
OOP: Objects

Advanced Programming

Objects
• Objects are instances of a class

• Objects are created at run time and the memory in the
heap

3/7/16 Barbara Russo 7

Object creation
• Instantiating an object means creating an object of a given

class in the Heap. In Java, objects are created using the
keyword “new”
– CoffeeMaker aCoffeeMaker = new …

• Initialization: the new operator is followed by a call to a
constructor (in the stack) , which initializes the new object
(initially to Null is otherwise stated, see next)

CoffeeMaker aCoffeeMaker = new CoffeeMaker();

3/7/16 Barbara Russo 8

Reference variables
• To retrieve an object of a class use object reference

variables (references to objects)

CoffeeMaker aCoffeeMaker

• (Object) reference variable declaration: associates a
variable name with a class

3/7/16 Barbara Russo 9

Default values in Java
• Every variable must have a value before its value is

used

• Each variable has default value when it is created
– For all reference variables the default value is Null

– for primitive variables (int, short, char byte, long, float and
double, boolean) is zero or char (\u0000) or boolean (false)

3/7/16 10Barbara Russo

Reference to null
• In Java: setting a reference to Null or not initializing it:

– If an application calls an object through a reference not yet
initialized or null, the Java compiler will return an error
message of the type NullPointerException

3/7/16 11Barbara Russo

Example of object instantiation

3/7/16 Barbara Russo 12

CoffeeMaker aCoffeeMaker = new CoffeeMaker();

aCoffeeMaker

Other info
In the Stack

Variable in
code we
consider Address 4000

Heap

Object of class
CoffeeMaker

Stack

@4000

Accessing objects in Java
• A reference variable holds the address of an object in

the heap

3/7/16 Barbara Russo 13

Example
• CoffeeMaker aCoffeeMaker;

• aCoffeeMaker = new CoffeeMaker();

• int sugar = 4;

• Integer sugarObject = new Integer(3);

3/7/16 Barbara Russo 14

@4300 sugarObject
4 sugar

@1800aCoffeeMaker
Other info
on the Stack

Variables in
the code
we consider

Address 1800

Heap

Object of class

CoffeMaker

Stack

Object of class

Integer
Address 4300

Variables and References
• Stack variables are all created on the Stack statically

– e.g., object reference variables or primitive variables in
methods

• Instance variables are created on the Heap dynamically
– e.g., object reference variables in classes

3/7/16 Barbara Russo 15

Object population
• In the heap objects are populated with the values for

the instance variables

3/7/16 Barbara Russo 16

Example
void useAttributes() {

 CoffeeMaker aCM = new CoffeeMaker();

 aCM.status = 1;

 aCM.coffeeAmount = 10;

}

3/7/16 Barbara Russo 17

@1900 aCM

other info for
AR(useAttributes)

Address 1900

Heap

1 status
10 coffeeAmount

Stack

Other info in
the Stack

Object of class
CoffeeMaker

AR(useAttributes)

AR of constructors are omitted in this
example

Instance Variables
public class Train{

 private speed = 10;

 Engine myEngine = new Engine();

}

public class Engine{}

Train myTrain = new Train();

3/7/16 Barbara Russo 18

Heap

@200 myEngine

Object of Train

Object of Engine

Address 100

Address 200

10 speed

Methods
• The task of a program is accomplished via the

interaction of objects
– The interaction is based on the exchange of messages

– Upon reception of a message, an object replies with a
predetermined method

– Therefore, we can have an object of class Dog, Pluto, and an
object of class People, John. When Chunk sends Rea the
message sit, Rea executes its method associated with the
message sit.

