
Exception Handling

Advanced Programming

11

Introduction
• Good programmer’s assumption:  

“Any code of significant length has bugs”

2

Techniques to code with quality
• Design code that can:

– Detect errors when they happen, without crashing the
program or, worse, the system (fault awareness)

– Recover from an error, giving the user a choice to
continue using the program and to save the greatest
possible amount of work already done (fault recovery)

– Keep on running consistently notwithstanding an error,
still performing activities that are not affected by the error
(fault tolerance)

3

Error handling
• All these techniques, from a programmer’s

perspective, are collectively known as error handling

4

– The best would be to have any portion of a program to
be fault tolerant, but

– usually we have to be happy if only the critical parts
of the code are fault tolerant (or, at least, able to
recover from an error), while the others are only fault
aware

5

Classic error handling
• Pre-OO era languages, as C or Pascal:

• Return an error code to the caller of a function,

• either using the return value of the function itself or an
additional output parameter

• Extremely error-prone technique, the user of a method (“the
caller”) must test the error code to see if the function had
performed flawlessly

• Programmers often forgot, or neglected, to test error codes

6Barbara Russo 5

Classic error handling
• Excess of locality

– sometimes the caller doesn’t have enough information to
recover from an error issued from a function

• Therefore the solution usually were:
– passing the error code further up the calling tree

– calling global error handling routines through goto-like
instructions

– using global variables

7Barbara Russo 6

Classic error handling
• Such programs were highly coupled and intermixed

– rather obscure, i.e. extremely difficult to read,
unless very well documented

• The concept of exception

8Barbara Russo 7

The concept of exception

Barbara Russo 89

The concept of exception
• In a very general sense, an exception is any event that

does not belong to the normal flow of control of a
program

• An exception could be an error…

– e.g. running out of memory, a wrong argument value, etc.

10Barbara Russo 9

The concept of exception
• … But this is not always the case, an exception could

also be:

– an unusual result from a math computation routine

– an unexpected (but not wrong) request to an operating
system

– the detection of an input from the “external world” (say an
interrupt request, a login request, a power shortage, etc.)

11Barbara Russo 10

Exceptions in OO languages
– In OO languages, exceptions are objects, i.e.

instances of some class

– They are used to pass information about unusual events
to and from the different parts of the program that are
design to work with them

12

Hierarchy of exception classes in Java

Barbara Russo 12

Object

Throwable

Error Exception

RuntimeException
Others

unchecked exceptions

exceptions

Throwing Exceptions in Java
• Every time a piece of code detects an unusual event it

can throw an exception to signal this event to its
caller(s), or — more generally — to the outer
dynamic scopes (more on this later on)

14Barbara Russo

Ways to throw exceptions
• There are two possible ways to throw an exception

– Directly for a malfunctioning piece of code enclosed in a try
block

– Through a so-called throw statement, i.e. the keyword
throw followed by an object of a class derived (directly or
indirectly) from class java.lang.Throwable

15Barbara Russo

throws in the method signature
• As throwing and catching exceptions affect the way a

function relates to other functions, a throws statement
followed by the type of the exception can be included
in the method declaration

16Barbara Russo

throws in the method signature
• For each checked exception,
• if you do not include in a method/constructor signature

a “throws” clause for that exception type (or a
superclass of that exception type)

• a compile-time error occurs

Barbara Russo 16

Example

void move(Train train) throws T1, T2;

• The throws clause allows the compiler to ensure that
code for handling such error conditions has been
included

18Barbara Russo

Example

Barbara Russo 18

public class NegativeArgument extends Throwable { }

public class A {

public void compute(int x) throws NegativeArgument {
if (x < 0) throw new NegativeArgument();

}

}

Here a new object is instantiated; then it is thrown as exception, to
indicate that the argument supplied to the method has a wrong value

Exceptions specification in the method
declaration is mandatory for checked
exceptions in Java

NegativeArgument is a trivial class (is empty!), only used to instantiate exceptions

Exception handlers
• Thrown exception follow an alternative path of

execution, until they are caught somewhere by special
constructs, called exception handlers

• Exception handlers are sort of functions, having one
and only one argument, whose type must
(substantially) match that of the exception being
caught

• Exception handlers are specified in catch statement

20Barbara Russo

Try-catch statements
• Any time we want to provide handlers for some kinds

of exceptions, we must enclose the code that may
throw the exceptions in a try-block

