
MEMORY MODELS
Advanced Programming

Notes
• …exercises with jdb and javap

• The java debugger jdb must work with both source and
class files.
– Try to run jdb after having cancelled the java file

Storage hierarchy in computer

RAM

Computer memory

4

COMPUTER
CPU

Register

CPU Cache

Main memory (RAM)

CPU

Register

CPU Cache

CPU Registers

• The CPU exposes the results of its computations in the
registers

• Registers are CPU internal memory (fast access)

5

CPU cache
• A processor’s memory cache is a small piece of fast,

but expensive memory used for copies of parts of main
memory

• Access to the cache typically takes only a few
processor clock cycles, whereas access to main
memory may take tens or even hundreds of cycles

Physical memory (RAM)
• Physical (main) memory is memory that is wired to

directly to the processor, addressable by physical
address

Thread
• The OS allocates a copy of the physical memory

(called virtual memory) for each Java process (called
thread)

• One can have at least as many threads in parallel as the
number of CPUs (modern computers are multi
processors and multi cores)

8

Visualising memory consumption
• Go to your bin folder and search for jvisualvm

• In the shell window type jvisualvm

9

Barbara Russo

Run-time memory models
• There are different models of the program execution

• In the model we use, the program starts and assigns
three separate and independent portions of memory
(referred to as address space for each process thread)

13/05/15 10

Barbara Russo

Memory models
• These are:

– code area
• where code to be executed is stored

– heap, or dynamic memory area
• used to store variables and objects allocated dynamically

– (execution) stack
• used to perform computation,
• store local variables and
• perform function call management

13/05/15 11

Barbara Russo

Memory models (Run-Time Data
Areas)
• The code and the heap area

can be accessed with no
special restriction

• The stack area is accessed
using a LIFO (Last In – First
Out) policy

• The languages discussed will
be “Stack-based”

13/05/15 12

Code Heap Stack

Stack and heap

13

JVM

THREAD STACK THREAD STACK

HEAP

AR method1()

AR method2()

AR method…()

AR method2()

AR method1()

Object1 Object2 Object..

Visibility and conflicts

14

COMPUTER
CPU

Register

CPU Cache

RAM

CPU

Register

CPU Cache
obj1.count=1 obj1.count=2

obj1.count=2

Visibility and conflicts
• Java uses the keyword “volatile” to avoid that two

threads that have read the same object from the main
memory modify it independently in the cache

• Until the cache memory of the two threads is not
flushed back to the RAM nothing happens as the two
cache memories are not visible each other

• The conflict starts when the two cache memories are
flushed back to the RAM

15

Volatile
• To solve this problem you can use the volatile

keyword.

• It makes sure that a given variable declared volatile is
read directly from main memory, and always written
back to main memory when updated

16

Synchronised
• Race condition: if two or more threads share an object,

and more than one thread updates variables in that
shared object

• A synchronized statement or keyword for a code block:
• only one thread can access the code block

• all variables accessed inside the block are read from main memory,

• when the thread exits the block, all updated variables will be flushed
back to main memory again, regardless of whether the variable is
declared volatile or not.

17

Barbara Russo

Memory management in Java
• Java is organised in classes

• Code is loaded on class-by-class basis
– The first class to be loaded is an executable class that defines

a static “main” method (with well defined signature)

• The execution proceeds loading and running new
classes when the need arises, according to the flow of
the computation

13/05/15 18

Barbara Russo

Stack based languages
• The execution is centred around the execution stack

• All our algorithms are organised into methods

• The order of execution of methods and functions is
LIFO (Last in First Out)

13/05/15 19

Barbara Russo

Activation record of a method
• Each time a method / function is called, all the

information specifically needed for the method
execution is put on the stack

• That information is collectively called the Activation
Record (AR) of the method call (also called frames)

13/05/15 20

Barbara Russo

Activation record of a method
• This allows recursion, since for each call there will be

a separate activation record on the stack

• When the call is completed (i.e., the method “returns”)
the corresponding AR is destroyed (i.e., “popped out”
of the stack) according to LIFO

