Regular Expressions

Advanced Programming

Regular expression

e Regular expressions are a way to describe a set of
strings based on common characteristics shared by

each string in the set

e They can be used to search, edit, or manipulate text
and data.

Source: Oracle documentation

30/05/15 Barbara Russo

What we need

e One must learn a specific syntax to create regular

expressions in addition to the Java syntax

e Then one must use the Pattern and Match classes of

regex package to store and manipulate the expressions

30/05/15 Barbara Russo

What 1s a regular expression?

Examples:

Date in format yyyy-MM-dd
(19]20)\d\d([- /.])(O[1-9]1[012])\2(0[1-9]|[12][0-9]3[01])
Roman Number Regexp

A(i:(2=[MDCLXVI])(M{0,3))((C[DM])|(D?2C {0,3}))?(X[LCI(L?XX {0,2})[L)?
(ALVXDI(V2(IT{0,2}))V)?)$

more examples: http://myregexp.com/examples.html

30/05/15 Barbara Russo

Exercise

o Apply the reg expression for the date YYYY-MM-DD
(19120)\d\d([- /.]D(O[1-9]|1[012]\2(0[1-9]|[12][0-9]|3[O1])
* to the text

1900-01-01 2007/08/13 1900.01.01 1900 01 01
1900-01.01 1900 13 01 1900 02 31

30/05/15 Barbara Russo 5

What 1s a regular expression?
» Aregular expression is a string of characters that

describes a character sequence

e It is comprised of

characters

sets of characters

wildcards

quantifiers

full list at http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

or at http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

30/05/15 Barbara Russo 6

Characters

o Characters are matched as-is. A pattern consisting in “xy”

applied to a text “xy” returns Xy or a pattern “Java” applied to
text “Javaj” returns “Java”

o Characters like carriage return, new line are specified with the
backslash escape sequence
e \n matches new line

¢ \b matches word start

30/05/15 Barbara Russo

Set of characters

o Identified by square brackets [] — matches a single character inside the
square

[ecl] matches “c” and “1” in the text “cloud”

- note that the match is on a single character of the word per time when a

match is found, it restarts on the next character of the text

[123] matches “3” and “1” in the text “ab31”

e Using in addition * the expression matches the characters except the one
specified:

[“ecl] matches “0”, “u”, and “d” in “cloud”

[1-9] identifies a range of digits [a-z] a range of letters and [A-Z] range of
capitalized letters

30/05/15 Barbara Russo

wildcard .”

e it matches any character including spaces

30/05/15 Barbara Russo 9

Number of matches

e + 1 or more — after the character

x+ matches in text “xxx”’ x, XX, and Xxx

e *(or more

x* matches in text “xxx”’ none, “x”, “xx”, and “xxx”
e ?70o0r1

X? matches 1n text “xxx”’ none and “x”’

{n,m} matches between n and m (greedy = the longest)

30/05/15 Barbara Russo 10

Groups

e Capturing groups are numbered by counting their

opening parentheses from left to right.

the expression ((A)(B(C))) have four groups:
I ((A)B(Q))

2 (A)

«3 (BO)

4 (O

30/05/15 Barbara Russo 11

Group number

e Group zero always stands for the entire expression.

e During a match, each subsequence of the input

sequence that matches such a group is saved.

» The captured subsequence may be used later in the
expression, via a back reference (\1), and may also be
retrieved from the matcher once the match operation is

complete.

30/05/15 Barbara Russo 12

Example

-
(1@%(1 /.1)(0[1-9]/1 012]@\20[19 12][0-9]13[01])

- mm

30/05/15 Barbara Russo 13

Exercises

» match AB|BC in text “ADBC ABC DABC”

e match ABC|BC 1n the text “ADBCBCBC”

30/05/15 Barbara Russo 14

ABIBC

ADC (BC

Special characters in Java

» A character preceded by a backslash (\) is an escape

sequence and has special meaning to the Java compiler

e Thus to match the word (Hello) we need to use

e \\(Hello)\\ and not \(Hello)\ as \(and \) have been

already reserved for the Java syntax

30/05/15 Barbara Russo

16

java.util.regex package

e Most relevant classes Pattern and Matcher
 Pattern accepts the regular expression

e Matcher matches the regular expression on a text

30/05/15 Barbara Russo 17

Pattern

» A compiled representation of a regular expression

It 1s final

It implements the interface Serializable

It has only static fields

It has the method compile() that transforms a regular
expression into a pattern that can be used by the

