
Multithreaded applications

Advanced Programming

Barbara Russo

Why multithreaded programs
• JRE uses multiple threads for better use of CPU cycles

• A single threaded program uses event loop with
polling mechanism
– Decision mechanism under which an event is given the

priority to be handled by the event handler

– Until the event handler returns nothing else can run

– When the event handler is waiting for a specific resource the
overall execution is blocked waiting for that resource

2

Barbara Russo

Multithreaded programs
• In multithreaded programs when one thread is blocked

the other can run

• In single core processors the threads use different
slices of the CPU whereas in multicore the use CPU in
parallel over the cores

3

Physical memory (RAM)
• Do you remember? We saw that:

• Main memory is wired directly to the processor,
addressable by physical address

• Access to main memory may take tens or even
hundreds of cycles

Thread
• The OS allocates a copy of the physical memory

(called virtual memory) for each Java process (called
thread)

• One can have at least as many threads in parallel as the
number of CPUs (modern computers are multi
processors and multi cores)

5

Visualising memory consumption
• Go to your bin folder and search for jvisualvm

• In the shell window type jvisualvm

6

The Class Thread
• Java uses the class Thread to instantiate and manage

threads

7

Barbara Russo

Methods of class Thread
• getName (setName) Obtain/set a thread’s name

• getPriority (SetPriority) Obtain/set a thread’s priority

• isAlive Determine if a thread is still running

• join Wait for a thread to terminate

• run Entry point for the thread

• sleep Suspend a thread for a period of time

• start Start a thread by calling its run method

8

Barbara Russo

The main thread
• To get he current thread

static Thread currentThread()

9

Barbara Russo

Managing the current Thread

10

Source: reference book

Thread.sleep(long)
• Thread.sleep causes the current thread to suspend

execution for a specified period

• To processor time available to the other threads of an
application or other applications that might be running
on a computer system

• The sleep method can also be used for pacing and
waiting for another thread

11

Barbara Russo

Reflecting on code
• The main() declares that it throws

InterruptedException

• This is an exception that sleep() throws when another
thread interrupts the current thread while sleep is
active

• If this application has not defined another thread to
cause the interrupt, it doesn't bother to catch
InterruptedException

12

Sleep time
• Two overloaded versions of sleep are provided:

• one that specifies the sleep time to the millisecond
and one that specifies the sleep time to the
nanosecond

• It is not guaranteed that invoking sleep will suspend
the thread for precisely the time period specified:

• They are limited by the OS

• The sleep period can be terminated by interrupts
13

Barbara Russo

Two ways to create a thread
• Either extend Thread (C) or

– Thread contains other methods besides run()

• Implement Runnable (I)
– has only the run() method but the implementing class can be

further extended

14

Runnable object
• Override run() for the code to be executed in the Thread

• The Runnable object is then passed to the Thread constructor

• Then the Thread object calls start()
public class HelloRunnable implements Runnable {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new Thread(new HelloRunnable())).start();
 }

}

15

Subclassing Thread
• The Thread class itself implements Runnable, though its run

method does nothing

• Subclass Thread and override run()

• An object of the subclass calls start()
public class HelloThread extends Thread {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new HelloThread()).start();
 }

}

16

Note
• In both cases is an object of type Thread that invokes

start()

17

Barbara Russo

Create a second thread

18

Barbara Russo

Thread constructor
• this passes the the current object of type (Runnable)

NewThread to the constructor of the Thread object “t”

• “Demo Thread” is the name of such object

• Next, start() is called, which starts “t” with the
overridden method of the current object of type
NewThread

• The thread of execution beginning at the run() method

19

Barbara Russo

• After calling start(), NewThread’s constructor returns
to main().

• When the main thread resumes, it enters its for-loop
Both threads continue running, sharing the CPU in
single-core systems, until their loops finish

20

Barbara Russo

Output

21

it prints out the existing threads
and the priority of the current thread;
in our case the current thread is main
with priority 5 (max default)

After the new thread object has been created
in the heap, the execution returns to
the main method and starts the for loop there

When sleep is invoked in the main method,
the demo thread runs and the for loop in
the newThread object executes
until the sleep time of the main thread finishes

See the NewThread and
ThreadDemo classes in the sample code

• When object in the heap are created and the start
method has been invoked, they are alive, but they
might not be running

22

Barbara Russo

Sequence of threads
• Generally we want the main thread to finish last

– We used sleep() with a larger number of milliseconds

• Other two ways to determine whether a thread has
finished:
– Call the boolean method isAlive() on the thread

– Use the join() on the specific thread object that waits for
this thread to die

23

Barbara Russo

join()
• The join method allows one thread to wait for the

completion of another.

