
Promises and Perils of Porting Software Visualization Tools to the Web

Marco D’Ambros, Michele Lanza, Mircea Lungu, Romain Robbes
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Software systems are hard to understand due to the com-
plexity and the sheer size of the data to be analyzed. Soft-
ware visualization tools are a great help as they can sum
up large quantities of data in dense, meaningful pictures.
Traditionally such tools come in the form of desktop appli-
cations. Modern web frameworks are about to change this
status quo, as building software visualization tools as web
applications can help in making them available to a larger
audience in a collaborative setting. Such a migration comes
with a number of promises, perils and technical implica-
tions that have to be taken into account before starting any
migration process.

In this paper we share our experiences in porting two
such tools to the web and discuss the promises and perils
that go hand in hand with such an endeavour.

1. Introduction

Developing tools is an important part of software en-
gineering research as they provide a proof-of-concept for
an approach. Further, the tool itself can be considered a
research contribution. However, tools remain often at the
stage of prototypes, not maintained anymore after the cor-
responding article is published. Little effort is spent in
making tools long-lived and used in an industrial context,
with a number of notable exceptions such as the Moose re-
verse engineering framework [7], visualization tools such
as Rigi [19], and recommender systems like Mylyn [13].

In the vast majority of cases, tools do not survive after a
research has been published and concluded. In his keynote
address at ICSE 20091, Carlo Ghezzi stated that a survey of
all the papers that appeared in TOSEM2 between 2000 and
2008 showed that 60% of them dealt directly or indirectly
with tools. However, of those, only 20% were actually in-
stallable, let alone functional.

In the past years, we have developed a number of soft-
ware visualizations tools, such as CodeCrawler [14], Soft-

1The 31st ACM International Conference on Software Engineering
2ACM Transactions on Software Engineering and Methodology

warenaut [15], BugCrawler [4], Evolution Radar [5], Bug’s
Life [6], Churrasco [3], and The Small Project Observa-
tory [16]. Many of these tools are available, but some effort
from the accidental user to make them work is required.
This certainly decreases their adoption and impact. The so-
lution to this problem is to exploit the web and some of the
modern technologies that are available. We see the web as
an opportunity to improve the accessibility and adoption of
research prototypes: If a tool is available as a web applica-
tion then there is no installation and the cost for people to
“give it a try” is minimal.

However, developing web-based software visualization
tools is not easy, and comes with a number of promises to
embrace and perils to avoid. In this paper we discuss our
experience in building two web-based software visualiza-
tion tools and distill a number of considerations that need
to be made if one wants to port such tools to the web. The
goal of this paper is to provide guidance to researchers who
want to move their (visualization) tools to the web, or want
to create new web-based tools from scratch.

Structure of the paper. In Section 2 we briefly describe
the web-based software visualization tools that we have de-
veloped, Churrasco and Spo. Based on our experience in
building these tools, we distill a number of promises and
perils for porting such tools to the web in Section 3, which
we discuss in Section 4. We then look at related work on
web-based analysis and visualization tools in Section 5 and
conclude in Section 6.

2. Churrasco and SPO

In the last years we have developed two web-based soft-
ware visualization tools: Churrasco and SPO (short for
the Small Project Observatory), available respectively at
http://churrasco.inf.unisi.ch and http://spo.inf.unisi.ch.

2.1. Churrasco

Churrasco [3] is a web-based platform for collaborative
software analysis with the following characteristics:

• It provides an easily accessible interface over a web
browser to create models of software systems and of

External
components

Target System
MOOSE

Reengineering
Environment

Churrasco core

Database

Visualization
Module

Annotation
Module

1
4

5

3

System
Complexity

Evolution Radar

Correlation View

Web Portal
VisualizerImporter

Mondrian
Users

Churrasco

Evolution
Radar

SVN
Repository

Bugzilla
Repository

Source Code

SVN Module

Bugzilla
Module

2

Bugzilla bugs &
activities

SVN

Figure 1. The architecture of Churrasco.

their evolution, and to store them in a database for sub-
sequent analysis.

• It provides a set of visual analyses and supports collab-
oration by allowing several users to annotate the shared
analyzed data.

• It stores the findings into a central database to create
an incrementally enriched body of knowledge about a
system, which can be exploited by subsequent users.

Figure 1 depicts Churrasco’s architecture, consisting of:

1. The core connects the various modules of Churrasco
and external components. It includes the internal rep-
resentation of a software system’s evolution and man-
ages the connection with the database to write models
imported from the web interface and to read models to
be visualized in the web portal.