• Right after the try-block we can specify the handlers,
using the keyword catch followed by an argument list
(as if it were a function)

• Error handlers must have just one argument, and it
must be of the same type of the exception being caught

21Barbara Russo 21

finally clause in Java (1/2)
• In Java the try-catch statement can be provided with a

finally clause after all the handlers

• A finally clause is made of the keyword finally
followed by a block

• The code inside that block is always executed, no
matter if the code in the previous try-block throws an
exception or not

22Barbara Russo 22

finally clause in Java
• If it does not throw an exception, then the finally-

block is executed just after the try-block has ended

• If it does, then …

– If the exception is handled by a previous catch-clause, the
finally-block is executed just after the exception has been
handled

– If there is no handler matching the exception, the finally-
block is executed just before stack unwinding (see later)
resumes and looks for an handler in an outer dynamic
scope

234/10/14 Barbara Russo 23

Question
• Is the following code legal?

try {

} finally {

}

24

Solution: yes finally will be always executed

Question
• Is there anything wrong with this exception handler as

written? Will this code compile?
try {

} catch (Exception e) {

} catch (ArithmeticException a) {

}

25

Solution: the first catch catches all the types of exception the
second will be never reached

Question
1. int[] A;

 A[0] = 0
2. A program is reading a

stream and reaches the end of
stream marker

3. Before closing the stream and
after reaching the end of
stream marker, a program
tries to read the stream again

26

Match each case in the list

on the left with an item below:

 __checked exception

 __compile error

 __no exception

Answers:

1 (compile error). The array is not initialised

2 (no exception)

3 (checked exception)

public void writeList() {
 PrintWriter out = null;
 try {
 System.out.println("Entering" + " try statement");
 out = new PrintWriter(new FileWriter("OutFile.txt"));
 for (int i = 0; i < SIZE; i++) {
 out.println("Value at: " + i + " = " + list.get(i));
 }
 } catch (IndexOutOfBoundsException e) {
 System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());
 } catch (IOException e) {
 System.err.println("Caught IOException: " + e.getMessage());
 } finally {
 if (out != null) {
 System.out.println(“Closing PrintWriter");
 out.close();

 }
 else {
 System.out.println("PrintWriter not open");
 }

 }

}
27

Stack unwinding mechanism

28Barbara Russo

Semantics of Throwing Exceptions
• When a throw statement is executed,
• the normal flow of control is interrupted, and
• a special mechanism, known as stack unwinding,

takes place

29Barbara Russo

Semantics of Throwing Exceptions
• Stack unwinding is used to determine where to

resume execution

• To understand where the exception handling
mechanism resumes execution after a throw, we must
examine the concept of dynamically enclosing scope

30

Dynamically enclosing scopes
• A simple definition of dynamically enclosing scope

(DES) :

– A dynamically enclosing scope is any scope whose
activation record lies on the stack at the moment when that
statement is executed or equivalently

– Any executable code block which has called the function
where the statement is placed, directly or indirectly

31Barbara Russo

Example of dynamically enclosing scopes

32Barbara Russo

pseudo-code

class A {
void f() {

for (/*…*/) {
statement;

}
}

}

void g(A anA) {
anA.f()

}

void h() {
{

A anotherA;
g(anotherA);

}
}

These are always DES for “statement”: anytime
“statement” is executed, their ARs are on the stack

This is a DES for “statement” only when
“statement” is executed because g was called

This is a DES for “statement” only when
“statement” is executed because h was called

Stack unwinding mechanism
• Throwing an exception causes the normal flow of

control to stop and execution is diverted on an
alternative path

• Execution resumes in an exception handler whose
argument type matches that of the exception thrown

• If there is no such handler, the exception is passed to
the system, which usually issues a run-time error

33

Stack unwinding mechanism
• To find the right handler to call, if any, the stack

unwinding mechanism must find the nearest try-block
dynamically enclosing the throw statement

– If this try-block has a handler whose argument matches the
thrown exception, then its body is executed, after passing the
exception as an argument

– if there is no such handler, the stack unwinding resumes, and
it searches outwards the next dynamically enclosing try-
block for a matching handler (and so on, recursively, until
the exception is handled or the system issues an error)

34Barbara Russo

Stack unwinding mechanism
• After the execution has entered the body of the

handler, the exception itself is considered handled, i.e.
the stack unwinding mechanism stops

• This process of reaching out for outer dynamically
enclosing scopes is also known as exception
propagation

