ends with two events in “Error”

state.

To define sequences and their length, other approa-

ches use sliding time-windows (Liang et al. 2007; Vilalta

and Ma 2002; Li et al. 2007; Fulp et al. 2008). In this

case, the analysis must be repeated on time-windows

of different size. Using context rules prevents analysis

repetitions, but requires interaction with system users

and administrators to extract and validate the rules.

We could do it, but in other systems, this might not be

feasible.

5.1.1 Sequence Type

In this section, we define all the major terms that will be

used in the analysis. Table 4 and 5 illustrate an example

that we will use to guide the reader in the construction

of a sequence type and its variables that together con-

stitute our sequence abstraction.

Formally, we define the multiplicity µ of an event

type, e, as the number of times it occurs in a sequence

s. Under this definition, each sequence s is mapped into

a vector of multiplicities of its event types

sv = [µ1, ..., µµA
].

The multiplicities are entered in the vector according

to the lexicographical order of event types in UEA.

The vector sv is called Sequence Type of s.

11

This association defines the map into the µA−dimensional

Cartesian product of natural numbers:

f : s ∈ SA → sv ∈ NµA

In Table 4, s2 is mapped into the vector [2, 1, 1, 0], when

the unique event types are UE={General, Log-in, Per-

formance, Systems}. The image under f defines the set

of sequence types:

STA ⊂ NµA , is the set of all the vectors sv ∈ NµA

for which there exists a sequence s ∈ SA such that
f(s) = sv.

In Table 3, the vector [2, 1, 1, 0] belongs to ST, as there

exists s2 that maps into it.

The inverse image f−1(sv) with sv ∈ STA is the set

of all the sequences that have type sv. For example, s2
is in the inverse image of sv = [2, 1, 1, 0]. We define the

multiplicity of a type sv the cardinality of its inverse

image:

µ(sv) = |f−1(sv)|

As such,

the multiplicity µ(sv) of sv is the number of sequences

that have sequence type sv.

For example, in Table 5, sv = [2, 1, 1, 0] has multiplicity

µ(sv) = 4.

MSTA ⊂ STA is the set of sequence types with µ > 1

A sequence is defective if it contains an event in er-

ror state. Defective sequence types are sequence types

for which there exists at least one sequence that maps

into them and has an event in error state. With this

definition, a non-defective sequence might be mapped

into a defective sequence type, as well. This means that

there exists a combination of event types that lead to

an error, but not all the combinations of the same event

types do. In Table 4, s2 is defective and [2, 1, 1, 0] is the

corresponding defective sequence type.

The number of errors, ρ(sv), of a sequence type sv is
the number of events in error state of all the sequences

that map into it.

As such, a sequence type is defective if ρ(sv) ≥ 1. A

sequence type is c-defective if ρ(sv) ≥ c.

DefSTA ⊂ STA is the set sequence types with ρ ≥ 1.

In Table 4, s2 is defective and [2, 1, 1, 0] is 2-defective

sequence type as ρ([2, 1, 1, 0]) ≥ 2.

A sequence and a sequence type can be triggered by

the use of one or more users. We denote with

ν(sv) the average number of users that have triggered

events in sequences of type sv.

ν(sv) > 1 indicates that at least one sequence of type

sv have more than one user and sv is distributed.

DistSTA ⊂ STA is the set of distributed sequence
types.

Given the set of unique operators of Table 4, a vector

sv = [2, 1, 1, 0], with µ(sv) = 4, ν(sv) = 2.5 can be

generated by the sequences in Table 5.

Table 5: Example, sv = [2, 1, 1, 0], µ(sv) = 4, ν(sv) =

2.5

Sequences Users

(Log In, Performance, General, General) {26210, 26210, 5776, 5776}
(Log In, General, General, Performance) {5776, 5776, 26210, 26210}
(Log In, General, Performance, General) {6601, 6601, 5776, 26210}
(Log In, General, General, Performance) {6601, 6601, 5776, 3323}

5.1.2 Feature Spaces

As adding variables can only increase classifiers’ perfor-

mance (Guyon and Elisseeff 2003), with no loss of gen-

erality, we define the feature space of an application A

as the (µA + 2)-dimensional space of vectors formed by

sequence types, sv, their multiplicity, µ(sv), and their

average number of users, ν(sv):

=A = {v ∈ NµA+2|∃sv ∈ SVA : v = [sv, µ(sv), ν(sv)]}

For example, the vector t = [2, 1, 1, 0, 4, 2.5] in = can be
generated by the sequences in Table 5. A vector v ∈ =
is our new sequence abstraction that we use as input

for the SVMs. The vector includes all the basic infor-

mation about a sequence. We will check whether this

information is redundant using IG (Quinlan 1987) and

eventually reduce it.

5.2 Parametric classification categories

The output of a classifier depends on the definition of

its categories. As mentioned, we propose to define cate-

gories by the number of errors, ρ. Classifying sequences

by ρ might be complex, though, as this number does

not have a specific upper bound. Namely, this infinite

categorization can be so sophisticated and data can be

so imbalanced and scarce that classifiers are not able to

converge. A typical approach used in reliability analy-

sis is to classify input into two categories only (Denaro

and Pezzè 2002; Khoshgoftaar et al. 1997; Khoshgoftaar

12

and Lanning 1995; Porter and Selby 1990; Le Gall et al.

1990), and use a membership criterion to associate en-

tities with categories. In our study, two parameterized

disjoint groups define the output:

G1(c) = {v ∈ =| ρ(sv) ≥ c} c-defective

G2(c) = {v ∈ =| ρ(sv) < c} not c-defective

Each value of the parameter c defines a new classi-

fication problem.

Note that G2(1) includes no defective sequences,

whereas G2(> 1), in principle, might include defective

sequences, i.e. sequence types that have more than zero

and less than c errors. As we mentioned, the value of c

needs to be chosen carefully as it changes the composi-

tion of G1 and G2 and the performance of the classifier.

Setting the value of c too high might produce small G1

on which the classifier is not able to give significant re-

sult. On the other hand, high values of c can be used to

investigate the most problematic sequence types (Kim

et al. 2011). In defining the value of c, one needs to

trade off the technical performance of the classifier and

the requirements of the given research problem. To give

the idea of variation of the findings, we will discuss this

trade-off at different values of c.

5.3 Descriptive Analysis of the Study Data Sets

In this section, we analyze the 50 sets of sequence types

STi, i = {1, ..., 50}, to eliminate those that have G1(1) =

φ and understand their heterogeneity with respect to

the number of errors, ρ, the average number of users,

ν, and the multiplicity of sequence types, µ.

Table 6 and the box plots in Fig. 2 describe the

distribution over applications of the size of STi (se-

quence types), MSTi (sequence types with multiplicity

greater than one), DefSTi (defective sequence types),

and DistSTi (distributed sequence types). In Table 6,

we removed ST12 as it assumes values far higher than

other data sets (ST=35828, MST=7419, DefST=16418,

DistST=27205).

Table 6: Size of the sets, ST, DefST, DistST over ap-

plications. One outlier has been removed.

ST MST DefST DistST DefST / ST
Mean 72 13.21 41.23 47.25 21%
SD 125.63 21.77 111.77 118.72 30%
Max 783 109 687 768 88%
Min 1 0 0 0 0 %

Notice that as in typical studies in software engi-

neering (Menzies et al. 2007a), defective sequence types

are under represented (mean(DefST/ST)=21%±30%).

Examining the box plots in Fig. 2, we see that all

distributions are non-parametric and with few outliers.

The size of STs mainly varies between 10 to 60 sequence

types. We considered large sets the ones with more than

100 items.

ST MST DefST DistST

1e
-0
2

1e
+0
0

1e
+0
2

1e
+0
4

Fig. 2: Box plots. Size distribution of ST, MST, DefST,

and DistST over applications. Log scale. 0 values set to

0.01

Half of the sets have no defective sequence types.

These applications are excluded from our analysis re-

ducing the sets to 25 sets. Half of the sets have more

than 50 sequence types with µ > 1 or sequences trig-

gered by less than five users.

A non-parametric (Spearman) correlation at 0.05

significance further shows that the size of ST, DefST,

and DistST are mutually, significantly correlated (with

all values around 0.99). These correlations stress the

relevance of large size STi in which both defective and

distributed sequence types are numerous.

5.3.1 c-Defective Sequence Types

In this section, we examine the sets STi by different

values of cut-off, c. We limited the analysis to c ≤ 4

as sequences types with more than five events in error

state are rather rare in our data (only seven data sets

have more than 5% defective sequence types and only

one has more than 15%).

13

For each value of c and each set ST, we computed

the percentage of c-defective sequence types. Fig. 3 shows

that, for c = 1, ..., 4, the percentage depends on the size

of ST in a super linear fashion.

According to Le Gall et al. (1990) and Khoshgof-

taar et al. (1997), classifiers better converge if data in

each category ranges by between 5 and 20% and they

perform even better when data is balanced in the two

groups (i.e., 40-60% range, (Xing et al. 2005)). Exam-

ining Fig. 3 and Table 6, we have

– For c = 1, the percentage of defective sequence types

is above 20% in the majority of the 25 sets

– For c = 1, all (eight) small sets and for c > 1, about

half of large sets fall in the 5-20% range

– Sets that are balanced are rare and they mainly have

c = 1.

STs

P
er

ce
n
ta

g
e

o
f

D
ef

ec
ti

v
e

S
eq

u
en

ce
 T

y
p
es

S
T

_
7

S
T

_
1
6

S
T

_
9

S
T

_
2
2

S
T

_
2
4

S
T

_
4

S
T

_
1

S
T

_
1
5

S
T

_
3

S
T

_
2
0

S
T

_
1
3

S
T

_
2
1

S
T

_
5

S
T

_
8

S
T

_
2

S
T

_
6

S
T

_
1
4

S
T

_
1
9

S
T

_
1
7

S
T

_
1
0

S
T

_
2
3

S
T

_
1
1

S
T

_
1
8

S
T

_
2
5

S
T

_
1
2

0
.0

0
.2

0
.4

0
.6

0
.8

c=1

c=2

c=3

c=4

Fig. 3: Percentages of c-defective sequence types over

applications. c=1,...,4. STi are ordered by their size.

Altogether, we can see that there is a great hetero-

geneity among the data sets for which any result across

applications or values of c would be of great value. We

further note that increasing the value of c increments

the imbalance of the sequence types over the classifi-

cation categories drastically lowering the percentage of

c-defective sequences for c = 2. This imbalance must

be taken into account in the discussion of classifiers’

performance (Menzies et al. 2007b; Zhang and Zhang

2007; Menzies et al. 2007a). The relation between size

and percentage of defective sequence types appears to

be more than quadratic in our system, Fig. 3.

