
Enabling Program Comprehension through a Visual
Object-focused Development Environment
Fernando Olivero, Michele Lanza, Marco D’Ambros

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland
Romain Robbes

PLEIAD@DCC - University of Chile

Abstract—Integrated development environments (IDEs) in-
clude many tools that provide the means to construct programs.
Coincidentally, the very same IDEs are a primary vehicle for
program comprehension. We claim that IDEs may be an imped-
iment for program comprehension because they treat software
elements as text, which may be counterproductive in the context
of program understanding—where abstracting from the source
text to the level of structural entities and relationships is the key.

We are currently building Gaucho, a visual object-focused
environment that allows developers to write programs by creating
and manipulating lightweight and intuitive depictions of object-
oriented constructs. The research question we investigate here is
how such an environment compares with traditional IDEs when
it comes to performing program comprehension tasks.

To answer our question, we conducted a preliminary controlled
experiment with eight subjects, comparing Gaucho against a
traditional IDE. We found that Gaucho outperforms the IDE
regarding the correctness of the tasks, while it is slower with
respect to the completion time. Our preliminary results suggest
that alternative—visual—IDEs may be superior to traditional
IDEs as program comprehension aids.

I. INTRODUCTION

Nowadays object-oriented developers perform programming
tasks aided by IDEs, which feature numerous tools that provide
the means to construct programs. Nevertheless, IDEs present
difficulties that have been previously stated in the literature [1],
[2], [3]; e.g., they introduce accidental complexity due to their
file-based dependence, since extra navigation is required to
search back and forth for scattered code fragments. While there
is certainly room for improvement in the context of forward
engineering, the usage of IDEs as program comprehension aids
has not been questioned.

According to Chikofsky and Cross program comprehension
is focused on “identifying the system’s components and their
interrelationships, as well as creating representations of the
system in another form or at a higher level of abstraction” [4].
We argue that IDEs hinder program comprehension because
they work on a textual representation of a system, the source
code, and therefore lack the proper level of abstraction required
for understanding the programs. IDEs are specialized for
navigating and editing text, thus supporting the notion that
programming is writing, as Weinberg [5] argued nearly 40 years
ago. Nonetheless, object-oriented programming is better defined
as modeling, rather than writing: A modeling of the composition
and collaborations of the objects under construction. Even
though external modeling tools are better suited for program
comprehension than IDEs [6], [7], there are several reasons

for which developers are reluctant to use anything but the IDE
for their activities: One of them is that they are not willing
to invest time and effort in learning new tools if they do not
perceive a tangible benefit in it [8].

We claim that an environment based on a different metaphor
can intrinsically improve the support for program comprehen-
sion, and minimize the need to recur to external tools for
understanding the programs. The two contrasting metaphors
here are the view-focused and the object-focused metaphors.
Mainstream IDEs, such as Eclipse, are view-focused: Objects
are secondary to the tools which are the concrete visual
elements available for interaction. On the contrary, object-
focused environments, such as Self [9], foster the notion that
developers are in direct contact with the objects themselves,
instead of abstract entities subordinated to the tools. Our goal
is to step away from IDEs as text editors and file navigators,
and embrace a vision where environments ease the interaction
with and crafting of objects, as well as their comprehension.
This eliminates the presence of tools that create a barrier
between a developer and the program to be developed and
understood. We have implemented Gaucho [10], a visual object-
focused development environment. We argue Gaucho eases the
comprehension of a system, through the following features:

• Abstractions. The cognitive burden is lessened in Gaucho,
because developers interact with graphical elements de-
picting software artifact as high-level views, as opposed to
raw text that the developer must decode into meaningful
chunks of information.

• Relationships. The graphical elements depicting the ob-
jects provide quick access to related entities, favouring
incremental exploration of the system, and easing the
navigation of the relationships between objects.

• Unconstrained Layout. The graphical elements can be
freely placed on the interface, making it straightforward to
create side by side views of the objects for understanding
and comparing them.

To assess our claim, we performed a preliminary experiment,
with promising results. The contributions of this paper are
(1) an in-depth reflection on the current state-of-the-practice
of development environments; (2) a presentation of Gaucho,
a novel object-focused environment we are building; and (3)
a preliminary controlled experiment with eight subjects to
compare a traditional IDE and Gaucho with respect to a set of
program comprehension tasks extracted from the literature.