2. The Bugzilla and SVN modules retrieve and process the
data from SVN and Bugzilla repositories.

3. The Web portal represents the front-end of the frame-
work (developed using the Seaside framework [8]) ac-
cessible through a web browser. It allows users to cre-
ate the models and to analyze them by means of differ-
ent web-based visualizations.

4. The Visualization module supports software evolution
analysis by creating and exporting interactive Scalable
Vector Graphics (SVG) visualizations. The visualiza-
tions are created by two external tools: Mondrian [18]
and the Evolution Radar [5] . The visualization module
converts these visualization to SVG graphics. To make
them interactive within the web portal, Churrasco at-
taches AJAX callbacks to the figures, allowing server-
side code to be executed when the user selects a figure.

5. The Annotation module supports collaborative analysis
by enriching any entity in the system with annotations.

It communicates with the web visualizations to depict
the annotations within the visualizations.

Figure 2 shows an example of a System Complexity vi-
sualization [14] rendered in the Churrasco web portal. The
main panel is the view where all the figures are rendered as
SVG graphics. The figures are interactive: Clicking on one
of them will highlight the figure (red boundary), generate
a context menu and show the figure details (the name, type
and metrics values) in the figure information panel on the
left.

A key idea behind Churrasco is collaboration: Each
model entity can be enriched with annotations to (1) store
findings and results incrementally into the model and to (2)
let different users collaborate in the analysis of a system
in parallel or succession. Annotations can be attached to
any visualized model entity, and each entity can have sev-
eral annotations. An annotation is composed of the author
who wrote it, the creation timestamp and the text. Since
the annotations are stored in a central database, any new
annotation is immediately visible to all the people using
Churrasco, thus allowing different users to collaborate in
the analysis. This is further supported by other features in
Churrasco, such as the “Recent annotations” panel, which
displays the most recent annotations added, together with
the name of the annotated entity. By clicking on it the user
can highlight the corresponding figures in the current visu-
alization. The “Participants” panel lists all the people who
annotated the visualizations, i.e., people collaborating in the
analysis. When one of these names is clicked, all the fig-
ures annotated by the corresponding person are highlighted
in the view, to see which part of the system that person has
been working on.

2.2. The Small Project Observatory

The Small Project Observatory (SPO from hereafter) is
an interactive web application to visualize and analyze soft-
ware ecosystems. A software ecosystem is a collection of

SVG
Interactive

Visualization

Recent annotations
added

People participating
to the collaboration

Selected figure
information

Metrics mapping
configurator

Package selector

Regular expression
matcher

User

Selected figure

Context menu

Report generator

Figure 2. A screenshot of the Churrasco web portal showing a System Complexity visualization of
ArgoUML (http://argouml.tigris.org).

software projects which are developed and evolved together
in the same environment. Information about a software
ecosystem can be found in a super-repository, a physical
or logical collection of version repositories for projects that
are developed in the context of an organization, a research
group or an open source community.

Figure 3 shows a screen capture of SPO during one of our
ecosystem case studies. SPO provides multiple views on a
repository. The user chooses the ones which are appropriate
for the type of analysis he needs. The Views panel (labeled
1) presents the list of all the available views.

The central view (labeled 2) displays a specific perspec-
tive on a super-repository. In this case it is a table that
presents metrics about the projects in the super-repository.

The view is interactive: The user can select and filter the
available projects, sort the displayed projects, obtain con-
textual menus for the projects or navigate between various
perspectives.

Given the sheer amount of information residing in a
super-repository, filters need to be applied to the super-
repository data. The top-right panel lists the active filters
(labeled 3). In the case of Figure 3 the only active filter is
“In-house projects”. The user can choose and combine ex-
isting filters. A user can also apply filters through the inter-
active view, for example by removing a project or focusing
on a specific project using the contextual menu.

Figure 4 shows another perspective over an ecosystem:
A visualization applied to the software ecosystem that is

3

1

2

Figure 3. The user interface of SPO.

Figure 4. Size and activity evolution for the
projects in the SCG ecosystem.

hosted by the Software Composition Group from the Uni-
versity of Bern, Switzerland. It presents two timelines dis-
played in parallel: the growth of the size (top graph) and the
fluctuation of the activity (bottom graph). The size is mea-
sured in number of classes while the activity is measured in
number of commits. The figure shows that size is monoton-
ically increasing while the activity fluctuates over time with
regularities and with a general trend being visible. One of
the regularities is the dip in activity towards the end of ev-
ery year and in the summer. This rhythm corresponds to the
holiday periods of students. The general trend shows in-
crease in activity until the peak of January 2007 when there
are 700 commits. After that date, the overall activity level
seems to have fallen.

