
Regular Expressions

Advanced Programming

Barbara Russo

Regular expression
• Regular expressions are a way to describe a set of

strings based on common characteristics shared by
each string in the set

• They can be used to search, edit, or manipulate text
and data.

30/05/15 2

Source: Oracle documentation

Barbara Russo

What we need
• One must learn a specific syntax to create regular

expressions in addition to the Java syntax

• Then one must use the Pattern and Match classes of
regex package to store and manipulate the expressions

30/05/15 3

Barbara Russo

What is a regular expression?
Examples:

Date in format yyyy-MM-dd
(19|20)\d\d([- /.])(0[1-9]|1[012])\2(0[1-9]|[12][0-9]|3[01])

Roman Number Regexp
^(?i:(?=[MDCLXVI])((M{0,3})((C[DM])|(D?C{0,3}))?((X[LC])|(L?XX{0,2})|L)?
((I[VX])|(V?(II{0,2}))|V)?))$

more examples: http://myregexp.com/examples.html

30/05/15 4

Barbara Russo

Exercise
• Apply the reg expression for the date YYYY-MM-DD

(19|20)\d\d([- /.])(0[1-9]|1[012])\2(0[1-9]|[12][0-9]|3[01])

• to the text

1900-01-01 2007/08/13 1900.01.01 1900 01 01
1900-01.01 1900 13 01 1900 02 31

30/05/15 5

Barbara Russo

What is a regular expression?
• A regular expression is a string of characters that

describes a character sequence

• It is comprised of
– characters

– sets of characters

– wildcards

– quantifiers
full list at http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

or at http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

30/05/15 6

Barbara Russo

Characters
• Characters are matched as-is. A pattern consisting in “xy”

applied to a text “xy” returns xy or a pattern “Java” applied to
text “Javaj” returns “Java”

• Characters like carriage return, new line are specified with the
backslash escape sequence

• \n matches new line

• \b matches word start

• …

30/05/15 7

Barbara Russo

Set of characters
• Identified by square brackets [] – matches a single character inside the

square

[ecl] matches “c” and “l” in the text “cloud”
– note that the match is on a single character of the word per time when a

match is found, it restarts on the next character of the text
[123] matches “3” and “1” in the text “ab31”

• Using in addition ^ the expression matches the characters except the one
specified:

[^ecl] matches “o”, “u”, and “d” in “cloud”
[1-9] identifies a range of digits [a-z] a range of letters and [A-Z] range of
capitalized letters

30/05/15 8

Barbara Russo

wildcard “.”
• it matches any character including spaces

30/05/15 9

Barbara Russo

Number of matches
• + 1 or more – after the character

 x+ matches in text “xxx” x, xx, and xxx

• * 0 or more

x* matches in text “xxx” none, “x”, “xx”, and “xxx”

• ? 0 or 1

x? matches in text “xxx” none and “x”

{n,m} matches between n and m (greedy = the longest)

30/05/15 10

Barbara Russo

Groups
• Capturing groups are numbered by counting their

opening parentheses from left to right.

• the expression ((A)(B(C))) have four groups:

• 1 ((A)(B(C)))

• 2 (A)

• 3 (B(C))

• 4 (C)

30/05/15 11

Barbara Russo

Group number
• Group zero always stands for the entire expression.

• During a match, each subsequence of the input
sequence that matches such a group is saved.

• The captured subsequence may be used later in the
expression, via a back reference (\i), and may also be
retrieved from the matcher once the match operation is
complete.

30/05/15 12

Barbara Russo

Example

(19|20)\d\d([- /.])(0[1-9]|1[012])\2(0[1-9]|[12][0-9]|3[01])

30/05/15 13

Group 1
Group 2 Group 3 Group 4

Retrieve
group 2digit union

starting
from left

Barbara Russo

Exercises
• match AB|BC in text “ADBC ABC DABC”

• match ABC|BC in the text “ADBCBCBC”

30/05/15 14

15

Barbara Russo

Special characters in Java
• A character preceded by a backslash (\) is an escape

sequence and has special meaning to the Java compiler

• Thus to match the word (Hello) we need to use

• \\(Hello)\\ and not \(Hello)\ as \(and \) have been
already reserved for the Java syntax

30/05/15 16

Barbara Russo

java.util.regex package
• Most relevant classes Pattern and Matcher

• Pattern accepts the regular expression

• Matcher matches the regular expression on a text

30/05/15 17

Barbara Russo

Pattern
• A compiled representation of a regular expression

• It is final

• It implements the interface Serializable

• It has only static fields

• It has the method compile() that transforms a regular
expression into a pattern that can be used by the
Matcher. It returns a Pattern object

