
Testing Driven Development

Advanced Programming

Test Driven Development (TDD)

•  Practice for writing unit tests and production code
concurrently and at a very fine level of granularity

•  Programmers
–  first write a small portion of a unit test, and

–  then they write just enough production code to make that
unit test compile and execute

06/04/15 Barbara Russo 2

Test Driven Development (TDD)

•  This cycle lasts somewhere between 30 seconds and
five minutes. Rarely does it grow to ten minutes.

•  In each cycle, the tests come first.

•  Once a unit test is done, the developer goes on to the
next test until they run out of tests for the task they are
currently working on

06/04/15 Barbara Russo 3

Example - TDD
•  TextFormatter: A text formatter that take arbitrary strings

and horizontally center them in a page

•  Few issues:

•  What are the methods:
–  setLineWidth()

–  centerLine()

•  What is a Line?

•  Can I use String?

06/04/15 Barbara Russo 4

What to test

•  First understand the entities to test

String and StringBuffer

•  String is immutable; that is, it cannot be modified once
created

•  If a String object is modified, a new String was
actually created and the old one was thrown away.

06/04/15 6

Example

String badlyCutText = " Java is great. ";

System.out.println(badlyCutText);

badlyCutText.trim(); //attempt to modify the string

System.out.println(badlyCutText);

Output

 Java is great.

 Java is great.

06/04/15 7

String

•  The String.trim() method returns the string with
leading and trailing whitespace removed

•  The trim() method call does not modify the original
object
–  It creates a new trimmed String object and then throws it

away

–  Thus, we we print the string we get the original String object

06/04/15 8

String

•  Once a String object is created, it can not be modified,
takes up memory until garbage collection

To trim the original String

String badlyCutText = " Java is great. ";

System.out.println(badlyCutText);

badlyCutText =badlyCutText.trim();

System.out.println(badlyCutText);

Output

 Java is great.

Java is great.
06/04/15 10

Using StringBuilder/StringBuffer

•  With immutable objects, we need to store the modified
object in a new reference variable

06/04/15 Barbara Russo 11

Raw concatenation

public String convertToString(Collection<String> words) {

 String str = "";

 // Loops through every element in words collection

 for (String word : words) {

 str = str + word + " ";

 }

 return str;

}
06/04/15 Barbara Russo 12

Raw concatenation

•  On the + operation a new String object is created at
each iteration.

•  Suppose words contains the elements [“Foo”, “Bar”,
“Bam”, “Baz”]. The method creates eleven Strings: “”,
“Foo”, “ ”, “Foo ” , “Foo Bar”, “ ”, “Foo Bar ”, “Foo
Bar Bam”, “ ”, “Foo Bar Bam ”, “Foo Bar Bam Baz”

•  Even though only the last one is actually useful.

•  Memory is only cleaned by the garbage collector
06/04/15 Barbara Russo 13

Raw concatenation

•  To avoid unnecessary memory use like this, use the
StringBuilder class
–  Only one StringBuilder object is created.

–  Also because object creation is time consuming, using
StringBuilder produces much faster code

•  It provides similar functionality to Strings, but stores
its data in a mutable way

06/04/15 Barbara Russo 14

Concatenation with StringBuilder
public String convertToString(Collection<String> words) {

 StringBuilder buffer = new StringBuilder();

 // Loops through every element in words collection

 for (String word : words) {

 buffer.append(word);

 buffer.append(" ");

 }

 return buffer.toString();

}

06/04/15 Barbara Russo 15

StringBuilder / StringBuffer

•  As StringBuilder is not thread safe you cannot use it in
more than one thread.

•  Use StringBuffer instead, which does the same and is
thread safe
–  StringBuffers are thread-safe: they have synchronized

methods to control access so that only one thread can access
a StringBuffer object's synchronized code at a time.

06/04/15 Barbara Russo 16

StringBuffer

•  However, as StringBuffer is slower, only use
StringBuffer in a multi-thread environment

•  Note: only StringBuffer exists before Java 5

06/04/15 Barbara Russo 17

StringBuilder

•  If you are working in a single-threaded environment,
using StringBuilder instead of StringBuffer may result
in increased performance.

•  So, prefer StringBuilder because,
–  Small performance gain.

–  StringBuilder is a 1:1 drop-in replacement for the StringBuffer class.

–  StringBuilder is not thread synchronized and therefore performs better on
most implementations of Java

06/04/15 Barbara Russo 18

06/04/15 Barbara Russo 19

First we write the test Then we write the production code

public void testCenterLine(){

 Formatter f = new Formatter();
}

does not compile

class Formatter{ }

compiles and passes

public void testCenterLine(){
 Formatter f = new Formatter();

 f.setLineWidth(10);
 assertEquals(" word ", f.center("word"));

}

does not compile

class Formatter{

 public void setLineWidth(int width) { }
 public String center(String line) {

 return "";
 }

}

compiles and fails

import java.util.Arrays;

public class Formatter {
 private int width;

 private char spaces[];
public void setLineWidth(int width) {

 this.width = width;
 spaces = new char[width];

 Arrays.fill(spaces, ' ');
}

public String center(String term) {
 StringBuffer b = new StringBuffer();

 int padding = width/2 - term.length();
 b.append(spaces, 0, padding);

 b.append(term);
 b.append(spaces, 0, padding);

 return b.toString();
}

}

compiles and unexpectedly fails

public String center(String term) {

 StringBuffer b = new StringBuffer();
 int padding = (width - term.length()) / 2;

 b.append(spaces, 0, padding);
 b.append(term);

 b.append(spaces, 0, padding);
 return b.toString();

}
compiles and passes

public void testCenterLine() {
 Formatter f = new Formatter();
 f.setLineWidth(10);

 assertEquals(" word ", f.center("word"));
}

 public void testOddCenterLine() {
 Formatter f = new Formatter();

 f.setLineWidth(10);
 assertEquals(" hello ", f.center("hello"));

}
compiles and fails

public String center(String term) {

 int remainder = 0;
 StringBuffer b = new StringBuffer();

 int padding = (width - term.length()) / 2;
 remainder = term.length() % 2;

 b.append(spaces, 0, padding);
 b.append(term);

 b.append(spaces, 0, padding + remainder);
 return b.toString(); }

compiles and passes

Exercise

•  Extend the previous example by allowing any line
length

06/04/15 Barbara Russo 20

Exercise

•  Extend the example above by allowing terms that are
concatenation of word

06/04/15 Barbara Russo 21

What are the benefits of TDD?

•  Line Test Coverage: If you follow the rules of TDD,
then virtually 100% of the lines of code in your
production program will be covered by unit tests
–  This does not cover 100% of the paths through the code, but

it does make sure that virtually every line is executed and
tested.

06/04/15 Barbara Russo 22

What are the benefits of TDD?

•  Test Repeatability. The tests can be run any time you
like.

•  Documentation. The tests describe your understanding
of how the code should behave. They also describe the
API. Therefore, the tests are a form of documentation.

06/04/15 Barbara Russo 23

What are the benefits of TDD?

•  API Design. When you write tests first, you put
yourself in the position of a user of your program's
API. This can only help you design that API better.

•  Reduced Debugging. When you move in the tiny little
steps recommended by TDD, it is hardly ever
necessary to use the debugger. Debugging time is
reduced enormously.

06/04/15 Barbara Russo 24