Figure 5 presents a conceptual diagram of the architec-
ture of SPO. The main components are:

1. The import module is responsible for interfacing with
the super-repository and pulling data from it. Cur-

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Analysis
Metrics,

Aggregation

Visualization
Layout Engine,

JS/SVG
Generator

Import and Automatic Update
CVS

Store

Super-
Repository

Cache

SVN

dot
graph layouting

Softwarenaut
Architecture
recovery tool

Internal Representation
Projects, Developers, Histories

Web
portal

Users

1

2

3

4

5 6

Figure 5. The architecture of SPO.

rently SPO supports two types of super-repositories:
one based on SVN and another one based on Store, a
specific Smalltalk repository.

2. The internal representation contains a repository of
ecosystem models.

3. The analysis module is computing metrics and any
other information that can be derived by analyzing the
information in the ecosystem model.

4. The cache module. Due to the highly interactive and
exploratory nature of the tool, SPO generates dynam-
ically all the web pages and all the visualizations they
contain. This module caches all the information that is
needed in order to speed-up the view generation.

5. The visualization module takes as input information
from the internal representation, analysis and cache
modules and generates views from it. The module con-
tains the layout engine, which delegates the layouting
to the Dot external tool3, and the SVG generator.

3See http://hoagland.org/Dot.html

Target

Internal representation
Meta-model

Users

Web based software visualization tool

Importers

Data n

Data1

Internal analysis
(measures, metrics etc.)

Visualization
engine

Visualization
exporter Cache

Web portal

Optional
component

1 2

3

65

4

7

9

8

A

Figure 6. General architecture of a web-based
software visualization tool.

6. The web portal is the user interface of SPO, built on
top of the Seaside web application framework.

2.3. Beyond Churrasco and SPO

Figure 1 and Figure 5 show the architecture of Churrasco
and SPO. Based on our experience, we abstracted a general
architecture for web-based software visualization tools dis-
played in Figure 6. Dashed elements are optional compo-
nents. Software visualization tools provide views on one or
more aspects (e.g., source code, bug report, mail archive,
etc.) of a software. Therefore, they have an importer mod-
ule (1) which retrieves the data and stores it according to an
internal representation (2). The data is then optionally pro-
cessed to compute metrics (3) about the considered aspects.
The data is finally visualized by means of a visualization
engine (4): In case the engine does not produce a web suit-
able visualization, an exporter (5) is used to create the web
visualization. To improve the performances one can use a
cache component (6) which avoids recomputing the visual-
izations. The software visualization tool has a web portal
which displays the visualizations (7), imports the data (8),
accesses the models (9), and computes the metrics (A).

3. Promises and Perils

In this section, we recall our experience building Chur-
rasco and SPO and extract various aspects of it in the form
of promises and perils, summarized in Table 1.

Promise 1 - Availability: Porting software visualization
tools to the web makes them more available than desktop
applications.

Availability and Privacy
Promise 1. Porting software visualization tools (SVT) to the
web makes them more available than desktop applications
Peril 1. Sensible information about software systems should
not be available for not authorized people

Collaboration and Performance
Promise 2. Porting SVT to the web eases making them col-
laborative
Peril 2. Web-based software visualization applications (WB-
SVA) have to serve large amounts of data to several users,
which can be a performance bottleneck impacting all users
Promise 3. WBSVA ease the creation of an incrementally en-
riched knowledge about a software

Error Handling
Peril 3. WBSVA are single points of failure
Peril 4. Debugging and testing web applications is hard
Promise 4. WBSVA provide feedback about errors
Promise 5. WBSVA make it possible to gather usage data

Development
Peril 5. WBSVA have to tackle cross browser issues
Peril 6. Developing interactive web applications is hard
Peril 7. Web technologies are changing fast
Promise 6. WBSVA can use external tools to perform a num-
ber of tasks, exposing only the results as services

Table 1. Summary of promises and perils.

Many research prototypes have problems with respect to
their availability. Often such prototypes are hard to install
because of compatibility issues, missing libraries, missing
documentation etc. Among the various reasons behind the
availability problem, one is that researchers do not have
the manpower required to create and update documenta-
tion, maintain the software, keep the web site (when exist-
ing) up-to-date, etc. Moreover, academic research is mostly
publication-driven, and not tool-driven, i.e., there is little
direct benefit that comes with maintaining tools.