6 Feature reduction

We use IG to rank attributes arranging them from the

most to least informative. As illustrated by Menzies

et al. (2007b), IG measures the reduction in entropy

of one class distribution C achieved by conditioning it

with a new variable X:

IG(X) = H(C)−H(C|X)

where H() is the expected mean of number of bits

required to encode C:

H(C) = −
∑
o∈C

p(o)log2p(o)

For each data set, the initial attributes consist of

the event multiplicities µi, the sequence multiplicity µ,

and sequence distribution ν. For each application, we

consider all the attributes that contribute to the in-

formation of a class distribution C determined by the

number of errors in sequence types:

C = {[sv, µ(sv), ν(sv)] : ρ(sv) ≥ c}

Table 7 illustrates the attributes selected by IG per

applications and value of c. “Orig. Attr. #” indicates

the length of the vector [sv, µ(sv), ν(sv)] and “Red.

Attr. #” the length of the vector after applying IG.

Among the 25 data sets, seven data sets (all small size)

are not reported in the table, as there is no informa-

tion reduction for any value of c; for the same reason,

for some data sets in the table, specific values are not

reported (“-”). The table includes all large data sets

and half of small data sets. * and ** indicate whether

respectively µ or ν and µ are included.

The reduction of event types is significant in 18 out

of 25 data sets for at least one value of c. This indi-

cates that the information contained in sequences is

redundant for the majority of the applications. In par-

ticular, small data sets, typically representing applica-

tions focused on specific task (like ERP modules), have

fewer original attributes, but proportionally more re-

dundancy. a. In all but five feature spaces, sequences

containing more than one event type contribute to the

error classification problem. This support the findings

in Jiang et al. (2009a) for which “a failure message alone

is a poor indicator of root cause, and that combining

failure messages with multiple log events can improve

low-level root cause prediction by a factor of three.?

This is also supported by the fact that in our data

14

Table 7: Number of attributes, original and remaining after applying IG. Seven data sets are missing, as they have

not been reduced. ∗ or ∗∗ indicate the presence of either µ or ν and µ, respectively. “-” indicates no reduction.

Avg. Red indicates the average reduction percentage over cut-off values.

ID Application Type Orig. Attr. # Red. Attr. # Avg. Red.
c=1 c=2 c=3 c=4

ST1 Telemetry Module 5 2 - - - 15%
ST2 Telemetry Module 9 3 4* 1* 1* 75%
ST3 Telemetry Module 7 1 2* 2* 3* 71%
ST5 Sw. Resources Mgmt. 8 2 - - - 19%
ST6 Product Sw. Tools Mgmt. 12 7** 6** 6** 5** 50%
ST7 Procurement Sys. Module 4 1 - - - 19%
ST10 Telemetry Module 12 - 5** 5** 2* 50%
ST11 Product Data Mgmt. 6 4* 4* 4* 4* 33%
ST12 Chain Supply Mgmt. Sys. 89 69** 73** 74** 74** 19%
ST13 Procurement Sys. Module 6 1 - - - 21%
ST14 Procurement Sys. Module 10 4* 5** 1* 1* 73%
ST15 Data Transfer Module 8 - 1 - - 22%
ST17 Product Sensors Mgmt. 11 - 2* - - 20%
ST18 Telemetry Module 11 4* 6** 6** 6** 50%
ST19 Secondary DB 5 4* 4* 4* 4* 20%
ST21 Virtual Disk Service Module 10 1 - - - 23%
ST23 Manufacturing Execution Sys. 17 11* 14** 10** 10** 34%
ST25 Virtual Disk Service 37 19* 19** 16** 15** 52%

sets error types are labeled with generic description as

“Generic? or “Generic Error.? Worth noticing that µ is

a key attribute (i.e., not reduced) when c > 1.

7 Parametric Splitting

We use two types of sample manipulation: sample bal-

ancing and incremental percentage splitting. In both

cases, splitting is parametric, in that different param-

eter values define different splitting percentages. All

samplings are random, uniform without replacement.

Incremental percentage splitting (t-splitting)

randomly splits data sets into fit set and validation set

with parametric increasing proportion and then ran-

domly splits fit sets into training and test sets in a fixed

proportion. For a splitting parameter t :

– Validation set: t∗100% random selection of the orig-

inal data sets,

– Fit set: complement of the validation set in the orig-

inal data sets,

– Test set: 30% random selection of the fit set,

– Training set: complement of the test set in the fit

set.

The output of incremental percentage splitting repeated

for t = 1/2, 1/3, 1/4, 1/5 consists of four triplets of sets

(Training, Test and Validation set) obtained as above

Incremental percentage splitting helps understand whether

set size influences classifiers’ performance. Similar re-

sults over t values indicate no influence of size on find-

ings.

Sample Balancing (k-splitting) builds training

sets for classifiers that include a balanced representative

of all the output classes of interest. We also ensure that

for every choice of c : 1) the two groups G1(c) and G2(c)

are equally represented and 2) sequence types with zero

faults are always present in G2(c) :

– Validation set: 1/3 ∗ 100% random selection of the

original data set,

– Fit set: complement of the validation set in the orig-

inal data set,

– Test set: 30% random selection of the fit set,

– Training set: all the c-defective sequence types in

the Fit set minus the test set (cardinality = r), plus

k randomly selected not c-defective sequence types

that have zero errors, plus r − k randomly selected

not c-defective sequence types with more than zero

errors. One example of this splitting method can be

found by Khoshgoftaar et al. (1997): with k = 5.

The output of k-splitting repeated for k = 2, 3, 4, 5 con-

sists of four triplets of sets (Training, Test and Valida-

tion set) obtained as above. In total, over applications,

splitting parameter, and values of c, we potentially have

400 (=25*4*4) triplets for each type of splitting, but not

all the triplets can be used. In both types of splitting,

we designed an algorithm that checks if, for a given

value of c and a given value of k, the sets in a triplet

have enough items to be used with classifiers. If one of

the cases happens, the algorithm returns and the cor-

responding triplet is excluded from the analysis, Fig. 4.

15

number of original data sets with fixed value of c

APPLICATIONS = 25

for i in APPLICATIONS

Feature space of data set STi

DATA = {sv}
number of errors of vector sv

ρ

DEFDATA= select ’Defective’ in DATA

NONDEFDATA= sv ! in DEFDATA

NONDEFZERODATA= sv in NONDEFDATA && ρ(sv) = 0

not enough c-defective sequence types

if card(DEFDATA)< k ||
not enough not c-defective sequence types with ρ(sv) = 0

card(NONDEFZERODATA)< k ||
not enough not c-defective sequence types with ρ(sv) > 0

card(NONDEFEDATA - NONDEFZERODATA)< k ||
not enough not c-defective sequence types with ρ(sv) > 0

to balance data set

card(NONDEFDATA - NONDEFZERODATA)< −k+card(DEFDATA)
the data set is excluded

return i else

the data set is included

return φ

Fig. 4: The algorithm that identifies usable fit data sets

8 Classification

We classify features by c-defectiveness using Support

Vector Machines (SVMs (Vapnik 1995)). A SVM sep-

arates training instances by a hyper-plane defined by

its support, i.e., a vector perpendicular to the plan

w and the plane’s distance from the origin b. A new

instance z is classified according to which side of the

hyper-plane it belongs to. When instances are not lin-

early separable, the SVM algorithm maps instances to

a high-dimensional feature space. In this feature space,

a separating hyper-plane can be found such that, when

projected back to the original feature space, it describes

a non-linear decision function. The projection is per-

formed by a kernel function that expresses the inner

product between two instances in the original feature

space, (the Kernel trick). In our work, we use the fol-

lowing three kernel functions:

K(x, w)= x · w + b, basic linear (L)

K(x, w)=exp (−||x− w||2), radial basis function (RBF)

K(x, w)= tanh(αx · w + b), multilayer perceptron (MP)

Varying the support, we get different instances of SVMs.

The best performance on training instances identifies

the support of SVM that best fit our data. For each

instance in the test set, the SVM obtains a probabil-

ity value (for each group a value from 0 to 1). Then a

new instance is predicted as c-defective, i.e., in G1(c),

if the classifier’s output probability is greater than 0.5.

The output is matched against the expected distribu-

tion obtained with the a priori classification (the ex-

pected group has 1, the other 0) to get the SVM quality

of fit. Finally, the best performing SVMs over the test

sets are tested for prediction accuracy on the validation

instances. Again the classifier’s probability is matched

against the expected distribution over the categories.

8.1 Measures of classifier’s performance

An output is Positive if it is in G1(c), it is Negative if it

is in G2(c). True Positives (TP) or True Negatives (TN)

are, respectively, the number of actual c-defective or

actual not c-defective features that have been correctly

classified. False Positives (FP) or False Negative (FN)

are respectively the number of actual not c-defective or

actual c-defective sequence types that have been mis-

classified.

To assess classifier performance, we use the mea-

sures in Table 8. MR, FPr, TPr, and precision are

expressed in percentages or equivalently with numbers

between 0 and 1. Balance is a number between 0 and

1. Best classifiers have low MR and FPr and high

TPr, balance, and precision. Neg/Pos can be any non-

negative number.

Comparison of classifiers with one single measure

does not work. For example, low values of MR do not

prevent high FPr, (Menzies et al. 2007b). Literature

typically uses three measures TPr, FPr, and precision

or a combination of them, but in fact comparing differ-

ent classifiers on the same set or on sets with similar

Neg/Pos ratio is a problem of two degrees of freedom

if the ratio is known. In other words, just two of these

measures suffice. This is proved by the Conversion For-

mula introduced by Zhang and Zhang (2007), Table 8.

The Conversion Formula also shows that classifica-

tion on sets with very high Neg/Pos ratio cannot easily

achieve high precision even for relatively small values of

FPr, Menzies et al. (2007b) and ZhangZhang2007. For

example, Menzies et al. (2007b) obtained TPr = 71%

and FPr = 25% (balance 0.73) on average across eighth

data sets with average Neg/Pos= 12.8. Using the Con-

version Formula on each data set, the average preci-

sion only equals to 26%. There is no way to increase

this value but reducing the Neg/Pos ratio, i.e. balanc-

ing the data sets. Menzies et al. (2007b) choose TPr
and FPr and further use balance, an operational mea-

sure to evaluate the distance of (TPr, FPr) from the

ideal pair (100%, 0%). At the ideal pair, the classifiers

identify all positive values TPr = 100% with no false

alarm FPr = 0%. Higher balance values fall closer to

the ideal pair.