– An exception propagates out to the outer dynamic scopes
until it is properly handled or it reaches the system

35Barbara Russo

Exception Propagation
• If an exception is never caught anywhere in the

hierarchy, the Java interpreter will print an error
message, the stack trace and exit

• To do this, it invokes the default handler

36

Default handler
• Any exception that is not caught by your program will

ultimately be processed by the default handler

• It is provided by the JRE

• The default handler displays a string describing the exception,
prints a stack trace and terminates the program, e.g.,:

Java.lang.ArithmeticException: / by zero

 at Dates.main(Dates.java:4)

37

Stack Trace
• Stack trace from the default exception handler shows

the entire call stack

• The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the
error

38

Throwable.getStackTrace()
• Analysing the flow of program logic, step by step is

called tracing

• Throwable.getStackTrace() tells you where you are
in the code, and how you got there

• It lets you put the name of the current method in error
messages, or the name of the caller of the current
method, or its caller etc.

• see LECT7 code
39

Throwable t = new Throwable();
StackTraceElement[] es = t.getStackTrace();
for (int i=0; i<es.length; i++){
 StackTraceElement e = es[i];
 System.out.println(" in class:" + e.getClassName()
 + " in source file:" + e.getFileName()
 + " in method:" + e.getMethodName()
 + " at line:" + e.getLineNumber()
 + " " + (e.isNativeMethod() ? "native" : ""));
 }

40

Notes
• When you use multiple catch statements, the exception

subclasses must come before any of their superclasses
– This is because a catch statement that uses a superclass will

catch exceptions of that type plus any of its subclasses.

– Thus, a subclass would never be reached if it came after its
superclass.

– Unreachable code is an error (compile–time).

– To fix the problem reverse the order of catches

25/03/15 41

Notes
• If we attempt to throw and exception from a method

without declaring throws or sounding it with try/catch,
it will not compile:

42

public static void compute() throws Exception{
throw new Exception();

}

public void compute(){
throw new Exception();

}

public void compute(){
try {

throw new Exception();
} catch (Exception e) {

e.printStackTrace();
}

}

x

The statement assert

• The statement assert throws an exception of type
AssertionError

– We do not need the statement throw or to catch exc.

43Barbara Russo

 public class AssertionExample {
static void removeNode(Object x) {

/*Try and Catch blocks are not required because
the exception is already handled with the statement assert */

ArrayList myVector = new ArrayList();

assert(myVector.size()!=0);
myVector.remove(x);

}
public static void main(String[] args){

 Object myObject = new Object();
AssertionExample.removeNode(myObject);

}
}

Notes
• Like all uncaught exceptions, assertion failures are

generally labeled in the stack trace with the file and
line number from which they were thrown

• Assertion raise EssertionError exceptions (child of
Error)

44

Notes
• In some cases assert may be expensive to evaluate.

For instance,

– A method to find the minimum element in an
unsorted list and an assertion verifies that the
selected element is indeed the minimum

• Use assert when the computation is at least as
expensive as the work done by the method itself

45

Disabling assertions
• Assertions can be enabled or disabled when the

program is started, and are disabled by default

• Once disabled, they are essentially equivalent to empty
statements in semantics and performance

• Thus, do not disable them or use assertions in cases
that can

46

When using assertions

• Internal Invariants (with switch statements)

• Control-Flow Invariants (if conditions)

• Preconditions and Postconditions

47

When using assertions
• As a rule of thumb, use assertions when the

expressions contained in them are free of side
effects:

• evaluating the expression should not affect any state
that is visible after the evaluation is complete.

48

When not to use assertions
• Do not use assertions to do any work that your

application requires for regular operation!

• Because assertions may be disabled, programs must
not assume that the boolean expression contained in an
assertion will be evaluated

49

Example
• Remove all of the null elements from a list names, and

knew that the list contained one or more nulls. It would
be wrong to do this:

assert names.remove(null);

• It works fine when asserts are enabled, but would fail
when they were disabled, as it would no longer remove
the null elements from the list

50

Example
• The correct code is to perform the removal before the

assertion and then assert that the removal succeeded:

boolean nullsRemoved = names.remove(null);

assert nullsRemoved;