Tracking the evolution of systems and components re-
quires further effort, as compatibility issues occur over time
when new versions of components the tool depends on are
released. Having the application running on a Web server
means that the environment can be frozen, so that support-
ing the latest version of a component is not a priority.

Indeed, porting research prototypes to the web increases
the availability of such tools and avoids installation prob-
lems. In the case of both Churrasco and SPO all that needs
to be given to users is the url.

Peril 1 - Privacy: Sensible information about software
systems should not be available for unauthorized people.

Having a tool available on the web implies that anybody
can access it. Web-based software visualization tools might

have access to sensible information about a software sys-
tem, which should be accessible only by authorized people.
For this reason, such tools should provide an authorization
mechanism that is not required for desktop applications.

In Churrasco we tackled this problem by letting only reg-
istered users accessing the visualizations, and by giving dif-
ferent users different privileges. SPO does not implement
authentication yet. As a result, when we approached an in-
dustrial partner for a case study on the ecosystem of the
company, the partner declined to import their data in the on-
line version of SPO. They installed a local version of SPO
on their intranet and performed the analysis themselves.

Promise 2 - Collaboration: Porting software visualiza-
tion tools to the web eases the process of making them
collaborative.

Sharing the data among users naturally leads to collab-
oration. Virtually all software is nowadays built in a col-
laborative fashion. This ranges from the usage of SCM
systems supporting distributed development, now widely
used in practice [10], awareness tools to prevent upcoming
conflicts [21], to fully integrated solutions such as IBM’s
Jazz [12].

Just as the software development teams are geographi-
cally distributed, consultants and analysts are too. Analysis
tools supporting collaboration would allow different experts
with a distinct range of skills to collaboratively analyze a
software system from various locations and/or time zones.

Churrasco supports collaboration using a central
database: Different users access the same web portal, and
analyze the same models of software systems. Users col-
laborate by annotating the entities composing the models
and by looking at other people’s annotations. This simple
collaboration facility proved useful in a couple of experi-
ments. Improving it via the addition of richer communica-
tion channels, such as chat or tagging, is easy to achieve in
a web application.

Desktop applications can also support collaboration, but
we argue that this is harder to implement. In this case, the
various instances of the application need a communication
channel among themselves directly in a peer-to-peer fash-
ion or using a centralized server. This leads to networking
issues due to firewalls. We are not aware of software visu-
alization tools which support collaboration, but a number of
visualization tools in other domains support it [1, 9].

Peril 2 - Performance and Scalability: Collaborative,
visual web applications have to serve large amounts of
data to several users at the same time, which can be a
performance bottleneck impacting all users.

Web applications typically have to serve several users at

the same time, and collaborative applications even more so.
Depending on the number of users and the type of applica-
tion, the performance per user might decrease. This is es-
pecially true for software visualization applications, where
for large datasets both the computation time and the size of
the data to be sent to the user’s browser might be large, in-
creasing the user’s waiting time and therefore the usability
of the application.

Visualization must scale up as it is most useful to deal
with large amounts of data [22]. Since the visualizations
are rendered on the client side, bandwidth can become and
issue. For example, in Churrasco an SVG graphic visual-
izing the ArgoUML software system (ca. 1800 classes) is
larger than 1 MB, while SPO generated SVG images going
up to 2MB. SPO however reduces the bandwidth by com-
pressing the data to be sent, effectively trading CPU usage
for increased bandwidth. In that case the 2MB file was re-
duced to 150KB.

The standard way of rendering a web visualization is that
every time something changes in the page, the whole page is
refreshed. In the context menu example, whenever the user
clicks on a figure the page changes because a new figure ap-
pears, and therefore the page needs to be refreshed to show
the menu. Refreshing the entire web page for every action
introduces latencies which make the web application slow
when it comes to rendering very large SVG files. One way
to avoid this problem is to use semantic zoom and details on
demand to keep the rendered image small. Churrasco can
focus on a single package of a system, while SPO allows
the definition of filters. Another possibility is to minimize
the page refreshes by using AJAX updates, which refresh
only the changed part of the page, as Churrasco does. How-
ever, if the use of AJAX has been simplified over time, it is
still not trivial.

Concurrent usage is another issue made potentially
worse by collaborative work. With Churrasco and SPO we
performed two experiments, with 8 participants each, with-
out any performances issue. However, 8 users is a small
number which does not allow for general statements.