3/7/16 Barbara Russo 19

3/7/16 Barbara Russo 20

Instance Methods
public class CoffeeMaker {
 public void prepareCoffee() {
}
 public void prepareCoffeeSweet(int sugarAm){
}
 void main(...) {
 CoffeeMaker aCoffeeMaker;
 aCoffeeMaker = new CoffeeMaker();
 aCoffeeMaker.prepareCoffee();
 }
}

 aCoffeMaker
other info for AR(main)Other info in

the Stack

AR(main)

Address 1900

Heap

Object of
class

CoffeeMaker

Stack

@1000 SP
@120 RA
N/E RV
@1900 this

AR(aCoffeeMaker.prepareCoffee)

@1900

AR of constructors are omitted in this
example

Instance methods

aCoffeeMaker.prepareCoffee();
• From a memory model standpoint, invoking a method

from an object is quite like calling a function, but there
is the need for tracing which object has invoked the
method
– in the AR of a method we add this referencing the object

address in the heap
• In the stack, the AR of an instance method is labelled

with AR(referenceVariable.methodName)

3/7/16 Barbara Russo 21

3/7/16 22

[1] public class B {
[2] int v;
[3] int s;
[4] public B(){
[5] int k = 0;
[6] int m = function(k);
[7] }
[8]
[9] public B (int z){
[10] int s = 34;
[11] }
[12] public B (double d){
[13] s = (int) d;
[14] v = (int) d+6;
[15] }
[16]
[17] private int function(int z){
[18] int g = 4;
[19] return g+z;
[20] }

[21] public static void main (…){
[22] B myB = new B();
[23] B my2B = new B(3);
[24] B my3B = new B(1.0);
[25] my3B = myB;
[26] int s = myB.function(12);
[27] myB.v = s;
[28] }
[29]}

Source Code

There are several
instantiations of the class B.
“this” in the AR(function)
points to the address of the
correct object in the heap

3/7/16 23

Heap

Address
1300

Object of class
B

s?

SP
RA
RV

@200

N/E

myB@1300

SL

@37

AR(main)

Address 700

@300

AR(function)

Address 2000

v

SP
RA

@700
@[27]

this
z12

@1300
SL@300

RV

Address
1700

Object of class
B

s?

v?

my2B@1700

my3B@1300

Address
2100

Object of class
B

s1

v7

s

g4

16

 16

16

Stack

@2100

?

Constructors are omitted
How many time “function” is called?
Which object will be cleaned up by the garbage collector?
“this” is missing. Where do you put it and what is its value?

Instance methods
aTrain.move(<parameter_list>)

• calls the method move with appropriate actual
arguments <parameter_list> for the object referenced
by the reference variable aTrain

• move() acts on the object referenced by aTrain

3/7/16 Barbara Russo 24

Do not use non-initialized values!
public class Track{

 private int value;

 public Track(int v) { value = v; }

 public int getDirection() { return value; }

}

 public class Train{

 private Track theTrack;

 public static void main(String[] args) {

 Train myTrain = new Train();

 System.out.println(myTrain.theTrack.getDirection());

 }

 }

Here I am trying to
use a not initialized
but defaulted value
for a reference
variable
Run-time
exception!

3/7/16 25Barbara Russo

Memory management in the Heap
• Objects with no references pointing to them are

considered eligible for automatic garbage collection by
the system

• The garbage collector runs periodically and performs
the real destruction of these objects

• Developers need not to worry about memory release

3/7/16 Barbara Russo 26

Memory management in the Heap
– When the null value is assigned to a reference, the

previously referenced object will be released and if
not used anymore destroyed releasing the memory

• Thus explicit object destruction is never an issue in
Java (except in Java Native Interface and connection to
database)

• Garbage collection is not directly under control of the
programmer, hence problems could arise if strictly predictable
timing behavior is needed (as in real-time systems)

3/7/16 27Barbara Russo

Memory diagram

3/7/16 Barbara Russo 28

Stack

Heap

Other info in
the Stack

AR(main)

other info for  
AR(main)

m@1900

1000
class AutomaticCappuccinoMachine

class ItalianCoffeeMaker
1100

class CoffeeMaker

class Steamer

class AutomaticMachine

1200

1300

1400

Object of AutomaticCappuccinoMachine

super@2100

class@1000

1900

Object of AutomaticMachine
coffeePowder??

super@2400

class@1400

2100

2400

 Object of ItalianCoffeeMaker

super@2600

class@1100

 Object of CoffeeMaker

super@2800

class@1300

temperature??

super@2850

class@1200

 Object of Steamer

2600

2800

