
Commit 2.0

Marco D’Ambros, Michele Lanza
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

{marco.dambros, michele.lanza}@usi.ch

Romain Robbes
University of Chile

Chile
romain.robbes@gmail.com

ABSTRACT
Commit comments written by developers when they submit
their changes to a versioning system are useful for a number
of tasks: Developers write commit comments to document
changes and as a means to communicate with the rest of the
development team; Researchers mine commit-related data
contained in software repositories to support software evo-
lution and reverse engineering activities. However, the sup-
port provided by IDEs is restricted in this respect, as they
limit the users to use only text to document their changes.

We present Commit 2.0, an IDE enhancement to enrich
commit comments using software visualization. Commit 2.0
generates visualizations of the performed changes at differ-
ent granularity levels, and lets the user annotate them.

1. INTRODUCTION
It has become a widely accepted practice for software

projects to use a versioning system, such as CVS, SVN, or
Git, to manage the evolving code base.

Many versioning systems (e.g., Git, CVS, ClearCase) al-
low the developers to write a comment at commit time
and store it together with the changes. The information
contained in such comments is inherently useful: For soft-
ware development commit comments are used to document
changes and as a means of communication and synchroniza-
tion among the development team. With respect to software
evolution, many approaches in the field of Mining Software
Repositories (http://www.msrconf.org), deal with mining
and analyzing this commit related information [1–3].

Given the importance of commit comments data, devel-
opers should write meaningful comments which exhaustively
document the changes. However, developers do not always
document all the changes in the commit comment. This hap-
pens for a number of reasons which can vary among software
projects, development teams and organizations, because of
different practices and different development rules. Still, a
common cause is that writing exhaustive comments is time-
consuming, and -being the last step of a coding session- the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web2SE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-975-6/10/05 ...$10.00.

necessary time and energy is not always available. Moreover,
for commits with many changes, the developers might not
remember all of the modifications. Another problem of com-
mit comments is the lack of context in which changes occur.
For example, if a developer changes 5 classes to add a new
feature in a system, in the commit comment he can describe
the feature and list classes and methods. However, when
reading such a comment, it is not clear where the modified
classes (and methods) are in the system, which relationships
they have and what the magnitude of the change is.

We argue that IDEs should provide means to ease the task
of documenting changes in commits. We describe an ap-
proach, called Commit 2.0 , to enrich commit commit com-
ments using software visualization, which provides a visual
context to the changes and facilitates their documentation.
Since versioning system repository do not support media,
but only text, for commenting the changes, Commit 2.0 uses
a blog as alternative repository and persistency mechanism.

Structure of the paper. In Section 2 we provide an
overview of our approach. We describe the visualization
part of Commit 2.0 in Section 3 and present an example
usage of the approach in Section 4. After discussing the
main benefits and the current limitations of the approach in
Section 5, we provide implementation details in Section 6.
In Section 7 we look at related work, and we conclude in
Section 8 by summarizing the contributions of the paper
and by presenting how we plan to extend Commit 2.0 .

2. COMMIT 2.0 IN A NUTSHELL
Commit 2.0 is an IDE enhancement which generates visu-

alizations of the changes at different granularity levels, and
lets then the user enrich them with annotations. Figure 1
provides an overview of how Commit 2.0 works:

• Commit 2.0 is triggered when the developer wants to
commit the code or document previous commits.

• At this point, in addition to the standard dialog where
the developer can write the comments, Commit 2.0
shows also a coarse-grained visualization of the system
which highlights the changes. The visualization is au-
tomatically generated by comparing the last version of
the project in the repository with the locally modified
version. The developer can interact with the visualiza-
tion by inspecting entities, moving figures, zooming in
and out and, most importantly, adding annotations.
Annotations are rendered as floating text boxes and
can be placed by the developer next to a modified en-
tity to detail and comment the corresponding change.

http://www.msrconf.org

Commit 2.0

Versioning
System

Repository

Visualization
of the Changes

Annotated Visualization
of the Changes

Refactored
the class

Added a
listener

Coding Session
in the Pharo IDE

Committing Commit 2.0 creates
Visualization of Change

User
annotates

the changes

Committing

Annotated
Visualizations

are posted
on Blog

Figure 1: Commit 2.0 in a nutshell

• The developer can select one or more entities and spawn
a fine-grained visualization. As before, the developer
can document the changes in the fine grained view by
adding an arbitrary number of annotations.