• If t is a Thread object whose thread is currently
executing

t.join();
• causes the current thread to pause execution until t's

thread terminates

24

Barbara Russo

join()
• Overloads of join allow the programmer to specify a

waiting period

• Join is dependent on the OS for timing, so join might
not wait exactly as long as one specifies

25

Barbara Russo

Example
• See example DemoJoin class in code sample

26

Barbara Russo

Threads prioritization
• In class Thread use setPriority() method to set a thread’s

priority

final void setPriority(int level)

• Levels from 1 to 10. Static final variable of Thread:

MIN_PRIORITY=1

MAX_PRIORITY=10

NORM_PRIORITY=5

• Use getPriority() to get the priority of one thread
27

Problem
class Foo {

private Helper helper;
public Helper getHelper() f
if (helper == null) {
 helper = new Helper();
}
return helper;

}

28

Synchronization
• A lock must be obtained in case two or more threads

call getHelper() simultaneously

• Otherwise, either they may both try to create the object
at the same time, or one may wind up getting a
reference to an incompletely initialized object

class Foo {
private Helper helper;
public synchronized Helper getHelper() f
if (helper == null) {
 helper = new Helper();
}
return helper;

}

29

Synchronization
• The first call to getHelper() creates the object and only the

few threads trying to access it during that time need to be
synchronized

• After that, all calls just get a reference to the member
variable.

• Since synchronizing a method can decrease performance
by a factor of 100 or higher, the overhead of acquiring and
releasing a lock every time this method is called is
unnecessary

30

Double-checked locking w. synchronized statement

class Foo {
 private Helper helper;
 public synchronized Helper getHelper() {

if (helper == null) {
synchronized(this){

if (helper == null) {
helper = new Helper();

}
}

}
return helper;

 }
}

31

Double-checked locking w. synchronized statement

• Check that the variable is initialized (without obtaining the lock)

• If it is initialized, return it immediately. Otherwise, obtain the lock

• Double-check whether the variable has already been initialized: if
another thread acquired the lock first, it may have already done
the initialization

• If so, return the initialized variable

• Otherwise, initialize and return the variable

• A synchronized block can choose which object it synchronizes
on!

32

Problem
• Consider the classic queuing problem, where one

thread is producing some data and another is
consuming it and the producer has to wait until the
consumer is finished before it generates more data and
vicersa

33

Producer and Consumer metaphor
• We can implement a loop to check some condition

repeatedly. Once the condition is true, appropriate
action is taken. To implement this loop Java uses
polling: CPU cycling until the condition is satisfied.
This wastes CPU time

• Multi-threads does not make use of polling

34

Inter-thread Communication
• Java uses wait(), notify(), and notifyAll()

methods(final methods of Object).

• All three methods can be called only from within a
synchronized context
Object mon = new Day();
synchronized (mon) {
 mon.wait();
}

35

Barbara Russo

Inter-thread Communication
• Use wait(), notify() to communicate between running

threads so that the execution follow the path wanted

• wait() causes the current thread to wait until another
thread invokes notify() or notifyAll() for this object

• notify() wakes up a single thread that is waiting

• If more threads are waiting on this object, one of them
is chosen arbitrary

• notifyAll() wakes up all threads that are waiting
36

Use wait within a loop
• In very rare cases the waiting thread could be awakened

with no apparent reasons. In this case, a waiting thread
resumes without notify() or notifyAll() having been
called.

• Oracle recommends that calls to wait() should take place
within a loop that checks the condition on which the
thread is waiting
synchronized {
 while (!condition) { mon.wait(); }
}

37

public class Queue {
// An incorrect implementation of a producer and consumer.
int n;
synchronized int get() {

System.out.println("Got: " + n);
return n;

}
 synchronized void put(int n) {

this.n = n;
System.out.println("Put: " + n);

}
}

see the code sample
38

Put: 1
Got: 1
Got: 1
Got: 1
Got: 1
Got: 1

Correct implementation
boolean valueSet = false;

synchronized int get() {
while(!valueSet)

try {
wait();

} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

}
System.out.println("Got: " + n);
valueSet = false;
notify();
return n;

}

synchronized void put(int n) {
while(valueSet)

try {
wait();

} catch(InterruptedException e) {
System.out.println("InterruptedException caught");

}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();

}
}

39

Put: 1
Got: 1
Put: 2
Got: 2
Put: 3
Got: 3

