
Advanced Programming

1

Run-Time Type Identification  
and Reflection

4/18/16 Barbara Russo

2

Which object do I draw?

4/18/16 Barbara Russo



public class Shapes {

    public static void main(String[] args) {

        ArrayList s = new ArrayList();

        s.add(new Circle());

        s.add(new Square());

        s.add(new Triangle());

        Iterator e = s.iterator();

        while(e.hasNext()) (Shape)e.next()).draw();

  }

} 
3

Which object do I draw?

4/18/16 Barbara Russo

• Since all Java classes are derived from Object, it’s easy 
to mix objects of different types together into a 
collection 

• For Example: retrieving objects from collections 
creates problem, because the actual type of the 
objects is lost 

• Solution: RTTI is used to reveal the true types at run 
time

4

Motivation

4/18/16 Barbara Russo



• RTTI lets you find the exact type of an object when 
you only have a reference to the base type

5

RTTI

4/18/16 Barbara Russo

• Consider the class hierarchy that uses polymorphism.  

• The generic type is the base class Shape, and the 
specific derived types are Circle, Square, and Triangle:

6

RTTI with polymorphism

4/18/16 Barbara Russo



• You can manipulate references to the base type 
(Shape, in this case) and 

• when extending the program by adding a new class 
(Triangle, derived from Shape, for example), the 
original code where the reference is used does not 
change

7

Goal of RTTI

4/18/16 Barbara Russo

• Casting 

• instanceof operator

8

RTTI examples

4/18/16 Barbara Russo



import java.util.*;
class Shape {
    void draw() {
        System.out.println(this + ".draw()");
    }
}
class Circle extends Shape {
     public String toString() { return 
"Circle"; }
}
class Square extends Shape {
     public String toString() { return 
"Square"; }
}

9

Casting

4/18/16 Barbara Russo

class Triangle extends Shape {d
     public String toString() { return 
"Triangle"; }
}                  

public class Shapes {

    public static void main(String[] args) {

        ArrayList s = new ArrayList();

        s.add(new Circle());

        s.add(new Square());

               

       Iterator e = s.iterator();

        while(e.hasNext()) (Shape)e.next()).draw();

  }

} 

s.add(new Triangle());

I just need to cast for the base, then 
polymorphism applies, e.g.,  

Shape x = new Circle()

e.next() returns an object of type Object  

When I add a new child the original  

code does not change

• In  

((Shape)e.next()).draw(); 

• we mean the next object is referenced by a reference variable of type Shape: 

Shape aShape 

• Then we pass an object of the children type at run time (the entry in the 
array) 

Shape aShape = new Circle(); 

• We have manipulated the base with casting and we have used polymorphism 
with the instantiation above

10

Interpreting the example

4/18/16 Barbara Russo



• In main( ), specific types of Shape are created and then added to an 
ArrayList. This is the point at which the downcast occurs because the 
ArrayList holds only Object references 

• when we access the ArrayList we just get Object: we have lost the 
specialisation of the objects in the array 

• Therefore next( ) naturally produces an Object reference (Object x) 

• So a cast to Shape is necessary  

• Down casting is the first example of RTTI, since in Java all casts are 
checked for correctness at run-time!

11

Interpreting the example

4/18/16 Barbara Russo

• (Downcasting) A conversion from type Object to type Shape requires a run-
time check to make sure that the run-time value is actually an instance of 
class Shape or one of its subclasses; if it is not, an exception is thrown 
(ClassCastException).  

Shape aShape= (Shape) getDog(); 

– if the returning object of getDog() is not a subtype of Shape, this throws 
an exception 

• (Upcasting) A conversion from type Shape to type Object requires no run-
time action; Shape is a subclass of Object, so any reference produced by an 
expression of type Shape is a valid reference value of type Object.  In this case, 
the reference variable points to the internal object of the object of 
Shape of type Object

12

Note on casting types

4/18/16 Barbara Russo



• instanceof operator

13

RTTI with 

4/18/16 Barbara Russo

• The operator instanceof compares an object to a 
specified type and returns true or false  

• In inheritance, as derived classes (Circle and 
Triangle) are a base class (Shape), it can be 
applied without casting 

• It returns false when given a null value or the  
object is not of a given class