• Once the developer has completed the documentation
of the changes, with one annotated coarse-grained vi-
sualization and an arbitrary number of annotated fined-
grained visualizations, she can complete the commit by
submitting the changes, the (traditional) textual com-
mit comments, and the annotated visualizations.

• The code and the (traditional) comments are submit-
ted to the versioning system repository, as without
Commit 2.0 . The annotated visualizations are posted
on a Posterous blog (http://posterous.com), using
the version number as a title.

3. VISUALIZING CHANGES
Figure 2 shows the principles of the visualizations used by

Commit 2.0 to depict changes.
The coarse-grained view shows all the packages in a sys-

tem as rectangle figures, and within each rectangle all the
classes belonging to the corresponding packages are also de-
picted as rectangle figures. The width of the rectangles rep-
resenting classes is proportional to the number of attributes,
and the height to the number of methods. The size of the
package figures is set to fit all the class figures in it.

The fine-grained visualization is a graph whose nodes rep-
resent classes and edges represent inheritance relationships.
Within each node, all the methods belonging to the corre-
sponding class are represented as rectangle figures, where
their height is proportional to their number of lines of code
(LOC). We do not directly map any class metric on the size
of class figures. However, since the size of method figures
is proportional to LOC, and the size of class figures is set

Package

NOM

NOA

Class

Class

LOC

M
et

ho
d

Inheritance
relationship

(a) Coarse grained view (b) Fine grained view

Package

Package

Class

Class

Class

Figure 2: Visualizing changes in Commit 2.0

to fit all contained method figures, the size of classes is pro-
portional to the weighted number of methods, where the
weighting factor is LOC. The fine-grained view is generated
from a selection of packages and/or classes in the coarse
grained view. Since the fine-grained view does not visualize
packages but only classes and methods, selecting a package
in the coarse-grained view is the same as selecting all the
classes belonging to that package.

In both views, the following color scheme is applied to
highlight the changes: Red represents deletion (the corre-
sponding entities have been deleted), green represent addi-
tion, blue modification and gray represents indirect changes
(if an entity is modified the container entity has an indi-
rect change). When changes concern outer entities (e.g.,

http://posterous.com

Figure 3: Example of a coarse-grained, annotated Commit 2.0 change visualization

Figure 4: Example of a fine-grained, annotated
Commit 2.0 change visualization

packages in the coarse grained view and classes in the fine
grained one), we use lighter color, i.e., light green for addi-
tion and light red for deletion. Finally, in the fine grained
view we represent modification of classes (the outer entities)
with light blue: Only structural modifications are consid-
ered, i.e., additions or removal of instance variables.

Example: Coarse-grained view Figure 3 shows an ex-
ample coarse grained view obtained from the Spyware soft-
ware system [5]. We see that 5 packages were modified,

mostly because the contained classes were modified (1), or
added (2). Further, looking at the annotations added by
the developer, we see that the changes fixed a bug (1) and
added a new feature (2). The visualization allows us to lo-
calize the changes, i.e., understand which classes/packages
were modified to fix the bug and add the feature.

Example: Fine-grained view Figure 4 shows a visu-
alization of fine-grained changes in OCompletion (see next
section). Light blue classes had attributes added or removed.
The view provides an insight on the impact of the changes
on the system, in terms of changes to its behavior.

4. AN EXAMPLE: OCOMPLETION
OCompletion is a code completion tool based on an opti-

mistic completion algorithm [6]. It shows a tiny menu under
the cursor when the user is typing in order to complete the
identifiers the user is entering. Unlike other code completion
tool, it is always active and does not need to be explicitly in-
voked. Pressing the tab or enter key allows one to complete
the text being entered with one of the proposed identifiers.
Being included in the Pharo IDE, OCompletion is contin-
uously maintained. In this example, we show how one can
use Commit 2.0 to document the changes between versions
35 and 41 of OCompletion.