16

Table 8: Measures of classifier performance, (Bishop

1996; Menzies et al. 2007b)

Name Formula

Misclassification rate, (MR)
FP + FN

FP + FN + TP + TN

True Positive rate, (TPr)
TP

FN + TP

False Positive rate, (FPr)
FP

FP + TN

Balance 1−

√
(TPr − 1)2 + (FPr)2

√
2

Precision
TP

FP + TP

Conversion Formula, Zhang and Zhang (2007)

Precision=
1

1 + FPr
TPr

· Neg
Pos

,
Neg=TN+FP

Pos=TP+FN

Table 9 shows FPr and TPr and precision for the

baseline studies. These studies use SVMs, but different

sequence abstractions. None of them uses MP. Table

10 compares studies that use different predictors and

approaches to learn errors from system logs. Studies

Table 9: Best SVMs and their prediction performance

for the baseline studies. In case of multiple data sets,

values are averaged. * indicates values computed with

the Conversion Formula. w stands for “weighted”.

Study SVM FPr TPr Prec. Neg/Pos

Fronza et al. (2011) L & RBF 1.7% 42% 60%* 39

Fronza et al. (2013) Lw & RBFw 16% 65.5% 50%* 39

Liang et al. (2007) RBF NA ≈ 85% ≈ 55% NA

Fulp et al. (2008) L NA ≈ 75% ≈ 70% NA

that do not use or for which we cannot derive TPr FPr
and precision are not included. In both tables, in case

the value Neg/Pos is available, we use the Conversion

Formula to eventually compute the measures missing in

the original papers.

Table 10: Best classifiers and their prediction perfor-

mance for studies that use other models. In case of

multiple data sets or resampling, values are averaged.

* indicates values computed with the Conversion For-

mula.

Study Model FPr TPr Prec. Neg/Pos

Vilalta and Ma (2002) Ass. rules 4% 39% 99%* 0.03

Fronza et al. (2011) Cox mod. 27% 59.3% 18%* 39

Salfner et al. (2006) Heur. 1%* 92.3% 80% 28

Jiang et al. (2008) Heur. NA 90% 93% NA

Shang et al. (2013) Heur. NA NA 33.7% NA

9 Cross Validation

9.1 Training

Models are trained on training sets per splitting type.

The classification on training sets is repeated for ev-

ery choice of c. In the specific case of the MP classifier,

training is also performed for every choice of the topol-

ogy parameters.

9.1.1 Topology Selection for MPs

We vary the topology parameters h between 1 and 10,

l and m in {1, 1/2, ..., 1/10}, and fix hl equal to one.

The best topology corresponds to the smallest MR.

Topology selection is replicated for c = 1, . . . , 4, t =

1/2, . . . , 1/5, and k = 2, . . . , 5, on full and reduced fea-

ture spaces, and for all feature spaces.

Fig. 8 in the Appendix shows the best topology pa-

rameters h, m, and l (x-axis) across the applications

(y-axis) in the case of c = 2 and k = 2, for k-splitting,

and c = 2 and t = 1/3, for t-splitting, using the full

feature sets. The z-axis reports the values of the pa-

rameters.

We were not able to determine the topology on full

or reduced feature spaces for all applications. In the

case of t-splitting, this is because there are not enough

errors in the fit sets. In the case of k-splitting, this is for

the insufficient number of zero errors or not c-defective

features. In addition, because of the large size of ST12

and computational memory limitation of the R tool, we

were not able to determine topology and performance

of any classifier on this data set.

17

9.2 Quality of fit

To have a first idea of the overall performance, we ini-

tially assess quality of fit with MR on test sets for each

value of c, type of splitting, and classifier. Then we use

positive delta to count classifiers that outperform the

others, as described in Section 4.5. For each value of c,

Table 11 illustrates the results.

Table 11: Number of applications for which a classifier

outperforms the others in quality of fit

c=1 c=2 c=3 c=4

t-splitting Full
MP 16 8 7 3
RBF 1 0 0 0
L 12 6 3 7

t-splitting Reduced
MP 11 8 7 5
RBF 1 1 1 1
L 4 3 4 3

k-splitting
MP 5 2 1 2
RBF 1 2 1 0
L 5 7 3 2

Best classifiers have the greatest positive deltas over

all eight pairwise comparisons obtained from a split-

ting type. Table 11 reports the number of applications

for which a given model is the best classifier. In some

cases, more than one model evenly outperform the oth-

ers. The numbers show that for the majority of the

applications, MP outperforms the other two models. L

outperforms the other classifiers for greater values of c

and k-splitting.

9.3 Generalization

We base our strategy to assess prediction performance

on four measures - balance, TPr, FPr, and precision.

Fig 5 plots the balance distribution of the three SVMs

on both test and validation sets for full, reduced, bal-

anced data sets. The distributions are defined over dif-

ferent t-splitting triplets, and four cut-off values.

We use balance to select models with a given level of

quality of fit (on test sets) and discuss the generaliza-

tion performance (on validation sets) of the resulting

classifiers with TPr, FPr, and precision. As a matter

of example, we set balance greater than 0.73 as for the

level of quality of fit. This threshold was found by Men-

zies et al. (2007b) for fault classification and is close to

the reference values of data stored in the University

of California Irvine machine learning database2. In ad-

dition, the threshold corresponds to the highest value

found in the baseline studies. We chose this high value

2 http://archive.ics.uci.edu/ml/

Classifiers

MP RBF L MP RBF L

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Test set

Validation Set

(a) Balance of models on full feature spaces

Classifiers

MP RBF L MP RBF L

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Test set

Validation Set

(b) Balance of models on reduced feature spaces

Classifiers

MP RBF L MP RBF L

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Test set

Validation Set

(c) Balance of models on balanced feature spaces

Fig. 5: Balance distribution of the three classifiers on

test (left) and validation (right) sets.

18

to show that we can have high quality of fit (i.e., above

the threshold) and prediction good on average and su-

perior to existing literature on single applications. An

high quality of fit ensures that predictions are made

on the actual system behavior. Fig. 5 shows that L out-

performs the best both quality of fit and generalization.

After filtering for high quality of fit, we will see that L

will not be the best predictor anymore.

Finally, we repeat the analysis for full and reduced

feature spaces with t-splitting and for full feature spaces

with k-splitting, as described in the next section.

10 Findings

In this section, we investigate prediction performance of

SVMs varying the t-splitting parameter t, before (Full

feature spaces) and after feature reduction (Reduced

feature spaces), and varying the k-splitting parameter

k, (Balanced feature spaces).

Full feature spaces. Table 12 describes the aver-

age performance in quality of fit and generalization of

the classifiers that have balance greater than 0.73 on

test sets. We were able to find such classifiers for 20

applications.

Table 12: Full Feature Spaces. Average performance of

best quality of fit classifiers across values of c and over

20 applications

test validation
balance FPr TPr balance FPr TPr

c=1 0.89 0.08 0.89 0.4 0.3 0.38
c=2 0.91 0.02 0.88 0.48 0.11 0.35
c=3 0.88 0.01 0.84 0.55 0.05 0.39
c=4 0.94 0.01 0.92 0.51 0.03 0.33
average 0.90 0.03 0.88 0.49 0.12 0.36

To obtain a row of the table, we average the scores

(both for quality of fit and generalization) over split-

ting parameter values, applications, and classifiers with

balance greater than 0.73 on the test set. It is worth

noticing that, on average, performance is moderately

low for generalization. This indicates that some classi-

fiers although fitting very well our data are not excellent

predictors on some splitting triplets.

To understand the performance of classifiers on sin-

gle triplets, we expanded Table 12 into Table 13. To

obtain a row of Table 13, we first select all classifiers

with balance greater than 0.73 on the four test sets ob-

tained varying t. For each value of t, we then choose

the model, X, among L, MP, and RBF that has the

greatest balance value on the test set. Then we filter

out the splitting triplets that have X with balance less

Table 13: Full Feature spaces. Best classifiers and their

performance across values of c and triplets of t-splitting.

test validation
ID SVM bal. FPr TPr prec. FPr TPr

c=1 ST2 MP 0.81 0.00 0.73 0.63 0.25 0.53
ST2 L 0.76 0.08 0.67 0.75 0.19 0.75
ST2 L 0.77 0.12 0.70 1.00 0.00 0.71
ST2 L 0.75 0.14 0.68 0.76 0.08 0.60
ST6 MP 0.88 0.15 0.92 1.00 0.00 0.33
ST6 MP 0.88 0.11 0.87 0.67 0.07 0.29
ST6 MP 0.89 0.05 0.86 0.80 0.17 0.71
ST9 MP 1.00 0.00 1.00 0.50 0.20 0.33
ST11 RBF 0.83 0.17 0.83 0.89 0.43 0.91
ST11 RBF 0.79 0.25 0.85 0.96 0.10 0.87
ST11 RBF 0.86 0.13 0.85 0.88 0.42 0.86
ST13 MP 0.92 0.03 0.89 0.67 0.15 0.50
ST14 MP 0.78 0.26 0.82 0.64 0.47 0.73
ST15 L 1.00 0.00 1.00 0.49 0.07 0.50
ST21 L 1.00 0.00 1.00 1.00 0.00 1.00

avg. 0.86 0.10 0.84 0.78 0.17 0.64

c=2 ST10 MP 0.96 0.02 0.94 1.00 0.00 0.50
ST11 MP 0.86 0.06 0.81 0.85 0.04 0.50
ST11 MP 0.77 0.00 0.68 0.74 0.1 0.58
ST11 MP 0.81 0.03 0.74 0.57 0.31 0.57
ST11 MP 0.81 0.02 0.73 0.77 0.22 0.81
ST17 L 1.00 0.00 1.00 1.00 0.00 1.00
ST18 MP 0.92 0.00 0.88 0.89 0.04 0.95
ST18 MP 0.82 0.00 0.74 0.82 0.04 0.58
ST18 MP 0.96 0.02 0.94 0.87 0.03 0.75
ST18 MP 0.96 0.03 0.96 0.85 0.05 0.71