30/05/15 18

Barbara Russo

How to match – three steps
• First way:

• create an object of type Pattern: compile() from Pattern

• create an object of type Matcher: matcher() from
Pattern

• match the pattern on the text: matches() from Matcher

30/05/15 19

Barbara Russo

compile()
public static Pattern compile(String regex)

• PatternSyntaxException - If the expression's syntax is
invalid

• Compile the regular expression: e.g., verifies that the
regular expression can be read in Java

30/05/15 20

Barbara Russo

Example
• Regular expression that finds a sequence of char with

the longest sequence of “a” and “b” in “aaaaaab”

• Create a pattern:

Pattern p = Pattern.compile("a*b");

30/05/15 21

Barbara Russo

matcher()
public Matcher matcher(CharSequence input)

• Creates a matcher that matches the sequence of
characters “input”

• CharSequence is an interface implemented for example
by String, StringBuffer, StringBuilder
– we can pass a string

30/05/15 22

Barbara Russo

Summarising

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

30/05/15 23

Barbara Russo

Other two ways to match
• Directly from Pattern or

• By invoking the method matches() of String on a string

30/05/15 24

Barbara Russo

Directly from Pattern
public static boolean matches(String regex,
CharSequence input);

boolean b = Pattern.matches("a*b", "aaaaab"););

• This method automatically compiles the pattern and
matches the expression with the input string

• It does not allow the compiled pattern to be reused
thus is not efficient in repeated matching

30/05/15 25

Barbara Russo

matches() method of String
boolean matches(String pattern)

• If the invoking String object matches the regular
expression in the String pattern it returns TRUE.

• It does not create a Pattern or a Matcher object though.
Thus it is not that efficient in repeated matching

 String myString = "aaaaab";
 boolean b = myString.matches("a*b")

30/05/15 26

Barbara Russo

split()
• It splits a text by tokens according to a regular

expression

30/05/15 27

Barbara Russo

Pattern pat = Pattern.compile("[,.!]");

String[] str = pat.split("one two, alpha9 12!done.");

for (int i=0; i<str.length;i++)

 System.out.println("Next token: " + str[i]);

}

30/05/15 28

Output

Next token: one
Next token: two
Next token:
Next token: alpha9
Next token: 12
Next token: done

Barbara Russo

Matcher
• The class has no constructor (i.e., it has only the

default one in which we cannot pass any parameter)
and it is created with the matcher() method of Pattern

30/05/15 29

Barbara Russo

Matcher
• The resulting pattern from compile() is used to create a

Matcher object that can match arbitrary character
sequences against the regular expression

• All the services to perform a match resides in the
matcher object,
– so many matchers can share the same pattern

– matches can be repeated with different strings

30/05/15 30

Barbara Russo

matches()
• it matches

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

30/05/15 31

Output

aaaaab

Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
m=p.matcher(“ababab");

boolean b = m.matches();

32

Barbara Russo

find()
• To determine a match of a subsequence of an input

string

• It can be used to search the input sequence for repeated
occurrences of the same pattern

• Use the start() method to retrieve the occurrence index
of the match

30/05/15 33

Barbara Russo

public static void main(String[] args) {

Pattern pat = Pattern.compile("Java");

Matcher matmat = pat.matcher("Java 8");

// create the first matcher

System.out.println("Looking for Java in Java 8");

if(mat.find()) System.out.println("subsequence found");

else System.out.println("no match");

Matcher mat2=pat.matcher("Java 1 2 3 Java");

System.out.println("Looking for Java in Java 1 2 3 Java");

while(mat2.find()) System.out.println("subsequence found at index"+mat2.start());

}

30/05/15 34

Output
Looking for Java in Java 8
subsequence found

Looking for Java in Java 1 2 3 Java
subsequence found at index0
subsequence found at index11

Barbara Russo

Wildcards and quantifiers
 // one or more character

 Pattern pat = Pattern.compile("W+");

 Matcher mat = pat.matcher("W WW WWW");

 while(mat.find()) System.out.println("Match: "+mat.group());

 //the greedy syntax {n,m} : from n to m including extremes

 pat = Pattern.compile("W{2,4}");

 mat = pat.matcher("W WW WWW");

 while(mat.find()) System.out.println("Match: "+mat.group());

30/05/15 35

Output
Match: W
Match: WW
Match: WWW
Match: WW
Match: WWW

Barbara Russo

replaceAll()
• to replace sequences
String str = "Jon Jonathan Frank Ken Todd";