• Activation records are organized from bottom to top in
memory diagram

13/05/15 21

Barbara Russo

Example
• Each method call results in an AR on stack

13/05/15 22

Stack

void f() {
 g() ;
}
void g() {
 h() ;
}
void h() {
 k() ;
}

Execution
Time

f starts

g starts

h starts

k starts

k ends

f ends

g ends

h ends

Example

13/05/15 23

Execution
Time

f starts

g starts

h starts

k starts

k ends

f ends

g ends

h ends

Stack

Activation
record for fActivation

record for g

Activation
record for h

Activation
record
for k

Barbara Russo

Terminology
• Adding an activation record in the stack is called

winding

• Removing is called unwinding

• Note: Exception handling uses the unwinding
mechanism

13/05/15 24

Barbara Russo

Content of the activation record
• The information stored in the AR for one call are the

following:
• Information to restart the execution at the end of the call, i.e. after

the function “returns”; these usually are:

– Return address

– Pointer to the Stack portion devoted to the calling method

– Return value (if any)

• Information needed to perform the computation (usually the actual
arguments passed to the method in the call – if any)

• Local variables (if any)

13/05/15 25

Barbara Russo

Activation Record: abbreviations

• AR() à activation record of a function

• RV à return value

• RA à return address

• SP à stack pointer

• N/E à Non Existent

• @ à at memory address

• ?? à not yet determined

13/05/15 26

Barbara Russo

void f() {
 int i = 3;
 g();
 }
void g() {
 int i = 4;
 i = i + h() ;
 }
int h() {
 return 1 + k(5) ;
 }
int k(int z) {
 return z+1;
 }

13/05/15 27

Example

Barbara Russo13/05/15 28

StackCode

...

int k(int z){
 return z+1;
}

...

int h() {
 return 1 +
 k(5);
}

...

void f() {
 int i = 3;
 g();
}

Address [3]

Address [250]

Address [500]

void g() {
 int i = 4;
 i = i + h();
}

Address [600]

 3

AR(f)

i
@200 SP
@-1 RA
N/E RV

Address 1000

AR(g)

4 i
@1000 SP
@[3] RA

N/E RV

Address 1400

AR(h)@1400 SP
@[600] RA

?? RV
Address 1900

AR(k) 5 z
@1900 SP
@[500] RA

6 RV
Address 2300

Address 2800

Example

Scope and extent
• To understand how JVM allocates memory for

variables we talk of scope and extent

29

Barbara Russo

Scope of a variable
• The scope of a variable is a portion of the (source)

code in which that variable is visible in the code

13/05/15 30

Barbara Russo

Scope
• Visibility (i.e. scope) is governed by the structure of

the source code and not by the execution!

13/05/15 31

Barbara Russo

Blocks
• A block is a portion of code enclosed between two special

symbols, which mark the beginning and the end of the block

• In Java blocks are marked by curly braces

 { <this is a block> }

• Block can be nested

• We use block to understand the scope of variables!

13/05/15 32

Barbara Russo

Scope & Blocks
• A variable is visible

– In the block it is defined
• Starting from the line of definition

– In all the inner blocks unless a variable of the same name is declared within
(homonymous variables)

• Global variables

– Defined outside the scope of any block
• Hiding a variable

– A homonymous variable declared within a block makes invisible a variable of
the same name declared outside the block

13/05/15 33

Barbara Russo

Example: variable scopes

13/05/15 34

[1] int x=5; Scope of x
[2] int i=4; Scope of i
[3] int j=3; Scope of j
[4] void f() {
[5] int i = 3; Scope of f::i
[6] x = x + 2;
[7] j = j + x;
[8] g();
[9] }
[10] void g() {
[11] int x; Scope of g::x
[12] int w = 4; Scope of g::w
[13] x = 7 + w;
[14] j = j + 1;
[15] i = i + x;
[16]}
[17] void main() {
[18] f();
[19] }

[5] int i = 3; Scope of f::i
[6] x = x + 2;
[7] j = j + x;
[8] g();
[9] }
[10] void g() {

Variable hiding

Barbara Russo

Use of “this”
• The most common reason for using the “this” keyword

is because a field is shadowed by a method or
constructor parameter

int count = 0;

public void myMethod (int count){

 this.count = count;

}

13/05/15 35

Example
if a field is shadowed by a method or constructor
parameter than you can simply change the names, or …

public class Point {
public int x = 0;

public int y = 0;

//constructor

public Point(int a, int b) {

x = a;

y = b;

}

}

inside the constructor x is a local copy of the
constructor's first argument. To refer to the
Point field x, the constructor must use this.x.

public class Point {
 public int x = 0;
 public int y = 0;
 //constructor
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Barbara Russo

Scope Activation Record (SAR)
• Scope Activation Record (SAR) is a memory block in

the stack that contains block information for variable
visibility

• ARs are also SARs, because the body of a function is a
block itself, thus information on visibility must be
added to ARs.