Matcher. It returns a Pattern object

30/05/15 Barbara Russo 18

How to match — three steps

First way:

create an object of type Pattern: compile() from Pattern

create an object of type Matcher: matcher() from

Pattern

match the pattern on the text: matches() from Matcher

30/05/15 Barbara Russo 19

compile()

public static Pattern compile(String regex)

o PatternSyntaxException - If the expression's syntax is

invalid

o Compile the regular expression: e.g., verifies that the

regular expression can be read in Java

30/05/15 Barbara Russo 20

Example

e Regular expression that finds a sequence of char with

the longest sequence of “a” and “b” in “aaaaaab”
e Create a pattern:

Pattern p = Pattern.compile("a*b");

30/05/15 Barbara Russo 21

matcher()

public Matcher matcher(CharSequence input)

e Creates a matcher that matches the sequence of

characters “input”

e CharSequence is an interface implemented for example
by String, StringBuffer, StringBuilder

- We can pass a string

30/05/15 Barbara Russo 22

Summarising

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

30/05/15 Barbara Russo 23

Other two ways to match

e Directly from Pattern or

e By invoking the method matches() of String on a string

30/05/15 Barbara Russo 24

Directly from Pattern

public static boolean matches(String regex,
CharSequence input);

boolean b = Pattern.matches("a*b", "aaaaab"););

e This method automatically compiles the pattern and

matches the expression with the input string

e It does not allow the compiled pattern to be reused

thus 1is not efficient in repeated matching

30/05/15 Barbara Russo 25

matches() method of String

boolean matches(String pattern)

 [f the invoking String object matches the regular

expression in the String pattern it returns TRUE.

« It does not create a Pattern or a Matcher object though.

Thus it is not that efficient in repeated matching

String myString = "aaaaab";
boolean b = myString.matches("a*b")

30/05/15 Barbara Russo 26

split()

e It splits a text by tokens according to a regular

expression

30/05/15 Barbara Russo

Pattern pat = Pattern.compile("[,.!]1");
String[] str = pat.split("one two, alpha9 12!done.");
for (int 1=0; i<str.length;i++)

System.out.println("Next token: " + str[i]);

} Output

Next token: one
Next token: two
Next token:

Next token: alpha9
Next token: 12
Next token: done

30/05/15

Matcher

e The class has no constructor (i.e., it has only the
default one in which we cannot pass any parameter)

and 1t 1s created with the matcher() method of Pattern

30/05/15 Barbara Russo 29

Matcher

e The resulting pattern from compile() is used to create a
Matcher object that can match arbitrary character

sequences against the regular expression

e All the services to perform a match resides in the
matcher object,
- so many matchers can share the same pattern

- matches can be repeated with different strings

30/05/15 Barbara Russo 30

matches()

e it matches Output

aaaaab

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

30/05/15 Barbara Russo 31

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab™);
m=p.matcher(“ababab™");

boolean b = m.matches();

32

find()

e To determine a match of a subsequence of an input

string

e It can be used to search the input sequence for repeated

occurrences of the same pattern

e Use the start() method to retrieve the occurrence index
of the match

30/05/15 Barbara Russo 33

Output
subsequence found
public static void main(String[] args) { q

Pattern pat = Pattern.compile("Java"); Looking for Java inJava 1 2 3 Java
subsequence found at index0

Matcher matmat = pat.matcher("Java 8"); subsequence found at index11

// create the first matcher
System.out.println("Looking for Java in Java 8");
if(mat.find()) System.out.println("subsequence found");
else System.out.println("no match");

Matcher mat2=pat.matcher("Java 1 2 3 Java");
System.out.println("Looking for Java in Java 1 2 3 Java");

while(mat2.find()) System.out.println("subsequence found at index"+matZ2.start());

30/05/15 Barbara Russo 34

Wildcards and quantifiers [oupu
Match: W
// one or more character MZtgﬂg WWW
Pattern pat = Pattern.compile("W+"); Match: W
Matcher mat = pat.matcher("W WW WWW"); Match: WWW

while(mat.find()) System.out.println("Match: "+mat.group());

//the greedy syntax {n,m} : from n to m including extremes

Pattern.compile("W{2,4}");
pat.matcher("W WW WWW");

pat

mat

while(mat.find()) System.out.println("Match: "+mat.group());

30/05/15 Barbara Russo 35
Output
replaceAll() Original sequence: Jon Jonathan Frank Ken Todd
————————— V| 2TCh JON