14

Instanceof

4/18/16 Barbara Russo



class InstanceofTest { 
   public static void main(String[] args) { 
   
   Shape obj1 = new Shape(); 
   Shape obj2 = new Circle(); 
   
   System.out.println("obj1 instanceof Shape: " + (obj1 instanceof Shape));
   System.out.println("obj1 instanceof Circle: " + (obj1 instanceof Circle));
   System.out.println("obj1 instanceof MyInterface: " + (obj1 instanceof MyInterface)); 
   System.out.println("obj2 instanceof Shape: " + (obj2 instanceof Shape));
   System.out.println("obj2 instanceof Circle: " + (obj2 instanceof Circle));
   System.out.println("obj2 instanceof MyInterface: " + (obj2 instanceof MyInterface)); 
   } 
} 
class Shape{} 
class Circle extends Shape implements MyInterface{} 
interface MyInterface{} 

15

Example: instanceof()

4/18/16 Barbara Russo

Output:  

obj1 instanceof Shape: true  

obj1 instanceof Circle: false  

obj1 instanceof MyInterface: false  

obj2 instanceof Shape: true  

obj2 instanceof Circle: true  

obj2 instanceof MyInterface: true

16

instanceof()

4/18/16 Barbara Russo

Circle is a child of Shape so if I ask 
whether it is of type Shape I get true



class Shape {
    void draw() {
        System.out.println(“Shape”);
    }
}
class Circle extends Shape {
     public String drawCircle() {System.out.println("Circle”); }
}
class Square extends Shape {
     public String drawSquare() {System.out.println(“Square”); }
}
public static void draw(Shape o){
    if (o instanceof Circle){
        Circle circle = (Circle) o;
        o.drawCircle();}
    else if (o instanceof Square){
        Square circle = (Square) o;
        o.drawSquare();}
}

17

Do not use instanceof instead of polymorphism!

4/18/16 Barbara Russo

• With RTTI we need to have all the types we use at 
run time available at compile time 

• Many times this is not possible:  

• If we receive data that represents classes remotely, at 
compile time we do not have them  

• e.g. with Remote Method Invocation (RMI) we can call 
methods distributed on remote machines. Locally at 
compile time, we do not know the types used by these 
methods

18

RTTI vs reflection API



• With Reflection we do not need it 

• We will see some examples: 

• getClass() from Object 

• The class Class  

• The reflection API

19

Reflection

• The reflection API comprises the  

• java.lang.reflect package and  

• java.lang.Class

20

Reflection API

4/18/16 Barbara Russo



• Instances of the class Class represent classes and 
interfaces of an application at run time 
– There is an object of type Class for each class or interface 

whose objects exist at run time 
– Every array is reflected as a Class object that is shared by 

all arrays with the same element type and number of 
dimensions  

– The primitive Java types (boolean, byte, char, short, int, 
long, float, and double), and the keyword void are also 
represented as Class objects

21

java.lang.Class  
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html

4/18/16 Barbara Russo

• For every type of object, the Java virtual machine 
instantiates an immutable instance of java.lang.Class 

• It provides methods to examine the runtime properties 
of an object including its members and type 
information 

• Class also provides the ability to create new classes 
and objects

22

java.lang.Class



• Every time we write and compile a new class one object of 
Class is created  

• It is saved in a file .class and called with the same name of 
the class 

• At run time when we want to create a given object of the 
class, the JVM first checks if the object of Class has been 
already loaded 

• If not, the Loader searches for the file .class with the same 
name of the class in the file system

23

Understanding java.lang.Class

4/18/16 Barbara Russo

• If an instance of an object is available, then the simplest way to get its class is to 
invoke Object.getClass(): 

Class c = "foo".getClass();

• Returns the class String as object of Class 

import java.util.HashSet;

import java.util.Set;

Set<String> s = new HashSet<String>();

Class c = s.getClass();

• java.util.Set is an interface to an object of type java.util.HashSet. The value returned 
by getClass() is the class java.util.HashSet 

• The generic <Integer> is discarded (we will see the type erasure later on)
24

Getting the objects of Class



25

Example 

4/18/16 Barbara Russo

public class Animal {
    private String name;
    public Animal(String name) { this.name = name; }
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }
    public String toString() { return "<" + name + ">"; }