Step 1: Choosing the versions Commit 2.0 in integrated
in Monticello, Pharo’s source code control system. The
browser shows a list of versions, their author, time stamps
and commit comments, as shown in Figure 5. After select-
ing a version, the Commit 2.0 button becomes active. When
clicked, it opens a menu to select the previous version against
which to document the changes. When the user selects the

Figure 5: Integration of Commit 2.0 with Monticello

second version, Commit 2.0 import both of the version in a
single annotated moose model, and opens change-aware vi-
sualizations. In our case, the user first selects version 41 of
OCompletion as the last version, and then version 35 as the
first version as the period to document. One can document
several versions at once if the delta between them is small.
In parallel Commit 2.0 starts to build the email it will send
to Posterous, putting as default subject the last version’s
number, and as default text the commit comment.

Step 2: Documenting the changes Between version 35
and 41, several bug fixes and enhancements were integrated
in OCompletion. First, a bug fix related to the use of OCom-
pletion in the debugger was integrated in version 36. Second,
the ability to select a menu item with the enter key, in ad-
dition to the tab key, was included in version 37. Then, in
version 38, another bug fix was integrated. Finally, in ver-
sions 39 to 41, incremental work proceeded in order to treat
character input in a more intuitive fashion. All of these
changes are scattered through the code base. The developer
adds annotations near the changed entities to document the
location and intent of each change. The developer is free to
move the graphical elements as he sees fit, in order to better
group related changes together.

In our example, the developer enters 3 annotations in the
coarse-grained views, describing the location of the changes
in the system. The changes in version 37 and 39-41 are
grouped as they concern the same portion of the code. The
annotations are shown in Figure 6. Note that the developer
also elected to change the title of the window, as a higher-
level change description.

After this, our developer annotates the fine-grained visu-
alization. This one features only the changed classes and
their methods. The developer once again uses the place-
ment of the entities and the annotations to show the extent
of each change to each method. One change in class EC-
Context, comprising two methods, is documented with two
annotations. Other changes are documented by one annota-
tion each, but the spacing of the entities clearly shows that
some changes span two or three classes, unlike others. All
in all, the process takes a handful of minutes.

Figure 6: Coarse-grained annotation of changes

Figure 7: Detailed comments on each change

Step 3: Posting to posterous Once the windows are
ready, the developer clicks the window button on the top
right corner. This summons a window-specific menu that
contains an ”add to email” item. Upon selecting this menu
item,a screen capture of the window is taken and added to
the email Commit 2.0 is composing. Clicking on the send
button asks for the developer’s SMTP password, and then
sends the email to the Posterous email account. Posterous
generates a blog post with an image gallery, as shown in
Figure 8. Since the developer was documenting the changes
to several versions at once, he also changed the title of the
blog post to better reflect the changes. From then, other
developers will see the new post in their RSS reader’s RSS
feed. If set up accordingly, Posterous can also post to web
sites such as twitter, flickr or Facebook – so that fans of a
tool’s Facebook page may be notified of the latest changes.

5. DISCUSSION
The main benefit of Commit 2.0 is that it provides a visual

context to changes, which eases both their documentation
and comprehension, i.e., understanding the rational behind
the changes. The visualizations can be used by a develop-
ment team as a mean to communicate. However, the usage
of Commit 2.0 requires an investment of time greater than
just write text comments. We argue that this investment

Figure 8: Email-generated posterous blog post

is worth as it produces better documentation for changes.
To help the developers spotting all the changes and to make
the approach scalable, the views in Commit 2.0 are fully in-
teractive, allowing the user to inspect entities, moving them
around and zooming in and out. Moreover, Commit 2.0
allows not only the visualizations but also any UI element
of the application to be annotated and documented, i.e.,
posted to the blog. Finally, the visualizations are kept sim-
ple so that they are easy to learn and understand.

On the downside, Commit 2.0 is a prototype which was
never tested with large software systems. A second limita-
tion consists in the storage of the annotations: they are only
stored in the visualizations, but not in the versioning system
repository. Also, they are not linked to the entities they refer
to. Moreover, the visualizations are stored as scalar images
(png or jpg), while a vectorial format (e.g. SVG) is not sup-
ported in the current implementation. Another limitation
is that the code repository and the blog are separated and
developers have to look at them with different tools.

Usage of Posterous. We decided to post the annotated
visualization on a blog because, to our knowledge, no ver-
sioning system supports the use of images to be attached to
commit comments. Using a blog has several advantages:

• We did not have to change anything in the versioning
system and it is applicable to any versioning system.