This peril can be tackled by having several instances of
the web application running on several servers, with a web
server responsible of dispatching the requests and balancing
the CPU and bandwidth loads. Such a solution is standard
fare in web applications. However, for research prototypes
such a hardware infrastructure is often not available.

Promise 3 - Incremental results: Web-based software
visualization tools ease the creation of an incrementally
enriched body of knowledge on software systems.

Despite performance and scalability issues, sharing the
data paves the way for new possibilities. Results of analy-
ses on software systems produced by tools are often written

into files and/or manually crafted reports, and have there-
fore a limited reusability. To maximize their reuse, analysis
results should be incrementally and consistently stored back
into the analyzed models. This would allow researchers to
develop novel analyses that exploit the results of previous
analyses, leading to a cross-fertilization of ideas and results.
It can also serve as a basis for a benchmark for analyses tar-
geting the same problem (i.e., by tagging entities that a can-
didate analysis should detect, we can compare approaches),
and ultimately would also allow one to combine techniques
targeting different problems.

By using a central database where all the models are
stored, and by letting users annotate the entities composing
the models, the users can store the results of the analysis
on the model itself, thus supporting the incremental storage
of results. This is supported in Churrasco, and can be eas-
ily implemented in other web-based software visualization
applications, using a shared central database.

Peril 3 - Single point of failure: Web-based applica-
tions are single points of failure.

Excessive centralization reduces the reliability of the ap-
plication. Web-based applications run on a server, and usu-
ally have a unique instance of the application which all the
users access. As a consequence, if the application crashes it
will lock out all users, i.e., the application represents a sin-
gle point of failure, whereas in desktop applications each
user has a private instance of the application, where a crash
does not impact the other users. This peril can be tackled,
together with performances, by distributing the computation
on several servers for redundancy.

Peril 4 - Debugging and testing: Debugging and testing
web applications is hard.

A barrier to develop web applications is the lack of sup-
port for debugging. Even if there are some applications
like Firebug (http://getfirebug.com) providing HTML in-
spection, Javascript debugging and DOM exploration, the
debugging support is not comparable with the one given in
mainstream IDE such as Eclipse. Moreover, the testing of
a web-based system is hard to perform, due to the lack of
consolidated techniques and supporting tools.

Promise 4 - Feedback: Web-based software visualiza-
tion tools provide feedback about errors and failures.

If debugging a web application is more difficult than
a desktop one, being notified of bugs and deploying the
fixes is actually easier. Because of the restricted manpower
available when developing them, research prototypes are

far from being mature and stable applications. Indeed, re-
searchers do not have the resources to invest a significant
amount of time testing their application. These problems
impact the usage of the tools and therefore their adoption
by other researchers or people from industry. One way to be
notified about these issues is to instrument the tool so that
if it crashes, it collects information about the run-time sce-
nario and then asks the users to send this information back
to the developers. This widely adopted approach requires
a significant infrastructure and is therefore mostly used in
commercial applications.

By having the tool as a web service, the tool is always
running on the server, and therefore the tool developer can
be notified of all bugs and failures. Bug fixes also do not
need to be distributed to individual users, but are available
to all users at once.

Promise 5 - Usage report: Web applications make it
possible to gather precise usage data.

Similarly to error notifications, gathering usage data is
easy. With desktop applications it is possible to track the
number of downloads of a tool, and the tool might be instru-
mented to send back feedback about how it is used. This is
however not straightforward to implement. Web-based ap-
plications offer the possibility to exploit standard solutions
to the usage statistics problem, such as Google analytics.
This allows developers to easily gather usage statistics and
infer popular features or usability problems, to continuously
improve the tool. As with bug fixes, deploying updates is
transparent.

Peril 5 - Browser compatibility: Web applications have
to tackle cross browser issues.

Web browsers are a rather diverse crowd, and the fact
that a web application works with one browser does not
guarantee that it works with other browsers. While many
compatibility issues can be solved, such as how CSS (Cas-
cading Style Sheets) are interpreted, others cannot. In these
cases the users have to focus on a particular web browser to
exploit the full functionality of the web application.

Visualization applications have requirements which
make this situation more probable: For instance, Churrasco
uses AJAX callbacks to update SVG depictions without re-
freshing the entire web page. The SVG DOM update in
AJAX is supported only by Firefox and, as a consequence,
Churrasco is only fully functional with Firefox.