avg. 0.89 0.02 0.84 0.83 0.08 0.60

c=3 ST11 MP 0.78 0 0.69 0.89 0.02 0.60
ST11 MP 0.87 0 0.82 1 0 0.69
ST11 RBF 0.84 0.12 0.8 0.86 0.03 0.73
ST11 RBF 0.81 0.09 0.74 0.68 0.13 0.75
ST14 L 1.00 0.00 1.00 1.00 0.00 0.50
ST18 MP 0.94 0.00 0.92 1.00 0.00 0.74
ST18 MP 1.00 0.00 1.00 1.00 0.00 0.65
ST18 MP 0.96 0.00 0.94 1.00 0.00 0.79
ST18 MP 0.94 0.00 0.91 1.00 0.00 0.86
ST19 MP 0.85 0.03 0.79 0.67 0.38 0.80
ST19 MP 0.79 0.00 0.70 0.69 0.52 0.97
ST19 MP 0.79 0.02 0.71 0.72 0.35 0.86
ST19 MP 0.81 0.05 0.74 0.75 0.24 0.75

avg. 0.88 0.02 0.83 0.87 0.13 0.75

c=4 ST3 RBF 1.00 0.00 1.00 0.51 0.15 0.50
ST11 MP 0.81 0.00 0.73 1.00 0.00 0.53
ST11 RBF 0.75 0.03 0.65 1.00 0.00 0.29
ST11 RBF 0.84 0.04 0.78 0.89 0.02 0.70
ST18 MP 0.92 0.00 0.88 1.00 0.00 0.83
ST18 MP 1.00 0.00 1.00 1.00 0.00 0.47
ST18 MP 0.96 0.00 0.95 1.00 0.00 0.92
ST18 MP 0.97 0.00 0.96 1.00 0.00 0.43
ST19 MP 0.74 0.00 0.63 0.95 0.05 0.78
ST19 MP 0.93 0.05 0.92 0.84 0.21 0.87
ST19 MP 0.82 0.02 0.75 0.81 0.10 0.45
ST19 MP 0.85 0.03 0.79 0.62 0.38 0.59

avg. 0.88 0.01 0.84 0.88 0.08 0.61

than average, i.e., less then 0.49, on validation sets. Ta-

ble 13 shows the remaining cases, i.e., the best model

for quality of fit that has balance greater than 0.73 on

test set and 0.49 on validation set. Notice that we did

not find such model for all t values or applications.

19

On average, the resulting models have precision much

higher than the ones found in the baseline studies that

use SVMs, Table 9. For example, for c = 1, TPr and

FPr are similar to the value found by Fronza et al.

(2013) for weighted SVMs.

Overall, the table shows that across the values of c,

MP outperforms RBF and L. In addition, notice that in

the majority of the cases, MP or RFB consistently per-

form the best across different splitting sizes of the same

application. This indicates stability of such predictors.

Reduced feature spaces. As for full feature spaces,

Table 14 describes the average performance in quality

of fit and generalization of the classifiers that have bal-

ance greater than 0.73 on test sets. Again, we were able

to find such classifiers for 20 applications. The average

balance value on the validation sets has a bit increased

in comparison with full feature spaces. In particular,

the best value is 0.57 and is taken for c = 3. The reason

for this increase is the lower value of the false positive

rate, FPr. This is specifically visible for c = 1.

For each value of c, the values are averaged over

about 30 cases, i.e. the ones for which we found classi-

fiers that converge and have balance greater than 0.73

on test sets. Therefore, the moderate values of FPr and

TPr suggest that for some choices of the t value, best

fit models are not excellent predictors.

Table 14: Reduced feature set. Average performance of

best quality of fit classifiers across values of c and over

20 applications

test validation
balance FPr TPr balance FPr TPr

c=1 0.84 0.13 0.84 0.53 0.18 0.36
c=2 0.87 0.04 0.83 0.49 0.03 0.31
c=3 0.88 0.02 0.83 0.57 0.04 0.41

c=4 0.89 0.01 0.85 0.46 0.02 0.25
average 0.87 0.05 0.84 0.51 0.07 0.33

To understand for which feature sets this holds true,

we expand Table 14 into Table 15. Table 15 shows that

precision and false positive rates increase with feature

reduction. For c = 1, precision overcomes any value

found with SVMs in baseline studies (Table 9), and

approaches the best value found in baseline studies that

use other models (Table 10). In such last case, there

are two studies that overall achieve results comparable

with ours for c = 1. Vilalta and Ma (2002) found better

precision (0.99), but much lower TPr (0.39) and slightly

better FPr (0.04). Salfner et al. (2006) achieved better

TPr (92,3%) and FPr (1%), but worse precision (80%).

Overall, as for comparison of Table 13 and 15 we see

that:

Table 15: Reduced feature spaces. Best classifiers and

their performance across values of c and triplets of t-

splitting.

test validation
ID SVM bal. FPr TPr prec. FPr TPr

c=1 ST2 MP 0.83 0.10 0.79 0.82 0.06 0.36
ST3 RBF 0.77 0.29 0.85 0.90 0.25 0.92
ST6 MP 0.94 0.07 0.96 0.85 0.12 0.80
ST6 MP 0.89 0.05 0.86 0.87 0.11 0.82
ST6 MP 0.9 0.09 0.88 0.65 0.13 0.82
ST6 MP 0.89 0.06 0.86 0.82 0.08 0.78
ST11 RBF 0.82 0.19 0.83 0.94 0.20 0.86
ST11 RBF 0.85 0.16 0.86 0.92 0.19 0.83
ST11 RBF 0.82 0.20 0.84 0.89 0.38 0.89
ST11 RBF 0.77 0.28 0.84 0.96 0.22 0.91
ST14 RBF 0.75 0.22 0.72 0.67 0.42 0.58
ST21 L 1.00 0.00 1.00 1.00 0.00 1.00
ST21 L 1.00 0.00 1.00 1.00 0.00 1.00

avg. 0.86 0.13 0.87 0.87 0.17 0.81

c=2 ST11 RBF 0.78 0.12 0.71 0.75 0.12 0.75
ST11 RBF 0.85 0.16 0.85 0.92 0.04 0.47
ST14 RBF 1 0.00 1.00 1.00 0.00 0.50
ST18 MP 0.89 0.04 0.85 0.97 0.01 0.80
ST18 MP 0.96 0.03 0.94 1.00 0.00 0.72
ST18 MP 0.87 0.03 0.82 0.93 0.02 0.86
ST18 MP 0.87 0.02 0.81 1.00 0.00 0.75
ST19 MP 0.77 0.06 0.68 0.81 0.50 0.98
ST23 MP 0.87 0.00 0.82 1.00 0.00 0.40

avg. 0.87 0.05 0.83 0.93 0.08 0.69

c=3 ST3 RBF 1.00 0.00 1.00 1.00 0.00 0.40
ST11 MP 0.82 0.00 0.74 1.00 0.00 0.50
ST11 RBF 0.82 0.13 0.78 0.79 0.05 0.70
ST11 RBF 0.8 0.11 0.74 0.73 0.10 0.85
ST11 RBF 0.83 0.12 0.78 0.75 0.09 0.70
ST18 MP 0.98 0.00 0.97 0.95 0.01 0.94
ST18 MP 0.92 0.00 0.89 1.00 0.00 0.90
ST18 MP 0.93 0.00 0.89 1.00 0.00 0.80
ST18 MP 1.00 0.00 1.00 1.00 0.00 0.33
ST19 MP 0.73 0.02 0.62 0.92 0.07 0.81
ST19 MP 0.82 0.04 0.75 1.00 0.00 0.71
ST19 MP 0.83 0.02 0.75 0.61 0.56 0.83
ST19 MP 0.89 0.03 0.85 1.00 0.00 0.38
ST23 RBF 0.76 0.00 0.67 1.00 0.00 0.50

avg. 0.87 0.03 0.82 0.91 0.06 0.67

c=4 ST3 L 0.76 0.00 0.67 1.00 0.00 0.33
ST11 MP 0.75 0.00 0.65 1.00 0.00 0.33
ST11 RBF 0.82 0.00 0.75 0.83 0.03 0.69
ST18 MP 0.97 0.00 0.96 1.00 0.00 0.55
ST19 MP 0.76 0.00 0.67 1.00 0.00 0.68
ST19 MP 0.80 0.22 0.82 1.00 0.00 0.63
ST19 MP 0.80 0.00 0.71 0.88 0.10 0.76
ST19 MP 0.83 0.01 0.76 0.78 0.20 0.67

avg. 0.81 0.03 0.75 0.94 0.04 0.58

– Best models for quality of fit are not always the

best predictors for all splitting sizes of a feature set.

Researchers must consider to replicate their study

over different splitting sizes.

– After feature reduction, best models for quality of

fit that have generalization performance more than

average, have higher precision and true positive rate

20

although slightly worse false positive rate as predic-

tors.

– Specially after feature reduction, prediction is solved

by non linear SVMs: MP and RBF are better pre-

dictors than L.

– After feature reduction, a single classifier outper-

forms the others across splitting triplets (indepen-

dence from the splitting size) and values of c (in-

dependence from the cut-off). Specifically, MP is

a more stable predictor and performs better than

RBF for more applications and across c values. On

the other side, when we computed the Neg/Pos ra-

tio of the validation sets over splitting triplets, we

noticed that RBF is more resilient after feature re-

duction across different splitting sizes of the same

feature set. For example,

size Pos c Neg/Pos val.

ST11 220 68 1 RBF 0.27

2 RBF 1.56

3 RBF 3.35

4 RBF 5.25

ST19 166 128 1 - 0.23

2 MP 0.96

3 MP 0.89

4 MP 0.89

This result confirms the findings in Finan et al.

(1996) that show as RBF is more resilient than MP

on imbalanced training sets.

– Even if we require high quality of fit, SVMs achieve

better prediction than the one reported in existing

literature and approach precision of other types of

models exiting in literature having on average sim-

ilar generalization performance. These results will

be further discussed in Section 11.1.

– After feature reduction, precision becomes much higher

and increases with c values. The same holds true for

FPr that becomes very low with c values. In paral-

lel, TPr which is very high for c = 1 decreases when

c increases.

Balanced Feature Spaces. Table 16 reports the

generalization performance at individual applications

after sample balancing. Notice that the linear classifier

L is not present anymore. Precision increases signifi-

cantly reaching the top values found by Vilalta and Ma

(2002), but achieving much better performance. Over-

all, the k-splitting does not help identify a single clas-

sifier (e.g., ST11), but it helps increase convergence for

those data sets on which IG does not reduce the fea-

ture space (e.g., c = 1, ST10 and ST18) and increase

precision and generalization performance.