51

Enabling and disabling assertion
• Enable in package it.unibz.inf

java -ea:it.unibz.inf... Dates

• Disabling in class it.unibz.inf.Calendar

java -da:it.unibz.inf.Calendar Dates

52

Enabling assertion in Eclipse

53

Java checked and unchecked
exceptions

54Barbara Russo

Checked and unchecked exceptions
• As we said, every exception class must be derived

from java.lang.Throwable

• Any exception derived directly from Throwable or its
derived class Exception is known as checked
exception

• Any exception derived from the following other two
subclasses of Throwable is called unchecked:

– java.lang.RuntimeException (derived from
java.lang.Exception)

– java.lang.Error (derived directly from Throwable)

55Barbara Russo

Hierarchy of exception classes in Java

56Barbara Russo

Object

Throwable

Error Exception

RuntimeException
Others

unchecked exceptions

checked
exceptions

Defining Exceptions
• A programmer can define her/his own exceptions,

both

– Runtime Exception

– Error (not advisable) and

– Checked Exception

57Barbara Russo

Declaring Exceptions in methods
• Any method that causes an exception to occur must

– either catches the exception (with try, throw or
assert followed by catches)

– or specifies the type of the exception (or a
superclass of it) with a throws clause in the method
declaration (checked exception)

58

Unchecked exceptions
• Unchecked exceptions are not required to be caught by a

method or do not require to declare “throws” in the method
signature e.g.,:
– ArrayIndexOutofBoundsException

– NullPointerException

59

When to use them
• If a client can reasonably be expected to recover from

an exception, make it a checked exception.

• If a client cannot do anything to recover from the
exception, make it an unchecked exception.

60

Java unchecked exceptions
• Unchecked exceptions impose no extra constraint in

writing the code and are thrown by the JRE
• You can define your own unchecked exception classes

by subclassing Error or RuntimeException

61Barbara Russo

Error
• Error is a base class for all the exceptions thrown by

the system (operating system, virtual machine, etc.) so
it is not advisable to use it as a superclass for user-
defined exceptions

62

RunTimeException
• RuntimeException is a base class for exceptions that

impose an unbearable burden on the programmer, if
they were implemented as checked exceptions

63

Runtime exceptions
• Runtime exceptions can occur anywhere in a program,

and in a typical one they can be very numerous

• Having to add runtime exceptions in every method
declaration would reduce a program's clarity

• Thus, the compiler does not require that you catch or
specify runtime exceptions (although you can).

64Barbara Russo

Java checked exceptions
• As we said, any attempt to violate the contract

provided by the exceptions' specification will cause a
compile-time error

• A programmer can define her/his own checked
exception classes by subclassing Throwable (not
advisable) or (better) Exception

65Barbara Russo

Examples
• Checked exception: java.io.IOException
• Example. Suppose an application prompts a user for an input file

name, then opens the file by passing the name to the constructor of
java.io.FileReader

• Normally, the user provides the name of an existing, readable file, so
the construction of the FileReader object succeeds, and the execution
of the application proceeds normally

• But sometimes the user supplies the name of a nonexistent file, and the
constructor throws java.io.FileNotFoundException

• A well-written program will catch this exception and notify the user of
the mistake, possibly prompting for a corrected file name

66Barbara Russo

Examples
• Unchecked: java.lang.Error
• These are exceptional conditions that are external to the application,

and that the application usually cannot anticipate or recover from.
• Example. Suppose that an application successfully opens a file for

input, but is unable to read the file because of a hardware or system
malfunction

• The unsuccessful read will throw java.io.IOError
• An application might choose to catch this exception, in order to notify

the user of the problem — but it also might make sense to print a stack
trace and exit

67Barbara Russo

Examples
• Unchecked: java.lang.RuntimeException
• These are exceptional conditions that are internal to the application,

and that the application usually cannot anticipate or recover from

• These usually indicate programming bugs, such as logic errors or
improper use of an API.

• For example, consider the application described previously that passes
a file name to the constructor for FileReader

• If a logic error causes a null to be passed to the constructor, the
constructor will throw NullPointerException

• The application can catch this exception, but it probably makes more
sense to eliminate the bug that caused the exception to occur

68Barbara Russo

Built-In Exceptions
• You can check whether they are checked or unchecked

exception from their ineheritance tree

69Barbara Russo 46

Since SDK 7
• Three exception features:

– try-with-resources

– multi-catch, and

– precise re-throw

70

try-with-resources
• To close a file that we do not need anymore we call

close()
– Forgetting to close a file can result, for example, in memory

leaks (i.e. a failure in a program to release discarded
memory, causing impaired performance or failure.)