• Since every blog post has a permalink, every com-
mit has a permalink too, which can be used to access
the changes and understand them, for example before
checking out the code.

• Developers can comment and discuss the changes by
commenting the blog posts.

• Developers and project managers can subscribe to the
RSS feed of the blog and be automatically notified
about changes in the system, with details about them
(the visualizations). Therefore, Commit 2.0 and RSS
feed can be used as a visual monitoring system for the
software project.

• The blog can be integrated with Facebook or other so-
cial networking web application, to create a software
project development community composed of develop-
ers, project managers, testers and people interested in
the development of the project.

Posterous allows us to post the visualizations easily, by
sending e-mails with the visualizations as attachments. More-
over, Posterous allows multiple accounts (multiple emails) to
post. In this way, the identity of the developer who commits
the code is preserved.

6. COMMIT 2.0 IMPLEMENTATION
Commit 2.0 is developed in Smalltalk and is available

for the Pharo Smalltalk IDE (http://pharo-project.org).
Commit 2.0 leverages the following technologies:

Monticello is a Smalltalk-specific SCM system. It ver-
sions packages, classes and methods instead of directories,
files and lines. Hence the differences between two versions
are of a much higher level than for a conventional SCM sys-
tem. We extended Monticello so that Commit 2.0 can easily
access its code repositories, at the click of a button.

Moose is a reverse engineering platform. It can auto-
matically import Monticello versions of Smalltalk code in
its meta-model. We extended Moose to import both a ver-
sion and the differences with a previous version, enriched
with annotations describing the changes.

Mondrian is a visualization framework used by Moose.
It defines a domain-specific language to easily build visual-
izations. We built two Mondrian scripts in order to show
our change-enriched versions.

SMTPClient is a simple library to send emails. Commit
2.0 uses it to communicate with posterous.

Posterous is a web 2.0 blogging platform. When sent an
email, posterous generates a blog post based on the email’s
content and title.

In a way, Commit 2.0 is merely the glue between these
components.

7. RELATED WORK
Visualizing Versioning System Data. A number of

approaches were introduced to visualize versioning system
data. Xie et al. presented CVSViewer3D [13], a tool which
extracts, processes, and visualizes information from CVS
repositories. The visualization allows users to define mul-
tiple views of the change history data and to look at it at
different granularity levels. Girba et al. defined a mea-
surement for code ownership based on information extracted
from a CVS repository and presented the Ownership Map vi-
sualization [1]. The visualization, which displays the history
of versioned files, using different colors to represent differ-
ent authors, is helpful to understand when and how differ-
ent developers interacted in which way and in which part
of the system. Taylor and Munro [10] used visualization
together with animation to study the evolution of a CVS
repository. The technique, called revision towers, allows the
user to find out where the active areas of the project are and
how work is shared out across the project. Rysselberghe and
Demeyer [11] used a simple visualization of CVS data to rec-
ognize relevant changes in the software system such as: (1)
unstable components, (2) coherent entities, (3) design and
architectural evolution, and (4) fluctuations in team pro-
ductivity. Voinea and Telea [12] proposed the CVSgrab tool

http://pharo-project.org

which supports querying, analysis and visualization of CVS
based software repositories. Their tool allows the user to
produce views, to interact with them, to do querying and
filtering and to customize the view through a rich set of
metrics computed from the CVS data.

The difference between these approaches and Commit 2.0
is that they visualize the data a posteriori to support ret-
rospective analysis, while Commit 2.0 visualizes changes at
commit time to support their documentation.

Enhancing Versioning and Awareness. Researchers
proposed several approaches to enhance IDEs and the way
they monitor the evolution of source code. In [9] Schneider
et al. argue that local interactions, i.e., the way develop-
ers interact with their local copies of the source code, are a
valuable source of information which should be considered
when mining software repositories. The authors proposed a
technique and a prototype implementation to capture and
analyze such local interactions. Robbes et al. developed an
approach to record fine-grained source code changes as they
happen, instead of recovering them from coarse-grained, file-
based versioning system archives [7]. The approach was used
in a variety of applications [5]. These approaches improve
versioning systems by refining the code model, while Com-
mit 2.0 enriches the documentation of code changes with
visualization. Commit 2.0 could be applied on the refined
changes these approaches produce.