Match: Jonathan

e to replace Ssequences Replaced sequence: Eric Eric Frank Ken Todd

String str = "Jon Jonathan Frank Ken Todd";
Pattern pat = Pattern.compile(“Jon.*? ");

// “.” matches any character

Matcher mat = pat.matcher(str);
System.out.println("Original sequence: "+str);

while(mat.find()) System.out.println("Match: "+ mat.group());

str =mat.replaceAll("Eric ");

System.out.println(”Replaced sequence: "+str);

30/05/15 Barbara Russo 36

Greedy and lazy matching

e The three quantifiers (*, + and ?) taken individually are
greedy:
» They match as many characters as possible
e By appending “?” they may be made lazy or minimal
by matching as few characters as possible:
o "MV

o We matched “Jon ” and “Jonathan ”; Jon plus zero characters and a

space or Jon plus the minimal number of characters and a space

37

Date format

Pattern pat = Pattern.compile("ACC19120)\\d\\d)([-/.]1)(0[1-9]]
1[0121)([-/.1)(0[1-9]1[12][0-9]13[01]1)>%™");
Matcher mat = pat.matcher("2011-01-01");

boolean b = mat.matches();

if(b)System.out.println("Match");else System.out.println("no
match");

if(Pattern.matches("ACC(19120)\\d\\d)-(07[1-9]11[012])-(07[1-9]I[12]
[0-9]13[01])%", “2011-1-1")) System.out.println("Match"); else
System.out.println("no match");

Barbara Russo 38

Find an email 1n a text

e email

@@ A"

See code examples

Let’s change it:
@8 @M\]\ A"
V@24 @A

Barbara Russo

39

Advanced Programming

THE SCANNER CLASS

Scanner

 public final class Scanner

» A simple text scanner which can parse primitive types

and strings using regular expressions.

» A Scanner breaks its input into tokens using a delimiter

pattern, which by default matches whitespace.

e The resulting tokens may then be converted into values

of different types using the various next methods.

Example:

e Read a number from keyboard

Scanner sc = new Scanner(System.in);

int 1 = sc.nextInt();

Output:

Delimiters |
o Use delimiters other than whitespace. fed

blue

String input = "1 fish 2 fish red fish blue fish";
/1 *“\\s” white space

Scanner s = new Scanner(input).useDelimiter("\\s*fish\\s*");
System.out.println(s.nextInt());
System.out.println(s.nextInt());

System.out.println(s.next());

System.out.println(s.next());

s.close();

With regular expressions

e to parse all four tokens at once:

String input = "1 fish 2 fish red fish blue fish";

Scanner s = new Scanner(input);

s.findInLine("(\\d+) fish (\d+) fish (\w+) fish (\w+)");

MatchResult result = s.match();

for (int i=1; i<=result.groupCount(); i++)
System.out.println(result.group(i));

s.close();

e The default whitespace delimiter used by a scanner is

as recognised by Character.isWhitespace

» The reset() method resets the value of the scanner's
delimiter to the default whitespace delimiter regardless

of whether it was previously changed

Same output

1
2

red

blue

Block waiting for imnput

e A scanning operation may block waiting for input

e The next() and hasNext() methods and their primitive-
type companion methods (such as nextInt() and
hasNextInt()) first skip any input that matches the
delimiter pattern, and then attempt to return the next

token.

» Both hasNext and next methods may block waiting for

further input

e The findInLine(java.lang.String),
findWithinHorizon(java.lang.String, int), and
skip(java.util.regex.Pattern) methods operate independently of

the delimiter pattern

o These methods attempt to match the specified pattern with no
regard to delimiters in the input and thus can be used in special

circumstances where delimiters are not relevant

o These methods may block waiting for more input

e When a scanner throws an InputMismatchException,
the scanner will not pass the token that caused the
exception, so that it may be retrieved or skipped via

some other method.

e Depending upon the type of delimiting pattern, empty

tokens may be returned:

e For example, the pattern "\\s+" will return no empty
tokens since 1t matches multiple instances of the

delimiter

e The delimiting pattern "\\s" could return empty tokens

since it only passes one space at a time

e A scanner can read text from any object which

implements the Readable interface.

 If an invocation of the underlying readable's
Readable.read(java.nio.CharBuffer) method throws an
IOException then the scanner assumes that the end of

the input has been reached

e When a Scanner is closed, it will close its input source

if the source implements the Closeable interface.

It implements Closeable so it can be used with try-with

resources