SVG is a W3C specification and most of the recent ver-
sions of major web browsers support it: Opera and Safari
support it without AJAX update and Internet Explorer sup-
ports it through a third party plug-in. However, not all the

browsers have the same speed in rendering it, which makes
the user experience unpredictable. To test this, we wrote a
simple JavaScript program which calculates the rendering
speed of various browsers. We ran the script in OS X on a
PowerBook G4 running at 1.5GHz with 1GB of RAM. The
differences between the browsers are very large. For exam-
ple, in one second Opera 9.50 renders 595 polygons while
Safari only renders 77. This simple benchmark shows two
of the greatest limitations of SVG: The amount of visual el-
ements that one can render is limited (at least currently) and
the user experience is hard to predict, as the timings will
be different for users with different system configurations.
Also, we encountered problems with the same pop-up menu
being rendered differently in two browsers.

Other technical choices such as Flash or JavaScript (with
APIs such as Processing or the JavaScript InfoVis Toolkit4)
may alleviate these problems. JavaScript in particular has
seen a resurgence of interest among web browser builders
who now compete over their JavaScript performance.

Finally, it is not unreasonable to require a widespread
browser such as Firefox over Internet Explorer if the bene-
fits of the application are promising enough.

Peril 6 - Interaction: Developing interactive web appli-
cations is harder than desktop applications.

Supporting interaction through a web browser is a non-
trivial task, and even supposedly simple features, such as
context menus, must be implemented from scratch. In Chur-
rasco context menus are implemented as SVG composite
figures, with callbacks attached, which are rendered on top
of the SVG visualization. In SPO such menus are dynam-
ically generated by Javascript. It is hard to guarantee a re-
sponsive user interface, since every web application intro-
duces a latency due to the transport of information.

However, libraries of reusable components are quickly
developing, such as Scriptaculous and jQuery for
Javascript5, which should alleviate this problem somewhat.

Peril 7 - Rapid evolution: Web technologies are chang-
ing fast.

The dust is far from settled in the web technology
arena. As we saw above, several technologies (SVG, Flash,
Javascript, etc.) are currently competing. These technolo-
gies are rapidly evolving: New possibilities are emerg-
ing, and the amount of support among browsers varies.
This rapid evolution makes it difficult to choose which
tools/libraries/technologies to use, and to maintain the web
application aligned with the rapidly evolving technologies.

4Available respectively at: http://processingJS.org and http://thejit.org
5Available at respectively http://script.aculo.us and http://jquery.com

Developers must be watchful of new opportunities and po-
tentially capable to switch to newer technologies when
needed. We hope that, with time, standard solutions will
emerge for highly interactive, graphical web applications.

Promise 6 - Hiding tasks and exposing services: Web-
based visualization applications can use external tools to
perform tasks, exposing the results as services.

Some aspects of web application development are how-
ever easier. Implementing software visualization tools as
web applications allows the developer to use external tools
in the backend. This is much harder with desktop appli-
cations because external tools have to be included in the
application distribution, and they should run on the client
machine (which might also have installation problems like
the application itself). In short, the web application devel-
oper has total control over the environment the application
is executing in.

Web
interface

Mondrian

Visualization (SVG) request

Churrasco

SVG
converter

Visualization request

Visualization SVG
1

2

3 4

(a) Churrasco uses the Mondrian framework in the backend to create visu-
alizations and then it converts them as SVG interactive graphics.

Web
interface

Dot

Visualization (SVG) request

SPO

Viz module
Laid out viz

Layout request

SVG 1

3 2

4 5

(b) SPO uses the Dot external tool to layout its visualization.

Figure 7. Two examples of using external
tools in Churrasco and SPO.

The use of external tools offers a lot of reuse oppor-
tunities, such as layout engines. For example, Churrasco
reuses two external tools (Mondrian [18] and the Evolu-
tion Radar [5]) to create visualizations, which are then con-
verted to SVG by a dedicated module of Churrasco (see Fig-
ure 7(a)). This enables us to freely reuse all the visualiza-
tions and layouts provided by Mondrian and the Evolution
Radar. SPO is dispatching the layouting of its visualizations
to Dot, a Unix command line layout algorithm library (see
Figure 7(b)).