Worth noticing that when we artificially balance

data, MP and RBF are equally represented.

Table 16: Sample balance splitting. Best classifiers and

their performance across values of c and k-splitting

triplets

test validation
ID SVM bal. FPr TPr prec. FPr TPr

c=1 ST18 MP 0.97 0.01 0.96 0.99 0.05 0.75
MP 0.97 0.02 0.96 0.99 0.09 0.75
MP 0.92 0.04 0.89 0.99 0.03 0.71

avg. 0.95 0.02 0.94 0.99 0.06 0.74

c=2 ST11 MP 0.86 0.11 0.83 0.96 0.10 0.88
MP 0.86 0.17 0.9 0.95 0.12 0.96
RBF 0.82 0.23 0.88 0.95 0.12 0.96
MP 0.85 0.18 0.88 0.95 0.12 0.92

ST2 RBF 0.82 0.07 0.75 0.88 0.07 0.67
avg. 0.84 0.15 0.85 0.94 0.11 0.88

c=3 ST11 RBF 0.82 0.23 0.88 0.99 0.02 0.87
RBF 0.82 0.19 0.84 0.97 0.07 0.73

ST18 MP 1.00 0.00 1.00 1.00 0.00 0.53
avg. 0.88 0.14 0.91 0.98 0.03 0.71

c=4 ST10 MP 0.86 0.06 0.81 1.00 0.02 0.6
ST11 RBF 0.85 0.16 0.87 1.00 0.00 0.29

RBF 0.86 0.15 0.87 0.97 0.02 0.29
RBF 0.88 0.11 0.87 1.00 0.00 0.29
RBF 0.91 0.08 0.91 1.00 0.00 0.29

avg. 0.87 0.11 0.87 0.99 0.01 0.35

11 Discussion

In Section 10, we have seen that results are better and

more stable after feature reduction and sample bal-

ancing only improves prediction performance for some

specific feature sets. As such, this section will discuss

findings obtained after feature reduction and with t-

splitting. Prediction performance with k-splitting will

be used whenever we are able to provide better values.

We start comparing our results with baseline stud-

ies, Table 9 and 10. With our method, prediction perfor-

mance is obtained from models with high quality of fit

(balance greater than 0.73 on test sets). Selecting model

with increasing quality of fit decreases the number of

available models for prediction. Fewer models provide

equal or lower prediction performance values. What we

are going to demonstrate in this section is that even

with high quality of fit, we are able to produce predic-

tion performance that is superior to existing literature,

specially when literature uses SVMs.

We then illustrate an example of how to interpret

our numerical findings. We answer the business and re-

search questions thereafter. Finally, we summarize our

methodological contributions and draw some recom-

mendations on how to perform a similar analysis.

21

11.1 Comparison with baseline studies

Table 17 compares existing literature with our average

results. For each value of c, average is obtained from

the prediction performance values of Table 15 and 16.

Data sets that appear in both tables contribute to the

average only with the best values.

Table 17: Comparison between average prediction per-

formence of this work (*) and baselines studies.

FPr TPr Precision
Fronza et al. (2013) 16% 65.5% 50%
Liang et al. (2007) NA 85% 55%
Fulp et al. (2008) NA 75% 70%
Vilalta and Ma (2002) 4% 39% 99%
Fronza et al. (2011) 27% 59.3% 18%
Salfner et al. (2006) 1% 92.3% 80%
Jiang et al. (2008) NA 90% 93%
Shang et al. (2013) NA NA 33.7%
avg. c = 1∗ 15% 80% 89%
avg. c = 2∗ 9% 78% 95%
avg. c = 3∗ 6% 68% 95%
avg. c = 4∗ 4% 58% 94%

All baseline studies focus on sequences that have

at least one error. Thus, in the following, we compare

them with our results for c = 1. Just note that for

c > 1 precision increases and FPr and TPr decrease.

Our best result in Table 17 is obtained for c = 2. In

terms of balance, this performance is just second to

Salfner et al. (2006) who report lower precision though.

Vilalta and Ma (2002) restrict their analysis to er-

ror events of only two specific types and build features

on sliding time windows. The authors propose a new

rule-based model to classify sequences. Despite the high

precision, performance is not fully satisfactory as the

model best predicts at most 39% true positive rate over

time window lengths.

Salfner et al. (2006) obtain their best result with

a semi-Markov model that produces a failure probabil-

ity over time based on the mean time to failure. The

model is fitted on data that includes information from

log messages. The model predicts a failure if probabil-

ity at a given instant exceeds a time threshold. Perfor-

mance and precision are very high, but they are derived

from a single large set with a small proportion of de-

fective features (Neg/Pos = 28, i.e., Pos%=3.4%). This

work does not use SVMs. As we mentioned, SVMs on

sets with very low percentage of positives have conver-

gence issues, Khoshgoftaar et al. (1997). In our study,

we were only able to learn linear predictors with high

performance on such sets (e.g., ST21, Table 18).

Comparing our findings with the work of Liang et al.

(2007), Fulp et al. (2008), Jiang et al. (2008), on average

and across the c values (Table 15), precision is always

better. In particular, the average value of TPr is better

than the one found on a single set by Liang et al. (2007),

who get a high TPr (≈ 85%) compensated with a much

lower precision (≈ 55%). Fulp et al. (2008), that use the

same approach as in Liang et al. (2007), get a worse but

still high TPr (75%) with much better precision (70%).

Still our average results are better. If we compare these

three studies with ours on single data sets, Table 15

and 16, then we can find at least one case with higher

precision and true positive rate for c = 1, 2, 3. For c = 4

only the work of Jiang et al. (2008) has better values,

but we cannot compare it by FPr.

Fronza et al. (2011) and Fronza et al. (2013) an-

alyze the same data sets. As in our case, the authors

build feature sets on sequences of events occurring in

a time window defined by few context rules. Fronza

et al. (2011) compare SVMs (L, RBF, and polynomial)

with the Cox model, whereas Fronza et al. (2013) use

the same SVMs but with weighted confusion matrix for

training data.

Fronza et al. (2011) fit the Cox model with a set of

covariates. The variables are defined by occurrences of

event types in sequences. If we order them lexicographi-

cally they, in principle, correspond to our sequence type

(not to our abstraction). In practice, not all the vari-

ables are used: the Cox model uses only variables that

are linearly proportional to the failure hazard rate. This

reduces the information entered in the model and can

affect its performance for pure technical reasons.

Fronza et al. (2013) use Random Indexing to distin-

guish sequences by event order. The algorithm encodes

neighbor terms to a word. The sequence is then built in-

crementally. Sequence building procedure is more com-

plex than the one in Fronza et al. (2011) and in the

present study, but, in our opinion, shares the same lim-

itations:

– The sequence abstraction does not take into ac-

count sequence frequency. On the contrary, dupli-

cates are removed. Neglecting duplicates treats se-

quences that are sporadic (maybe occasional) the

same way as frequent sequences (likely to be charac-

teristic of the system). We saw that sequences with

frequency greater than 1 are not rare (Fig. 2) and

in a good number of features spaces, sequence fre-

quency correlates with the number of errors (Table

7). In addition, frequent sequences that are defective

might be of greater interest to system managers. We

included sequence frequency in our abstraction.

– The sequence abstraction does not include the num-

ber of users that have originated the logs. We found

that in a good number of feature spaces, the av-

erage number of users of a sequence correlates with

22

the number of errors (Table 7). We included average

number of users in our abstraction.

– A sequence is built between two log-in events and

limited by the duration of a day. Thus, sequences

may contain events that occur after errors. This in-

creases the noise in fitting and possibly cause over-

fitting (Alpaydin 2010; Hall et al. 2012).

Fig. 6 illustrates the full set of values (FPr, TPr, pre-

cision) for each model and feature set as described in

Fronza et al. (2011) and Fronza et al. (2013).

Fig. 6: Performance and precision in Fronza et al. (2011)

for SVMs and Cox model and Fronza et al. (2013) for

weighted SWMs.

0 0 ??
0.02

0.91
0.90

0.02
0.04

0.38

0.04

0.33

0.55

0.01

0.73

0.79

0.01

0.51

0.39

0.51 0.52 0.01

0.25 0.97 0.42

0.28

0.05

0.05

0.31
0.38

0.15

0.07

0.86

0.38

0.21 0.78

0.04
0.48 0.5 0.01

0.02

0.93
0.90 0.2

0.17

0.21 0.16

0.76

0.41 0.05 0.85
0.46

0.05

0.72
0.15

FPr A
1

TPr A
1

Prec
isi

on
 A1

FPr A
2

TPr A
2

Prec
isi

on
 A2

FPr A
3

TPr A
3

Prec
isi

on
 A3

FPr A
4

TPr A
4

Prec
isi

on
 A4

FPr A
5

TPr A
5

Prec
isi

on
 A5

FPr A
6

TPr A
6

Prec
isi

on
 A6

SVM Cox SVM weighted

By visual inspection or computing balance, we can

compare the different classifiers using FPr, TPr, since

we know that the classification problem has two de-

gree of freedom if Neg/Pos is known, Section 8.1. By

computing balance, we can soon see that the weighted

SVMs (RBF or L) outperform the other models for all

data sets. From the figure, we can also see that the

Cox Model is always less precise than both SVMs and

weighted SVMs. Weighted SVMs are additionally the

most precise. Thus, we decided to compare our findings

with weighted SVMs, as illustrated in Table 18. Need-

less to say that, in this case, we are comparing different

models over different features spaces and the compari-

son cannot lead to any conclusion in the specific context

of our case study.

In Table 18, the Neg/Pos column of our six fea-

ture sets includes both the ratio on the validation sets

that we used to derive precision with the conversion

formula and, in brackets, the ratio of the whole feature

sets. We see that the two values can substantially dif-

fer, but they are greater or less than one in a similar

way. We can further see that between the two sets of

feature spaces, data balance over classification groups

Table 18: Comparison between weighted SVMs in

Fronza et al. (2013) (upper half) and our findings for

c = 1, (lower half).