• The try-with-resources statement automatically closes
a file when it is no longer needed.
– In this approach, no explicit call to close() is executed

25/03/15 71

try-with-resources statement
• It is a try statement that declares one or more

resources.
– A resource is an object that must be closed after the program

is finished with it

• It ensures that each resource is closed at the end of the
statement.
– Any object that implements java.lang.AutoCloseable, which

includes all objects which implement java.io.Closeable, can
be used as a resource

25/03/15 72

Example from Java Tutorial
static String readFirstLineFromFile(String path) throws IOException {

 try (BufferedReader br =new BufferedReader(new FileReader(path))) {

 return br.readLine();

 }

}

25/03/15 73

With traditional try
• We use a finally block to ensure that a resource is

closed regardless of whether the try statement
completes normally or abruptly or use

25/03/15 74

Prior SDK 7
static String readFirstLineFromFile(String path) throws IOException {

 BufferedReader br = new BufferedReader(new FileReader(path));

 try {

 return br.readLine();//it throws an IOException

 } finally {

 try{

 if (br != null) br.close(); //it throws another IOException

 }catch(IOEXception e){System.out.println(“Error for closing file”)}

 }

}

75

close() can still throw an IOException
suppressing the exception that eventually is
thrown by readFirstLineFromFile() method; with
traditional try and catch (as here) the method
exception is lost.
With the try-with-resource (as previous slide) the
exception of the method is suppressed and one
can get it back by calling getSuppressed()

multi-catch
• Multi-catch feature allows two or more exceptions to

be caught by the same catch clause
– separate each exception type in the catch clause with the OR

operator

– Each multi-catch parameter is implicitly final (not need to
use final)

25/03/15 76

Example

25/03/15 77

Cleaner code
catch (IOException) {

 logger.log(ex);

 throw ex;

}

catch (SQLException ex) {

 logger.log(ex);

 throw ex;

}

78

Cleaner code
catch (IOException|SQLException ex) {

 logger.log(ex);

 throw ex;

}

79

Precise re-throw after Java SE 7
• There are times when you want to re-throw an

exception that you have handled

25/03/15 80

Example wrapping
public class ExampleExceptionRethrowBeforeSE7{
 public static void demoRethrow() {
 try {
 throw new IOException("Error");
 }
 catch(IOException exception) {
 //Do some handling and then re-throw:
 throw new RuntimeException(exception);
 }
 }
 public static void main(String[] args) {
 try {
 demoRethrow();
 }
 catch(RuntimeException exception) {
 System.err.println(exception.getCause().getMessage());
 }
 }
}

81

Issues
• The problem with the “Example wrapping” is that it is

not really re-throwing the original exception

• It is wrapping it within another exception

• The developer needs to remember that an exception
has been wrapped into another one: the code does not
know it!

• For example we use “getCause()”

25/03/15 82

Example two children
static class FirstException extends Exception {

public FirstException(String message) {
super(message);

}
}
static class SecondException extends Exception {

public SecondException(String message) {
super(message);

}
}
public static void rethrowException(String exceptionName) throws Exception {
 try {
 if (exceptionName.equals("First")) {
 throw new FirstException();
 } else {
 throw new SecondException();
 }
 } catch (Exception e) {
 throw e;
 }
 }

83

Issues
• When the method is called the developer does not

know which exception has been raised

• We cannot use getCause() as methods are static and we
always get the message of the parent class

public static void main(String[] args){
try {

rethrowWrapping();
}
catch(RuntimeException exception){

System.err.println(exception.getMessage());
}

}

84

Precise re-throw after Java SE 7
• When you declare one or more exception types in a

catch clause, and re-throw the exception handled by
this catch block, the compiler verifies that the type of
the re-thrown exception meets the following conditions

– the associated try block can throw it,

– It is not handled by a preceding catch clauses, and

– It is a subtype or supertype of the catch parameters

85

After Java SE 7
• The compiler allows you to specify the exception

types in the throws clause in the method declaration
because you can re-throw an exception that is a
supertype of any of the types declared in the throws

86

Example: wrapping
public class ExampleExceptionRethrowSE7{
 public static demoRethrow() throws IOException {
 try {
 throw new IOException("Error");
 }
 catch(Exception exception) {
 // Do some handling and then re-throw:
 throw exception;
 }
 }

 public static void main(String[] args){
 try {
 demoRethrow();
 }
 catch(IOException exception) {
 System.err.println(exception.getMessage());
 }
 }
}