SPO also exposes the service of Softwarenaut [15],
an architecture recovery tool whose visualizations where

adapted to the Web. Moreover, SPO is processing huge
amounts of data (entire super repositories) when there are
no user connected, i.e., exploiting idle time, caching the
results and presenting them on-demand to the users. In
this way, SPO is hiding heavy computations and presenting
only the results as a lightweight service. Churrasco does the
same thing when, given the url of a SVN or Bugzilla reposi-
tory, it sends an email to the user when the data is imported.

Figure 8 shows how the usage of external tools can be
generalized: The web interface gets the request for a visu-
alization and dispatches it to an external tool. The result
is then converted in a web-suitable format and sent back
through the web interface to the clients’ web browsers.

Web
interface

External tool
running on the server

Web based visualization application

Conversion
module 1

2

3 4
Viz request

Viz request

Viz web-suitable viz

Figure 8. The general schema for using exter-
nal tools in web-based visualization applica-
tions and hide them behind the web interface.

4. Discussion

We argue that in developing a web-based software visu-
alization tool the benefits of the promises are greater than
the mostly technical issues and challenges of the perils. In
particular, we argue that the most important promises are:

• Availability. In the Introduction we observed that 80%
of tools presented in TOSEM in the last 8 years are not
even installable. The web can improve this situation.

• Reuse. We showed that with web applications it is pos-
sible to hide tasks and provide services. Porting or
creating a web visualization requires a smaller imple-
mentation effort, as not only libraries but even entire
external tools can be reused.

• Collaboration. Collaboration is getting more and more
attention both in forward and reverse engineering. We
believe that this trend will continue and collaboration
will play a key role in these domains in the following
years. We discussed how and why, with web applica-
tions, supporting collaboration is easier with respect to
desktop applications.

To increase their survival chances, every software visu-
alization tool, in the long run, should have a web front-end.

This does not require a huge implementation effort because
many existing tools can be just reused, and it will increase
the accessibility of the application and its adoption.

The perils of developing web applications should be
however taken into account. In such a rapidly evolving do-
main, it is especially important to evaluate which technol-
ogy fits best the developer needs when it comes to porting
or creating a web visualization. Nowadays the choice is
among SVG, Flash, Javascript Processing and InfoVis. The
choice of the technology should be based on the interaction
levels offered and the one needed for the application, how
easily it integrates with the existing application / framework
(if about porting a visualization), and the debugging facili-
ties available.

5. Related Work

As far as we know, besides Churrasco and SPO there
are no web-based software visualization tools. The most
related work are software visualization tools which produce
outputs readable by web browsers, and web-based software
analysis tools without visualizations.

Beyer and Hassan proposed Evolution Storyboards [2], a
technique that offers dynamic views. The storyboards, ren-
dered as SVG files, depict the history of a project using a se-
quence of panels, each representing a particular time period.
These visualizations are partially interactive: They only
show the names of the entities in the figures. In contrast
the views offered in Churrasco and SPO are fully interac-
tive, providing context menus for the figures and navigation
capabilities. The Evolution Storyboard is not a web appli-
cation, but a tool producing SVG files readable by browsers.

Nentwich et al. introduced BOX, a portable, distributed
and interoperable approach to browse UML models [20].
BOX translates a UML model in XMI to VML (Vector
Markup Language), which can be directly displayed in a
web browser. BOX enables software engineers to access
and review UML models without the need to purchase li-
censes of tools that produced the models. As the Evolution
Storyboard, BOX is not a web application but a tool which
can produce output readable by some web browsers.

Mancoridis et al. presented REportal, a web-based portal
site for the reverse engineering of software systems [17].
REportal allows users to upload their code (Java or C++)
and then to browse, analyze and query it. These services are
implemented by reverse engineering tools developed by the
authors over the years. For doing that the authors exploited
promise 6 - Hiding tasks and exposing services. REportal
supports software analysis through browsing and querying,
but does not offer interactive visualizations.

Finnigan et al. developed the Software Bookshelf, a
web-based paradigm for the presentation and navigation of
information representing large software systems [11].

6. Conclusion

Building software visualization tools for the web is a
daunting task that we experienced first-hand when we im-
plemented two web-based tools, Churrasco and SPO. We
documented our experiences in the form of promises and
perils of such a transition. The transition to the web has a
variety of technological consequences making some tasks
harder (e.g., debugging, scaling), but some other easier
(e.g., error reporting, maintainance). The web is a mov-
ing target: Technologies and standards are rapidly chang-
ing, and one must regularly assess the technological choices
made in the light of changing support accross browsers. If
completed, this transition is rewarding: A web-based tool
has a greater visibility and potential impact, as people can
work with it without needing to install it. A web platform
also makes collaboration a more probable possibility, as the
costs to implement it are lower than in standalone applica-
tions.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science foundation for the project
“DiCoSA” (SNF Project No. 118063).