ID ST Neg/Pos FPr TPr precision balance
A1 12765 118.05 0.48 0.50 0.01 0.48
A2 718 5.30 0.02 0.93 0.90 0.94
A3 60 3.29 0.20 0.17 0.21 0.36
A4 343 6.79 0.16 0.76 0.41 0.79
A5 713 19.96 0.05 0.85 0.46 0.88
A6 8593 80.30 0.05 0.72 0.15 0.80
ST2 86 1.33(1.87) 0.06 0.36 0.82 0.55
ST3 51 0.42(0.28) 0.25 0.92 0.90 0.81
ST6 106 1.06(1.36) 0.11 0.82 0.87 0.85
ST11 220 0.19(0.31) 0.22 0.91 0.96 0.83
ST14 125 0.68(0.87) 0.42 0.58 0.67 0.58
ST18 305 0.18(0.16) 0.05 0.75 0.99 0.82
ST21 67 32(15.75) 0.00 1.00 1.00 1.00

greatly differs: for A1...A6, the percentage of defective

features does not reach the 25% (Neg/Pos > 3.00). The

most peculiar sets are A1 and A6 for which the per-

centage is below the minimal threshold for convergence

“4% lower bound” suggested by Khoshgoftaar et al.

(1997). In these sets, precision is very low. As we men-

tioned in Section 8.1, this is a direct consequence of the

Conversion Formula given the very high Neg/Pos ratio.

Our six feature sets, cover almost the full spectrum of

cases ranging between 6% (Neg/Pos =15.75) and 86%

(Neg/Pos =0.16) of defective features, never reaching

problematic cases. Namely, data sets with low quality

of fit were filtered out or re-analyzed with balance split-

ting (e.g., ST18). Overall, precision over our data sets

is higher and performance is better

Finally, we compare our findings with prediction
performance of studies on classification of faulty mod-

ules. As we mentioned, we can find many more studies

in code defect prediction. We are going to use them

only to draw a parallel without deriving any conclusion

for our specific case study. Hall et al. (2012) have per-

formed a deep and extensive survey on methods and

results in classification of faulty modules. The best re-

sults obtained with SVMs in Hall et al. (2012) report

precision ≤ 68%(on average 48%) and TPr ≤ 78%, (on

average 43%). In these regards, our results are better

for c = 1, as good as the best results but better in pre-

cision for c = 2, 3, and better on average for TPr and

better in absolute for precision for c = 4. Hall et al.

(2012) also reported that SVMs perform worse than

other models. They hypothesized that “SVMs are dif-

ficult to tune and the default Weka settings are not

optimal.” In this study, we did not directly use Weka

and we created our own scripts in R interfacing Weka

via the package RWeka. In our opinion, this helped us

to have a better command over parameter tuning.

23

11.2 What can predictions tell managers

In this section, we illustrate the case of ST6, c = 1, and

t = 1/3 to exemplify what information we can provide

to managers about their system behavior.

ST6 is the data set of an application that manages

software tools of cars (e.g., keep them updated) and

as such, is a pervasive application in the telemetry soft-

ware system. Namely, logs of ST6 produce 106 sequence

types defined on 10 different event types, Table 7, and

of which 18% with µ > 1 and 89% with ν > 1. With

c = 1, we investigate the sequences that have at least

one error (42%). On average, features are similarly dis-

tributed over G1(1) and G2(1) for both test and vali-

dation sets:

ST6 Pos% test Pos% validation Model

t=1/2 0.4 0.45 MP

t=1/3 0.39 0.49 MP

t=1/4 0.49 0.23 MP

t=1/5 0.45 0.33 MP

avg. 0.43 0.38 MP

We found that MP is the best predictor for any value

of the splitting parameter t and for t = 1/3 shows the

best prediction, Table 15. After feature reduction, the

number of features reduces from 12 to 7, the latter num-

ber still including both multiplicity, µ, and number of

users, ν, Table 7. As such, the number of unique event

types reduces from 10 to 5. In other words, there are

only 5 types of events that matter for the prediction

and frequent and distributed sequences are correlated

with errors.

In Table 19, we derive the confusion matrix on the

validation set (one-third of the original feature space)

using TPr = 83% and FPr = 11% as found in our

prediction analysis.

Table 19: Confusion matrix derived from MP predic-

tions on ST6, for c = 1, t = 1/3.

Pred. Pos Pred. Neg Total

Pos 14 3 17
82% 18% 100%

Neg 2 16 18
11% 89% 100%

Total 16 19 35
Percent 45% 54% 100%

We use the confusion matrix to predict the applica-

tion future behavior. Assuming that the behavior of the

application in the next three months is similar to the

one studied here, suppose that 1000 sequence abstrac-

tions are being isolated. We first assume that the ex-

pected Pos percentage is the one we found on test sets,

which equals to 39%. Per this percentage, we expect to

have about 610 not defective and about 390 defective

features. We apply MP and predict those features. Per

Table 19, we would expect the model to identify about

450 sequence types as defective (45% x 1000). Develop-

ers could inspect and test these types with more accu-

racy. We would expect they waste time on 67 sequence

types that are actually not defective (11% x 610). We

would predict the model to identify correctly about 320

sequence types that are actually defective (82% x 390),

but fail to identify 70 defective sequence types (18% x

390) that will cause future cost of inspection.

Based on this example, we can now read Fig. 7. The

figure plots TPr vs. FPr on validation sets for classifiers

with balance greater than 0.73 on test sets. The figure

plots all the models that contribute to the average in

Table 14 for any value of c. Each point in the plot corre-

sponds to one of such models. The diagonal represents

cases that give no information (i.e., the probability of a

predictor to be right to fire an alert is the same as it be-

ing wrong). Few points hit the curve. Almost all models

fall in the preferred area, which is the upper triangle.

This area includes models that have better probabil-

ity to fire a true alert than a false one. The plot also

evidences the circular area of preferred balance values

on prediction. As an example, the picture shows the

area with balance greater than 0.73 (i.e., the radius of

the circle is 0.38). In this case, the best MP models

in the area appear to be more efficient than RBF in

limiting the number of false positives whose presence

increases inspection costs (to inspect non-defective se-

quence types classified as defective). We can also iden-

tify the area in which models of Table 15 lie: they corre-

spond to points within a circle centered in (0,1) and ra-

dius 0.72. The figure also highlight the regions of higher

cost for as-yet undiscovered errors and higher cost of in-

spection and risk-adverse as described in Moser et al.

(2008) and explained in the case of ST6. Points with

low TPr determine higher cost to fix as-yet undiscov-

ered defective sequence types whereas high FPr indi-

cates higher cost due to wasted effort in inspecting se-

quence types that are predicted as defective, but they

are not. A significant number of predictors have very

low FPr. These predictors can by of any type and take

any value between 0.05 and 0.80 for TPr.

24

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
at

e

Balance greater than 0.73

Balance greater than 0.49

Equal chance

Higher cost to fix

undiscovered errors

Higher inspection costs

Predictor

MP

RBF

L

Fig. 7: Prediction performance of best models for quality of fit in case of feature reduction.

11.3 Answering Business Questions

In this section, we answer questions specific to our case

study and environment. The following discussion is meant

to exemplify the application of our approach and the in-

terpretation of our results in the system we considered.

BQ1. Can we use Support Vector Machines to build

suitable predictors?

Yes, in this case study, we were able to identify

SVMs that effectively fit the current system behav-

ior and predict with performance similar if not su-

perior to existing literature, Table 17.

Specifically, we were able to find SVMs with very

high precision and true positive rate both in fit-

ting the current and predicting the future behavior.

As we explained in Section 11.2, high precision and

true positive rate ensure correctness of the predic-

tions and limit the number of false negatives, i.e.

risk-adverse cases when defective sequences remain

as-yet undiscovered and no alarm goes off when it

25

should. With a low number of false negatives, Soft-

Car is likelier to avoid non-budgeted costs to fix

unexpected system failures.

On average, SVMs also show between 4% and 17%

of false positive rate. The rate decreases with the de-

fectiveness of a sequence (e.g. FPr = 4% for c = 4,

Table 15). In this case, the company wastes money

to inspect log sequences that are predicted defec-

tive, but, in fact, are error-free. Table 15 also indi-

cates that when the goal is to detect sequences with

a greater number of errors (i.e., c > 1), the waste

decreases, but in parallel non-budgeted costs to fix

as-yet undiscovered errors (i.e. false negatives) in-

creases of almost the same amount.

BQ2. Is there any Support Vector Machine that per-

forms best for all system applications? Is there any

machine that does it for different cut-off values?

Partially, yes. In the specific case of our system, the

classification problem results to be non-linear across

applications. Specifically, MP is a more stable pre-

dictor and performs better than RBF for more ap-

plications and across c values, Table 15. This is also

confirmed by the number of MP instances in the

left top circle of Fig. 7. On the other side, RBF is

more resilient after feature reduction across differ-

ent splitting sizes of the same feature set. Different

performance across feature spaces can be also ex-

plained by the different role that the correspond-

ing applications have in the system. Future work

will explore system behavior by sub-systems (e.g.,

telemetry platform, ERP system, etc.).

11.4 Answering Research Questions

RQ1. Is the amount and type of information carried by

a sequence enough to predict errors?

Yes. According to our analysis on full feature spaces

and in comparison with the baseline studies, our se-

quence abstraction allows to identify classifiers that

have very good prediction performance on individ-

ual applications and good performance across ap-

plications at different cut-off values, Tables 13 and

12 respectively. The only-good performance across

applications is manly due to the limited ability of

SVMs to predict actual defective sequence types

(highest true positive rate average = 0.41) on av-

erage. The performance is much better on individ-

ual applications, though. This confirms the findings

in Hall et al. (2012) where SVMs are used as fault

predictors for software modules.

RQ2. Does feature reduction increase the quality of

prediction?

Yes. Although on average classifiers increase their

prediction performance only a bit, on individual ap-

plications, performance increases much more and

predictions tend to be independent from the split-

ting triplets, their size, and the cut-off values.

RQ3. Does set balancing increase the quality of predic-

tion?

Partially, yes. Using k-splitting increases the classi-

fier convergence for those sets on which IG does not

reduce the feature space. When defective sequence

types are few, balancing sets is not possible. This

happens for high cut-off values as sequence types

with multiple errors are rarer or occur in specific

problematic applications. We also notice that with

artificial balancing RBF and MP are equally repre-

sented, Table 16.

11.5 Recommendations

Reflecting on our analysis, we give here few recommen-

dations that can guide the process to learn error pre-

dictors in the case of log sequences.

– Select classifiers with high quality of fit before any

prediction analysis. No control on how models fit

historical data produces predictors that do not rep-

resent the actual system behavior, but might have

excellent performance on new fresh data (validation

data). We have seen that no control on quality of

fit can produce completely different results: in Fig

5, L is the best model on test and validation sets

separately, but in Fig. 7, Tables 13, and 15 where

we select only models that have high performance on

test sets, MP and RBF are best predictors. Thus, we

can risk to suggest managers predictions that do not

reflect the actual system behavior. For this reason,

we also recommend researchers to report explicitly

performance of both quality of fit and generaliza-

tion.