Pattern pat = Pattern.compile(“Jon.*? ");

// “.” matches any character

Matcher mat = pat.matcher(str);

System.out.println("Original sequence: "+str);

while(mat.find()) System.out.println("Match: "+ mat.group());

str =mat.replaceAll("Eric ");

System.out.println(”Replaced sequence: "+str);

30/05/15 36

Output
Original sequence: Jon Jonathan Frank Ken Todd
Match: Jon
Match: Jonathan

Replaced sequence: Eric Eric Frank Ken Todd

Greedy and lazy matching
• The three quantifiers (*, + and ?) taken individually are

greedy:

• They match as many characters as possible

• By appending “?” they may be made lazy or minimal
by matching as few characters as possible:

• ".*?"
• We matched “Jon ” and “Jonathan ”; Jon plus zero characters and a

space or Jon plus the minimal number of characters and a space

37

Barbara Russo

Date format
Pattern pat = Pattern.compile("^((19|20)\\d\\d)([-/.])(0[1-9]|
1[012])([-/.])(0[1-9]|[12][0-9]|3[01])$");

Matcher mat = pat.matcher("2011-01-01");

boolean b = mat.matches();

if(b)System.out.println("Match");else System.out.println("no
match");

if(Pattern.matches("^((19|20)\\d\\d)-(0?[1-9]|1[012])-(0?[1-9]|[12]
[0-9]|3[01])$", “2011-1-1")) System.out.println("Match"); else
System.out.println("no match");

38

Barbara Russo

Find an email in a text
• email

• "[^@]+@[^\.]+\..+"

• See code examples

• Let’s change it:

• “[^@]+{8}@[^\.]+\..+"

• “[^@]{2,4}@[^\.]+\..+"

39

THE SCANNER CLASS
Advanced Programming

Scanner
• public final class Scanner

• A simple text scanner which can parse primitive types
and strings using regular expressions.

• A Scanner breaks its input into tokens using a delimiter
pattern, which by default matches whitespace.

• The resulting tokens may then be converted into values
of different types using the various next methods.

Example:
• Read a number from keyboard

Scanner sc = new Scanner(System.in);

int i = sc.nextInt();

Delimiters
• Use delimiters other than whitespace.

 String input = "1 fish 2 fish red fish blue fish";

 // “\\s” white space

 Scanner s = new Scanner(input).useDelimiter("\\s*fish\\s*");

 System.out.println(s.nextInt());

 System.out.println(s.nextInt());

 System.out.println(s.next());

 System.out.println(s.next());

 s.close();

Output:

1
2
red
blue

With regular expressions
• to parse all four tokens at once:

 String input = "1 fish 2 fish red fish blue fish";

 Scanner s = new Scanner(input);

 s.findInLine("(\\d+) fish (\\d+) fish (\\w+) fish (\\w+)");

 MatchResult result = s.match();

 for (int i=1; i<=result.groupCount(); i++)

 System.out.println(result.group(i));

 s.close();

• The default whitespace delimiter used by a scanner is
as recognised by Character.isWhitespace

• The reset() method resets the value of the scanner's
delimiter to the default whitespace delimiter regardless
of whether it was previously changed

Same output
 1

 2

 red

 blue

Block waiting for input
• A scanning operation may block waiting for input

• The next() and hasNext() methods and their primitive-
type companion methods (such as nextInt() and
hasNextInt()) first skip any input that matches the
delimiter pattern, and then attempt to return the next
token.

• Both hasNext and next methods may block waiting for
further input

• The findInLine(java.lang.String),
findWithinHorizon(java.lang.String, int), and
skip(java.util.regex.Pattern) methods operate independently of
the delimiter pattern

• These methods attempt to match the specified pattern with no
regard to delimiters in the input and thus can be used in special
circumstances where delimiters are not relevant

• These methods may block waiting for more input

• When a scanner throws an InputMismatchException,
the scanner will not pass the token that caused the
exception, so that it may be retrieved or skipped via
some other method.

• Depending upon the type of delimiting pattern, empty
tokens may be returned:

• For example, the pattern "\\s+" will return no empty
tokens since it matches multiple instances of the
delimiter

• The delimiting pattern "\\s" could return empty tokens
since it only passes one space at a time

• A scanner can read text from any object which
implements the Readable interface.

• If an invocation of the underlying readable's
Readable.read(java.nio.CharBuffer) method throws an
IOException then the scanner assumes that the end of
the input has been reached

• When a Scanner is closed, it will close its input source
if the source implements the Closeable interface.

• It implements Closeable so it can be used with try-with
resources