References

[1] C. Bajaj and S. Cutchin. Web based collaborative visualiza-
tion of distributed and parallel simulation. In Proceedings of
the IEEE symposium on Parallel visualization and graphics
(PVGS 1999), pages 47–54. IEEE Computer Society, 1999.

[2] D. Beyer and A. E. Hassan. Animated visualization of soft-
ware history using evolution storyboards. In Proceedings
of the 13th Working Conference on Reverse Engineering
(WCRE 2006), pages 199–210. IEEE CS Press, 2006.

[3] M. D’Ambros and M. Lanza. A flexible framework to
support collaborative software evolution analysis. In Pro-
ceedings of CSMR 2008 (12th IEEE European Conference
on Software Maintenance and Reengineering), pages 3–12.
IEEE CS Press, 2008.

[4] M. D’Ambros and M. Lanza. Visual software evolution re-
construction. Journal of Software Maintenance and Evolu-
tion: Research and Practice (JSME), 21(3):217–232, 2009.

[5] M. D’Ambros, M. Lanza, and M. Lungu. Visualizing co-
change information with the evolution radar. Transactions
on Software Engineering (TSE), page to appear, 2009.

[6] M. D’Ambros, M. Lanza, and M. Pinzger. “a bug’s life” —
visualizing a bug database. In Proceedings of VISSOFT 2007
(4th IEEE International Workshop on Visualizing Software
For Understanding and Analysis), pages 113–120. IEEE CS
Press, 2007.

[7] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, 2005.

[8] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible
environment for building dynamic web applications. IEEE
Software, 24(5):56–63, 2007.

[9] K. Engel and T. Ertl. Texture-based volume visualization
for multiple users on the world wide web. In M. Gervaut,
D. Schmalstieg, and A. Hildebrand, editors, Proceedings of
the Eurographics Workshop in Vienna, Austria, pages 115–
124, 1999.

[10] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber. Impact of soft-
ware engineering research on the practice of software con-
figuration management. ACM Transactions on Software En-
gineering and Methodology, 14(4):383–430, Oct. 2005.

[11] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, Nov. 1997.

[12] R. Frost. Jazz and the eclipse way of collaboration. IEEE
Software, 24(6):114–117, 2007.

[13] M. Kersten and G. C. Murphy. Using task context to im-
prove programmer productivity. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT 2006/FSE-14), pages 1–
11, New York, NY, USA, 2006. ACM.

[14] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. Transactions on Soft-
ware Engineering (TSE), 29(9):782–795, Sept. 2003.

[15] M. Lungu and M. Lanza. Softwarenaut: Exploring hierarchi-
cal system decompositions. In Proceedings of CSMR 2006
(10th IEEE European Conference on Software Maintenance
and Reengineering), pages 349–350. IEEE CS Press, 2006.

[16] M. Lungu, M. Lanza, T. Gı̂rba, and R. Heeck. Reverse en-
gineering super-repositories. In Proceedings of WCRE 2007
(14th IEEE Working Conference on Reverse Engineering),
pages 120–129. IEEE CS Press, 2007.

[17] S. Mancoridis, T. S. Souder, Y.-F. Chen, E. R. Gansner, and
J. L. Korn. Reportal: A web-based portal site for reverse en-
gineering. In Proceedings of the 8th Working Conference on
Reverse Engineering (WCRE 2001), page 221. IEEE Com-
puter Society, 2001.

[18] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An agile
visualization framework. In Proceedings of Softvis 2006 (3rd
International ACM Symposium on Software Visualization),
pages 135–144. ACM Press, 2006.

[19] H. A. Müller. Rigi — A Model for Software System Construc-
tion, Integration, and Evaluation based on Module Interface
Specifications. PhD thesis, Rice University, 1986.

[20] C. Nentwich, W. Emmerich, A. Finkelstein, and A. Zisman.
BOX: Browsing objects in XML. Software Practice and Ex-
perience, 30(15):1661–1676, 2000.

[21] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r:
Raising awareness among configuration management
workspaces. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), pages
444–454, 2003.

[22] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

	. Introduction
	. Churrasco and SPO
	. Churrasco
	. The Small Project Observatory
	. Beyond Churrasco and SPO

	. Promises and Perils
	. Discussion
	. Related Work
	. Conclusion