87

• checked exceptions that the
associated try block throws,

• are not handled by a
preceding catch clause, and

• are a subtype or supertype
of the parameter

Example: two children
public void rethrowException(String exceptionName)
 throws FirstException, SecondException {
 try {
 if (exceptionName.equals("First")) {
 throw new FirstException();
 } else {
 throw new SecondException();
 }
 }
 catch (Exception e) {
 throw e;
 }
 }

88

Ex. on exception management in Java (1/2)

89Barbara Russo 49

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

class NegError extends RuntimeException {
}

public class SlideCodeTest {

static int neg(int x) {
if (x < 0)

throw new NegError();
return -x;

}

// continued on next page…

Here the exception class is derived
from RuntimeException (derived from
Throwable), instead of being derived
directly from Throwable. This to avoid
checked exception.

Here we use the reference returned
by operator new as the operand of
the throw clause.

There is no need to include throws in
the declaration of the method as it is an
unchecked exception

Ex. on exception management in Java (2/2)

90Barbara Russo 50

//continues
public static void main(String[] argv) {

int i = 0;
boolean repeat = false;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
do {

repeat = false;
try {

i = Integer.parseInt(in.readLine());
i = neg(i);

}
catch (NegError eNeg) {

System.out.println("\nYou entered a negative number! - Retry.\n");
repeat = true;

}
catch (IOException e) { }

}
while (repeat);
System.out.println("result = " + i);

}
} // end of class

We had to put this statement
inside the try block because
readLine can issue a checked
exception (see API of
BufferedReader readline())

Since readLine can issue a checked
exception (IOException), we had
to provide a suitable handler, but
it’s empty for simplicity

With no IOException and negative i

91Barbara Russo 51

AR(neg(int i))

SAR(do)

Stack Heap

Address
1900

Object of class
BufferedReader

AR(main)

Address
2000

Object of class
InputStreamReader

SAR(try())

SAR(catch())

Address
2100

Object of class
NegError

Area of Statics

…..

x-1

eNeg@2100

Another example

92Barbara Russo 52

class Natural {
 public int val;
 Natural() {

val = 0;
 }

 Natural(int i) throws ArithmeticException {
 if (i < 0) {

 val = 0;
 throw new ArithmeticException("A Natural cannot be negative!");

 }
 val = i;

 }
 public String toString() { return Integer.toString(val); }

}

Here the exception class is derived from
RuntimeException but we want the
compiler to check the exception anyway

Another example

93Barbara Russo 53

public class SimpleExceptions {
 public static void main(String args[]) {
 Natural a, b, c, d, f;
 a = new Natural(); b = new Natural(2);
 System.out.println("The value of a is " + a.val);
 System.out.println("The value of b is " + b.val);
 c = null;
 try {

 c = new Natural(1);
 }
 catch(ArithmeticException e) {

 System.out.println("Raised exception: " + e);
 }
 System.out.println("The value of c is:" + c.val);
 d = null;
 try {

 d = new Natural(-1);
 }
 catch(ArithmeticException e) {
 System.out.println("Raised exception: " + e);
 }
 System.out.println("The value of d is:" + d.val);
 f = new Natural(-3);
 System.out.println("The value of f is:" + f.val);
 }
}

Output
The value of a is 0
The value of b is 2
The value of c is:1
Raised exception: java.lang.ArithmeticException
The value of d is:null
java.lang.ArithmeticException: A Natural cannot be
negative!
 at Natural.<init>(SlideCodeTest.java:11)
 at SlideCodeTest.main(SlideCodeTest.java:45)
Exception in thread "main"

It is a run-time exception.
Here is not caught so it
propagates out of the DES

Notes
• One can declare “throws” in the class method without

declaring it in the interface implemented by the class

• For example, the class constructor “throws” an
exception but an interface does not have a constructor
so cannot declare any “throws” for a constructor

94Barbara Russo 54

Notes
– If the parent class throws an exception in the

constructor, then the subclass must have a constructor
(an empty one is good enough) to evidence the
propagation of the exception.
class A {

A() throws Exception { /* something */ }

}

class B extends A {

B() { /* do nothing */ }

}

95Barbara Russo 55

Exercise
• Complete the exercise on Natural Number by adding in

the following methods:

– divide

– subtract

• Each method should throw appropriate exceptions to
signal the occurrence of errors

96Barbara Russo 56