Awareness of changes is also an active research topic.
Sarma et al. developed Palant́ır [8], a workspace aware-
ness tool that complements configuration management sys-
tems by (1) informing a developer of which other developers
change which other artifacts, (2) calculating a measure of
severity of those changes, and (3) visualizing the informa-
tion in a non-obtrusive manner. Lanza et al. [4] enhanced
the approach of Robbes et al. to record source code changes
as they happen and broadcast them to other developers of
the team: Developers are aware of potential conflicts before
committing the code. While the goal of these approaches is
to provide awareness of changes the aim of Commit 2.0 is
to better document the changes as they are committed.

8. CONCLUSION
In this paper we have proposed a visual approach, and the

corresponding implementation, to support the documenta-
tion of software changes at commit time. Our technique
generates coarse grained and fine grained visualizations of
the changes, and let the developer enrich them with anno-
tations. Since images are not supported as comments in
versioning systems, we create an alternative repository by
means of a blog, where we store the annotated visualiza-
tions. Such blog, besides serving as a communication mean
for the development team, acts as an entry point allowing
us to leverage the web 2.0 technologies.

Future Work. In this paper we presented a first proto-
type of our Commit 2.0 tool, in which the annotated visu-
alizations are posted on a Posterous blog. In the future we
plan to investigate both web 2.0 technologies to fill the gap
between the blog and the IDE, and IDE enhancements to
support and version the visualizations. As part of our future
work, we also plan to conduct a user study to evaluate the
effectiveness of documenting changes with Commit 2.0.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “DiCoSA” (SNF Project No. 118063).

9. REFERENCES
[1] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse.

How developers drive software evolution. In
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE 2005), pages 113–122.
IEEE Computer Society Press, 2005.

[2] L. Hattori and M. Lanza. Mining the history of
synchronous changes to refine code ownership. In
Proceedings of MSR 2009 (6th IEEE Working
Conference on Mining Software Repositories), pages
141–150. IEEE CS Press, 2009.

[3] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large
commits. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories
(MSR 2008), pages 99–108. ACM, 2008.

[4] M. Lanza, L. Hattori, and A. Guzzi. Supporting
collaboration awareness with real-time visualization of
development activity. In Proceedings of CSMR 2010
(14th IEEE European Conference on Software
Maintenance and Reengineering), pages xxx – xxx.
IEEE CS Press, 2010.

[5] R. Robbes. Of Change and Software. PhD thesis,
University of Lugano, Switzerland, Dec. 2008.

[6] R. Robbes and M. Lanza. How program history can
improve code completion. In Proceedings of ASE 2008
(23rd ACM/IEEE International Conference on
Automated Software Engineering). ACM Press, 2008.

[7] R. Robbes, M. Lanza, and M. Lungu. An approach to
software evolution based on semantic change. In
Proceedings of FASE 2007 (10th International
Conference on Fundamental Approaches to Software
Engineering), pages 27–41, 2007.

[8] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003),
pages 444–454. IEEE Computer Society, 2003.

[9] K. Schneider, C. Gutwin, R. Penner, and D. Paquette.
Mining a software developer’s local interaction history.
In Proceedings of the First International Workshop on
Mining Software Repositories (MSR 2004), 2004.

[10] C. Taylor and M. Munro. Revision towers. In
Proceedings 1st International Workshop on Visualizing
Software for Understanding and Analysis, pages 43–50,
Los Alamitos CA, 2002. IEEE Computer Society.

[11] F. Van Rysselberghe and S. Demeyer. Studying
software evolution information by visualizing the
change history. In Proceedings 20th IEEE
International Conference on Software Maintenance
(ICSM ’04), pages 328–337, Los Alamitos CA, Sept.
2004. IEEE Computer Society Press.

[12] L. Voinea and A. Telea. An open framework for cvs
repository querying, analysis and visualization. In
Proceedings of the 2006 international workshop on
Mining software repositories (MSR 2006), pages
33–39. ACM, 2006.

[13] X. Xie, D. Poshyvanyk, and A. Marcus. Visualization
of cvs repository information. In Proceedings of
WCRE 2006, pages 231–242. IEEE CS, 2006.

	Introduction
	Commit 2.0 in a Nutshell
	Visualizing Changes
	An Example: OCompletion
	Discussion
	Commit 2.0 Implementation
	Related Work
	Conclusion
	References