13/05/15 37

Barbara Russo

Scope Activation Record
• SARs contain, at least, two different kinds of

information (ARs contain more) :
– local variables (local to the block itself)

– the Static Link (SL)

13/05/15 38

Barbara Russo

Scope Activation Record
• The SAR link is a pointer to the SAR of the immediate

enclosing block and it is used to access local variables
of outer blocks (in a recursive fashion) from the
current block

13/05/15 39

Barbara Russo

Example of SAR

13/05/15 40

[1] /* Some global definitions
[2] */
[3]void f() {
[4] g();
[5] }
[6]void g(){
[7] int j=3;
[8] if(j==3){
[9] int i=20;
[10] int j=9;
[11] }
[12]}
…
[27] void main() {
[28] f();
[29] }

3 j
@800 SL
@1400 SP
@[4] RA
N/E RV

Address 1400

AR(main)

AR(f)

SAR(global)
Address 800

Address 1900
AR(g)

Address 1200

20 i
@1900 SL

Address 2500SAR([6]-[9]) j9

Barbara Russo

SLs
• Each time a variable is used in a block, but there is no

definition of such variable in such block, the system
uses the SL to reach out for the next enclosing scope to
find that variable recursively(i.e., if it is not there, the
SL is used to reach the next enclosing scope, and so
on) until reaching the global scope

13/05/15 41

Barbara Russo

Extent of a variable
• The extent of a variable (i.e., lifetime) is the time

during which the variable exists in memory

• The extent of a variable is the time during which it
exists on the stack or on the heap, i.e. the time during
which there is some memory allocated for it

13/05/15 42

Barbara Russo

Extent of a variable
• The extent of a variable is the time-domain concept

• The scope is a structure concept

• A variable can exist (Extent) but not visible (Scope)
– e.g., global variable hidden by homonymous local variable in

a block but exist for the whole execution

13/05/15 43

Barbara Russo

Static/Dynamic memory allocation
• There are two types of memory allocations of

variables:
– Stack-based variables

– Heap-based variables

• The definition of scope and extent varies in the two
cases

13/05/15 44

Variables and References
• Stack-based variables are all created on the Stack

statically
– e.g., object reference variables or primitive variables in

methods

• Heap-Based variables are created on the Heap
dynamically
– e.g., object reference variables in classes

3/7/16 Barbara Russo 15

Example
void useAttributes() {

 CoffeeMaker aCM = new CoffeeMaker();

 aCM.status = 1;

 aCM.coffeeAmount = 10;

}

3/7/16 Barbara Russo 17

@1900 aCM

other info for
AR(useAttributes)

Address 1900

Heap

1 status
10 coffeeAmount

Stack

Other info in
the Stack

Object of class
CoffeeMaker

AR(useAttributes)

AR of constructors are omitted in this
example

public class CoffeeMaker{
 int status = 0;
 int coffeeAmount = 0;
}

Barbara Russo

Stack-based variables
• Stack-based variables (statically allocated):

– the extent is determined by scope

• Stack variables begin when their definition is
encountered in the code and end at the end of the scope
in which it is defined

13/05/15 47

Barbara Russo

Heap-based variables
• Heap-based variables are the objects

- Their memory is dynamically allocated in the heap

– Their extent is under control of programmers,
(unconstrained extent)

13/05/15 48

Barbara Russo

Reference variables

• Objects have no name

• References to objects are stack-based variables:
– In Java, these are called reference variables

13/05/15 49

Barbara Russo

Heap-based variables
• The scope of heap-based variable is the union of the

scopes of all the variables referring to it

• The extent of an entity allocated on the heap starts
when they are created and lasts until they are
destroyed or until the program terminates

13/05/15 50

Example
• CoffeeMaker aCoffeeMaker;

• aCoffeeMaker = new CoffeeMaker();

• int sugar = 4;

• Integer sugarObject = new Integer(3);

3/7/16 Barbara Russo 14

@4300 sugarObject
4 sugar

@1800aCoffeeMaker
Other info
on the Stack

Variables in
the code
we consider

Address 1800

Heap

Object of class

CoffeMaker

Stack

Object of class

Integer
Address 4300