– Filter feature spaces to increase prediction ability of

the classifiers. Comparing Tables 13 and 15 we see

a clear increase of the precision after feature reduc-

tion. With sequences that have at least one error,

predictor performance also increases while for se-

quences with greater number of errors (c > 1), true

positive rate slightly decreases while false positive

rate increases. This might be due to several reasons,

for example, to the fact that the number of defective

features decreases and more information is needed

to predict them.

26

– Report the Pos/Neg ratio for original feature spaces,

testing, and validation sets. Sets with different ratio

can have different precision with the same true pos-

itive rate and false positive rate. Namely, the Con-

version Formula of Zhang and Zhang (2007), Table

8, states that precision depends from true positive

rate, false positive rate, and Neg/Pos ratio. As we

discussed in Section 11.1, the formula also implies

that models learned on spaces with a very low per-

centage of defective features, must have a very low

false positive rate to reach high precision and true

positive rate. In addition, the ratio must be reported

both for test and validation sets, i.e. where perfor-

mance is actually computed. This enables a correct

comparison among different data sets and studies.

In case the ratio is not reported, precision, true pos-

itive rate and false positive rate need to be reported.

– Control for splitting size to determine the stabil-

ity of a classifier under the analysis set up. This

would control data brittleness. Tables 13, 15, and

16 shows that there exist feature spaces whose best

predictors change with splitting size. When possi-

ble, researchers must select predictions that do not

depend on splitting size.

12 Threats to Validity

In this study, we envisage the following threats to va-

lidity according to the general framework proposed by

Wohlin et al. (2012), which groups threats into four ma-

jor classes: internal, construct, conclusion, and external

validity threats. Some of the original threats do not ap-

ply here as this study is a retrospective analysis and

does not foresee any experiment.

Internal Validity Threats: The classification is not a re-

sult of factors of which we have no control.

Neglecting multiple-threads effects in the definition

of sequence types can bias the classification results.

Specifically, a sequence can contain events that be-

long to another thread and might not be related to

the event that is in “Error” state. In this case, the

information in a sequence type might result aug-

mented emphasizing the power of prediction of spe-

cific event types. Although there is no specific liter-

ature addressing this issue and given the very good

precision we got across and on individual applica-

tions, we are enough confident that, in our case,

even if the information were augmented it was not

significantly relevant for error prediction.

Construction Validity Threats: The construction of in-

put, output, and classifiers must reflect the classifi-

cation problem.

In terms of construction validity, sequences are built

under some assumptions derived by inspecting data

and validated by the SoftCar unit managers. Some

of the assumptions can lead to unavoidable threats,

though. We identify the following ones: Neglecting

time ordering in the definition of sequence abstrac-

tion can bias the classification results. Specifically,

sequence with no errors can map to defective se-

quence types and classified as such. This implies

that developers can waste more time in inspect-

ing defective sequences that the time predicted by

our models (e.g., MP). Such circumstances can only

happen when defective sequence types have multi-

plicity µ greater than one. On average, for the 25 ap-

plication of our study, the number of such sequence

types is less than 8% which is within the standard

acceptable tolerance threshold, but in any case must

be considered in the final cost computation.

Conclusion Validity Threats: The analysis design must

ensure statistical significance of the proposed solu-

tion.

We controlled for different threats in this class. We

provided a detailed descriptive analysis to allow draw-

ing conclusions. We used cross-validation and repe-

tition of the analysis across splitting triplets to avoid

the influence of analysis set up. We compare sta-

tistical techniques to select the more powerful on

the case study data and control for data brittleness.

We compared with baseline studies the accuracy of

our predictions and the method used in terms of

sequence abstraction, model used, analysis set up,

and results. We repeated our analysis on 25 different

data sets. Yet, we did not repeat the analysis with

different types of classifiers (i.e., Bayesian models)

that seem promising with software modules (Men-

zies et al. 2007b; Hall et al. 2012).

External Validity Threats: the analysis must ensure gen-

eralizability.

In term of external validity, this study, as any other

empirical single-case study, is subjected to the limi-

tation of the specific environment. Even though we

replicated the analysis over 100 original, heteroge-

neous data sets, these sets originated from the same

system. To our knowledge there exist only few stud-

ies in execution logs that classify errors on different

systems or system versions, e.g., (Shang et al. 2013).

Literature on system log analysis does not report

any of these studies, Table 2.

27

13 Future Work

Our future work will develop around two major points:

use of other promising classifiers and replication of the

study in other environments.

– Use of other promising classifiers. Other models have

been proven to be good predictor of faults in soft-

ware modules, like the Bayesian models (Hall et al.

2012). The ability of these models consists in being

more robust to the variation of data (Menzies et al.

2007b).

– Replication of the study in other environments. As

any empirical study on a single context, the results

of the application of our method are limited to the

specific environment of the study. As we mentioned,

a definition of sequence abstraction over system ver-

sions or across different systems is still an open re-

search field and is important in the automation of

log analysis. Future work will use data sets from

different software projects as well as other domains.

14 Conclusions

We proposed a method to mine system logs and learn

error predictors and applied it to a real telemetry sys-

tem. We defined log sequences and their abstraction

according to the information they carry. We created

feature spaces of sequence abstractions that we used

with three well-known SVMs. We input the SVMs with

full and filtered feature spaces to observe any change in

the accuracy of predictions. We introduced parametric

splitting to control for data size, curse of dimensionality,

and the distribution of features over the classification

groups.

We observed that 1) a simple abstraction based on

the information carried by event logs is enough to ob-

tain satisfactory predictions even across the applica-

tions of a system, 2) feature reduction helps identify

best performing classifiers independently from data ma-

nipulation used in cross-validation, confirming the re-

sults in Menzies et al. (2007b) and Hall et al. (2012),

and is crucial to determine key input variables for the

classification problem (Khoshgoftaar et al. 2010; Men-

zies et al. 2007b; Guyon and Elisseeff 2003), 3) data

splitting is beneficial to classification problems as “fea-

ture selection based on sampled data resulted in signif-

icantly better performance than feature selection based

on original data” (Khoshgoftaar et al. 2010), and 4)

parametric data splitting increments the diversity of

the sets and the resulting robustness of the classifica-

tion (Menzies et al. 2007b).

In the specific case of the telemetry system, we ob-

served that the classification problem of log sequences

is non-linear. Linear regression poorly performs over

data sets, and, in fact, best performs in case of fea-

ture spaces with few c-defective instances for which the

separation problem is more straightforward and can be

accomplished by a hyper-plane.

In our study, the classification analysis also shows

that when performance is set at high values for quality

of fit, the multilayer perceptron outperforms the radial

basis function and linear classifier. In this case, the ra-

dial basis function classifier is more resilient on data

sets with varying percentages of c-defective instances

and the multilayer perceptron performs the best on

data sets with balanced instance representatives or a

large number of c-defective instances as discussed in

Jayawardena et al. (1997). On average across the appli-

cations, we observe the predominance of the multilayer

perceptron classifier both for quality if fit and predic-

tion accuracy. We see that classifiers give the best pre-

diction for sequences that have more than three errors.

This result might be used to understand and forecast

the overall reliability of the system.

Our analysis also shows that 1) misclassification rate

alone is not a good measure to compare the overall per-

formance and the balance operational measure can be

used instead, 2) for comparison over different applica-

tions, the use of three measures, true and false posi-

tive rates and precision helps compare results on differ-

ent data sets, as suggested in Zhang and Zhang (2007);

Menzies et al. (2007a).

References

C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and
X. D. Koutsoukos. Local causal and markov blanket in-
duction for causal discovery and feature selection for clas-
sification part i: Algorithms and empirical evaluation. J.

Mach. Learn. Res., 11:171–234, March 2010. ISSN 1532-
4435.

E. Alpaydin. Introduction to Machine Learning. The MIT
Press, 2nd edition, 2010.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, USA, 1 edition, January 1996.

C. C. Chang and C. J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems

and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

D. R. Cox. Regression models and life-tables. Journal Roy.

Statist. Soc. Ser. B. Methodological, 34:187220, 1972.
G. Denaro and M. Pezzè. An empirical evaluation of fault-

proneness models. In Proceedings of the 24th International

Conference on Software Engineering, ICSE ’02, pages 241–
251, New York, NY, USA, 2002. ACM.

R. W. Featherstun and E. W. Fulp. Using syslog message
sequences for predicting disk failures. In Proceedings of the

24th international conference on Large installation system
administration, LISA’10, pages 1–10, Berkeley, CA, USA,
2010. USENIX Association.

28

R. A. Finan, A. T. Sapeluk, and R. I. Damper. Comparison
of multilayer and radial basis function neural networks for
text-dependent speaker recognition. In Neural Networks,

1996., IEEE International Conference on, volume 4, pages
1992 –1997 vol.4, jun 1996.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T.A. Longstaff.
A sense of self for unix processes. In Security and Privacy,

1996. Proceedings., 1996 IEEE Symposium on, pages 120–
128, 1996.

I. Fronza, A. Sillitti, G. Succi, and J. Vlasenko. Failure pre-
diction based on log files using the cox proportional haz-
ard model. In Proceedings of the 23rd International Con-
ference on Software Engineering & Knowledge Engineering

(SEKE’2011), Eden Roc Renaissance, Miami Beach, USA,

July 7-9, 2011, pages 456–461, 2011.
I. Fronza, A. Sillitti, G. Succi, T. Mikko, and Vlasenko J.

Failure prediction based on log files using random index-
ing and support vector machines. Journal of Systems and
Software, 86(1):2 – 11, 2013.

S. Fu and C. Z. Xu. Exploring event correlation for failure
prediction in coalitions of clusters. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing, SC ’07,
pages 41:1–41:12, New York, NY, USA, 2007. ACM.

S. Fu and C. Z. Xu. Quantifying event correlations for proac-
tive failure management in networked computing systems.
J. Parallel Distrib. Comput., 70(11):1100–1109, November
2010. ISSN 0743-7315.

E. W. Fulp, G. A. Fink, and J. N. Haack. Predicting computer
system failures using support vector machines. In Pro-
ceedings of the First USENIX conference on Analysis of sys-

tem logs, WASL’08, pages 5–5, Berkeley, CA, USA, 2008.
USENIX Association.