}
public class Cat extends Animal {

    public Cat(String name) {
  super(name);

    }
}
public class Dog extends Animal {
  public Dog(String name) {

       super(name);
      }

}

26

Example

4/18/16 Barbara Russo

import java.util.*;

public class BagOfObjects {
private ArrayList listOfObjects = new ArrayList();
private int noCats = 0;
private int noDogs = 0;
private int noOthers = 0;

public void add(Object o) {
if (o instanceof Cat)

noCats++;
else if (o instanceof Dog)

noDogs++;
else

noOthers++;
listOfObjects.add(o);

}

Using the operator instanceof we 
detect the true type of the object 
being added to the bag. This is fine as 
we are using instanceof explicitly and 
not with method overriding



27

Example

4/18/16 Barbara Russo

// continued class BagOfObjects…
public String toString() {

String res = "In total there are: \n";
res += " " + noCats + " cats,\n";
res += " " + noDogs + " dogs, and\n";
res += " " + noOthers + " others\n\n";
for (int i = 0; i < listOfObjects.size(); i++) {

Object t = listOfObjects.get(i);
res += "\tElement " + i + " is an object of " + t.getClass();
if (t instanceof Dog || t instanceof Cat) {

Animal a = (Animal) t;
res += "\t --- Name: " + a.getName() + " \n ";

}
else

res += "\n";
}
return res;

}
}

The method getClass(), inherited from 
Object indirectly accesses the class 
object of t in order to display its class 
name at run time

We check at run time the type of t, then we downcast it to 
Animal in a safe way as t is a reference of type Object . Then 
we apply polymorphism to get the right name of the children 
with getName() at run time.

28

Example

4/18/16 Barbara Russo

public class BagTest {

public static void main(String argv[]) {
BagOfObjects aBag = new BagOfObjects();

     aBag.add(new Object());
aBag.add(new Cat("Nusa"));
aBag.add(new Cat(“Garfield"));
aBag.add(new Dog("Bello"));

     System.out.println(aBag);
}

}



• The method toString() of Object is overridden by the 
toString() of BagOfObjects and  

• the console displays the nested information returned 
with the String “res”

29

Interpreting the example

4/18/16 Barbara Russo

• The static method forName(String s) of Class 
receives a string with the exact name of a class and 
returns a reference to the object of Class for that type   

Class.forName(“Shape”); 

• returns a reference to the object of Class of type Shape

30

Getting the objects of Class

4/18/16 Barbara Russo



• getName() returns the name of the entity (class, 
interface, array class, primitive type, or void) 
represented by this Class object, as a String 

this.getClass().getName()

31

Getting the name of objects of Class

• The class Field has methods to get attributes names, 
modifiers, and values at run-time 
getModifiers()

this.getClass().getDeclaredFields()

get(Object o)

getName()

32

Getting the attributes of a class



4/18/16 CASE

public final class Sample { 
private String fName; 
public Sample(String fName){
  super(); 
  this.fName = fName; 

}
public String toString() { 
  StringBuffer result = new StringBuffer();
  String newLine = System.getProperty("line.separator");    

      result.append( this.getClass().getName() );
  result.append( " Object {" ); 
  result.append(newLine); 

      java.lang.reflect.Field[] fields = this.getClass().getDeclaredFields(); 
  

      for ( int fieldId=0; fieldId < fields.length; ++fieldId ) { 
result.append(" "); 
try { 

result.append( fields[fieldId].getName() );     
            result.append(": "); 

result.append( fields[fieldId].get(this) ); 33

Example

get the value of the field  
in the “this” object

get the String name

… } catch ( IllegalAccessException ex ) { System.out.println(ex);}
 result.append(newLine); 

}
result.append("}"); 
return result.toString();

 } 

public static void main ( String[] arguments ) {
  Sample  sample = new Sample( “CIAO"); 

      System.out.println(sample); 
}

}
 An IllegalAccessException is thrown when an application tries to reflectively 

create an instance (other than an array), set or get a field, or invoke a method, 
but the currently executing method does not have access to the definition of 
the specified class, field, method or constructor.

4/18/16 34

Exercise cont.

Write the output!



Sample Object { 

 fName: CIAO 

}

4/18/16 35

Output