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson.
The misuse of the nasa metrics data program data sets
for automated software defect prediction. In Evaluation

Assessment in Software Engineering (EASE 2011), 15th An-

nual Conference on, pages 96 –103, april 2011.
K. C. Gross, V. Bhardwaj, and R. Bickford. Proactive detec-

tion of software aging mechanisms in performance critical
computers. In Software Engineering Workshop, 2002. Pro-
ceedings. 27th Annual NASA Goddard/IEEE, pages 17 – 23,
dec. 2002.

I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, 2003.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell.
A systematic literature review on fault prediction per-
formance in software engineering. Software Engineering,
IEEE Transactions on, 38(6):1276–1304, 2012.

A. W. Jayawardena, D. A. K. Fernando, and M. C. Zhou.
Comparison of multilayer perceptron and radial basis
function networks as tools for flood forecasting. IAHS

Publications-Series of Proceedings and Reports-Intern Assoc

Hydrological Sciences, 239:173–182, 1997.
W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and

Y. Zhou. Understanding customer problem troubleshoot-
ing from storage system logs. In Proccedings of the 7th Con-
ference on File and Storage Technologies, FAST ’09, pages
43–56, Berkeley, CA, USA, 2009a. USENIX Association.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An
automated approach for abstracting execution logs to ex-
ecution events. J. Softw. Maint. Evol., 20(4):249–267, July
2008. ISSN 1532-060X.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Au-
tomated performance analysis of load tests. In Software
Maintenance, 2009. ICSM 2009. IEEE International Con-

ference on, pages 125–134, 2009b.
J. Kent. Information gain and a general measure of correla-

tion. Biometrika, 70(1):163–173, 1983.
T. M. Khoshgoftaar and D. L. Lanning. A neural network

approach for early detection of program modules having
high risk in the maintenance phase. In Selected papers

of the sixth annual Oregon workshop on Software metrics,
pages 85–91, New York, NY, USA, 1995. Elsevier Science
Inc.

T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J.
Aud. Application of neural networks to software qual-
ity modeling of a very large telecommunications system.
Trans. Neur. Netw., 8(4):902–909, jul 1997. ISSN 1045-
9227.

T. M. Khoshgoftaar, Kehan Gao, and N. Seliya. Attribute se-
lection and imbalanced data: Problems in software defect
prediction. In Tools with Artificial Intelligence (ICTAI),

2010 22nd IEEE International Conference on, volume 1,
pages 137 –144, oct. 2010.

D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and
S. Park. Which crashes should i fix first?: Predicting top
crashes at an early stage to prioritize debugging efforts.
IEEE Trans. Softw. Eng., 37(3):430–447, May 2011. ISSN
0098-5589.

G. Le Gall, M.-F. Adam, H. Derriennic, B. Moreau, and
N. Valette. Studies on measuring software. Selected Areas

in Communications, IEEE Journal on, 8(2):234 –246, feb
1990. ISSN 0733-8716.

C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel:
A string kernel for svm protein classification. In Pacific
Symposium on Biocomputing, pages 566–575, 2002.

Z. Li, S. Zhou, S. Choubey, and C. Sievenpiper. Failure event
prediction using the cox proportional hazard model driven
by frequent failure signatures. IIE Transactions, 39(3):
303–315, 2007.

Y. Liang, Y. Zhang, X. Hui, and R. Sahoo. Failure pre-
diction in ibm bluegene/l event logs. In Data Mining,

2007. ICDM 2007. Seventh IEEE International Conference
on, pages 583–588, 2007.

Y. Liu, T. M. Khoshgoftaar, and N. Seliya. Evolutionary
optimization of software quality modeling with multi-
ple repositories. IEEE Trans. Softw. Eng., 36(6):852–864,
November 2010. ISSN 0098-5589.

D. Lo, H. Cheng, J. Han, S. C. Khoo, and C. Sun. Classi-
fication of software behaviors for failure detection: a dis-
criminative pattern mining approach. In Proceedings of
the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’09, pages 557–566,
New York, NY, USA, 2009. ACM.

H. Mannila, H. Toivonen, and V. A. Inkeri. Discovery of
frequent episodes in event sequences. Data Min. Knowl.
Discov., 1(3):259–289, January 1997. ISSN 1384-5810.

T. Menzies, A. Dekhtyar, J. S. Di Stefano, and J. Greenwald.
Problems with precision: A response to “comments on
’data mining static code attributes to learn defect predic-
tors’”. IEEE Trans. Software Eng., 33(9):637–640, 2007a.

T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans.
Softw. Eng., 33(1):2–13, January 2007b. ISSN 0098-5589.

R. Moser, W. Pedrycz, and G. Succi. A comparative anal-
ysis of the efficiency of change metrics and static code
attributes for defect prediction. In Proceedings of the 30th

international conference on Software engineering, ICSE ’08,
pages 181–190, New York, NY, USA, 2008. ACM.

J.C. Munson and T. M. Khoshgoftaar. The detection of fault-
prone programs. Software Engineering, IEEE Transactions

29

on, 18(5):423–433, 1992.
N. Nagappan and T. Ball. Use of relative code churn measures

to predict system defect density. In Proceedings of the 27th

international conference on Software engineering, ICSE ’05,
pages 284–292, New York, NY, USA, 2005. ACM.

N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: an empirical
case study. In Proceedings of the 30th international con-

ference on Software engineering, ICSE ’08, pages 521–530,
New York, NY, USA, 2008. ACM.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy. Change bursts as defect predictors. In Soft-
ware Reliability Engineering (ISSRE), 2010 IEEE 21st In-

ternational Symposium on, pages 309–318, 2010.
A. Oliner and J. Stearley. What supercomputers say: A study

of five system logs. In Dependable Systems and Networks,

2007. DSN ’07. 37th Annual IEEE/IFIP International Con-

ference on, pages 575–584, 2007.
A. Oliner, A. Ganapathi, and W. Xu. Advances and chal-

lenges in log analysis. Commun. ACM, 55(2):55–61, Febru-
ary 2012. ISSN 0001-0782.

A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in
system logs. In Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008), December 15-19,

2008, Pisa, Italy, pages 959–964, 2008.
E. Pinheiro, W. D. Weber, and L. A. Barroso. Fail-

ure trends in a large disk drive population. In
Proceedings of the 5th USENIX conference on File and

Storage Technologies, FAST ’07, pages 2–2, Berke-
ley, CA, USA, 2007. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267903.1267905.

A. A. Porter and R. W. Selby. Empirically guided software
development using metric-based classification trees. IEEE

Softw., 7(2):46–54, March 1990. ISSN 0740-7459.
J. R. Quinlan. Simplifying decision trees. International Jour-

nal of ManMachine Studies, 27:221–234, 1987.
B. Russo. Parametric classication over multiple samples.

In DAPSE13: International Workshop on Data Analysis

Patterns in Software Engineering, Proceedings of, collocated

with ICSE 2013, San Francisco, California, USA, May 21,
2013, 2013.

M. Sahlgren. An introduction to random indexing. In In

Methods and Applications of Semantic Indexing Workshop
at the 7th International Conference on Terminology and

Knowledge Engineering, TKE 2005, 2005.
F. Salfner, M. Schieschke, and M. Malek. Predicting failures

of computer systems: a case study for a telecommunica-
tion system. In Parallel and Distributed Processing Sympo-
sium, 2006. IPDPS 2006. 20th International, pages 8 pp.–,
2006.

W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Has-
san, and P. Martin. Assisting developers of big data ana-
lytics applications when deploying on hadoop clouds. In
Proceedings of the 2013 International Conference on Soft-

ware Engineering, ICSE ’13, pages 402–411, Piscataway,
NJ, USA, 2013. IEEE Press.

M. Steinder and A. S. Sethi. Probabilistic fault localiza-
tion in communication systems using belief networks.
IEEE/ACM Trans. Netw., 12(5):809–822, October 2004.
ISSN 1063-6692.

R. Valette, J. Cardoso, and D. Dubois. Monitoring manu-
facturing systems by means of petri nets with imprecise
markings. In Proceedings of the IEEE International Sympo-

sium on Intelligent Control, 1989, Albany, NY, USA, pages
233–238, Washington, DC, USA, 1989. IEEE Comput.
Soc. Press.

W. M. P. van der Aalst, B. F. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A. J. M. M. Weijters. Work-
flow mining: a survey of issues and approaches. Data
Knowl. Eng., 47(2):237–267, November 2003. ISSN 0169-
023X.

V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA,
1995.

R. Vilalta and S. Ma. Predicting rare events in temporal
domains. In Proceedings of the 2002 IEEE International

Conference on Data Mining, ICDM ’02, pages 474–, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

C. Wohlin, P. Runeson, M. Hoest, M. C. Ohlsson, B. Regnell,
and A. Wesslen. Experimentation in Software Engineering.
Springer Berlin Heidelberg, 2012.

Xi. Wu, V. Kumar, J. Ross Q., J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou,
M. Steinbach, D. J. Hand, and D. Steinberg. Top 10
algorithms in data mining. Knowl. Inf. Syst., 14(1):1–37,
December 2007. ISSN 0219-1377.

F. Xing, P. Guo, and M. R. Lyu. A novel method for early
software quality prediction based on support vector ma-
chine. In Proceedings of the 16th IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE ’05, pages
213–222, Washington, DC, USA, 2005. IEEE Computer
Society.

K. Yamanishi and Y. Maruyama. Dynamic syslog mining for
network failure monitoring. In Proceedings of the eleventh

ACM SIGKDD International Conference on Knowledge Dis-
covery in Data Mining, KDD ’05, pages 499–508, New
York, NY, USA, 2005. ACM.

H. Zhang and X. Zhang. Comments on ”data mining static
code attributes to learn defect predictors”. Software En-

gineering, IEEE Transactions on, 33(9):635–637, 2007.

Appendix

Figure 8 shows the MP topology optimal values (z-axis)

across the 25 data sets for one specific choice of the cut-

off value and splitting parameter.

30

l

m

h

2

4

6

8

Applications
Topology Pars

Value

(a) c=2, t=1/3

l

m

h

1.0

1.5

2.0

2.5

3.0

Applications
Topology Pars

Value

(b) c=2, k=2

Fig. 8: MP topologies (parameters k, l, and m) over ap-

plications. Cut-off c = 2. Topology values are obtained

on the training and test sets of a splitting triplet. Left:

t-splitting with t = 1/3. Right: k-splitting with number

of zero defects k = 2.