II. BACKGROUND

The word program has an ambiguous meaning that can
only be disambiguated by situating the reader in a particular
programming paradigm. In the functional paradigm a program
is a collection of functions; in the imperative paradigm a
program is made up from data structures and algorithms
[11]; in the object-oriented paradigm—which is our focus—
programming revolves around collaborating objects, instantiated
from classes, that send each other messages [12].

If we reflect upon the current understanding of what
constitutes an object-oriented program, we find that developers
perceive programs as a large collection of files that contain text,
i.e., the source code. The formal linguistic aspect of programs,
the source code, and the tools one uses to construct them,
assume a preponderant role and dictate how one perceives
the act of programming. Hutchins et al. stated that any user
interface provides a frame of reference for reasoning about the
problems [13]; therefore, the manner in which IDEs present
software systems influences how developers reason about them.
Is programming writing? An object-oriented program is more
than a conglomeration of code organized into files. Even the
vocabulary of modern object-oriented developers has steadily
evolved since its inception: Nowadays, developers use words
such as building, constructing, architecting, and designing [14].

We believe that the lack of abstraction in the IDEs, due to the
textual representation of the software artifacts, hinders program
comprehension since the composition and relationships between
the objects are difficult to visualize when translated to raw
text. Developers recur to external modeling tools or even rough
sketches, presenting the conceptual abstractions of the program
and their relationships in the form of visual diagrams. Others
have questioned the usage of textual representations of code
entities for program comprehension, e.g., Wettel et al. have
shown that making use of an alternative metaphor for depicting
the programs—as 3-D cities—eased reverse engineering [15].

Limitations of Mainstream IDEs. IDEs are view-focused
tools specialized for navigating and editing programs, viewed
as textual representations of classes, methods and packages.
Mainstream IDEs, such as Eclipse and Visual Studio, feature
numerous tools providing the means to construct and com-
prehend programs. An often adopted fashion to arrange the
various tools, termed by some as a bento box approach, is
depicted in Figure 1.

Tab Navigation

Code fragments
& Main Content

Outliner

Plugins + console + etc.F
il
es

 &
 P

ac
k
ag

e 
Na

vi
ga

ti
o
n

Fig. 1. Sketch of mainstream IDEs

Developers using IDEs struggle with difficulties when
navigating software systems. Artifacts related to a single
concept are distributed in a huge space—the entire code base—
and the relationships between them remain hidden; this forces
developers to open numerous views on artifacts to reveal
their relationships, leading to a crowded workspace with many
opened windows or tabs [3]. In the arrangement depicted in
Figure 1, developers are forced to continuously move around the
focus of attention by scrolling up and down through the code,
and managing several tabs when relating separate entities, as it
is hard to create side by side views of the code [1] [2]. Relying
on tab-based views depicting files of the system is inadequate
since most tasks are not aligned with the structure of the IDE
and require navigating to different parts of the system [16]. The
single window interface forces plugin developers to compete
for the available real estate, making it difficult to extend the
IDE. One could argue that power users develop subconscious
habits that over time allow them to overcome the limitations
of the tools in use. We believe that developers accustomed to
mainstream IDEs find it difficult to comprehend that the IDE
treats objects as text. Being used to the tools working on a
textual representation makes developers mentally visualize the
structure of the objects at a higher level, instead of the textual
code fragments displayed on the screen. A supporting fact are
the several pedagogical environments, such as BlueJ [17] and
Alice [18], that present high-level views of the programs to
ease the learning of object-oriented programming concepts.

Beyond IDEs: Object-focused Environments. Developers
use IDEs to navigate and interact with the source code. Even if
developers recur to external tools for sketching and analyzing
the conceptual abstractions of the programs [7], the main entry
point remains the IDE. We argue that the principal medium
of interaction between developers and the software systems
under construction—the IDE—should favor modeling over
writing, thus improve the support for program comprehension.
In our vision, an environment built around the object-focused
metaphor would achieve such a goal, by embracing object
manipulation instead of text editing.

View-focused environments, like traditional IDEs, support
a conversational notion: Tools (editor, debugger, etc.) are the
medium in which developers converse about the objects. On
the contrary, object-focused environments are built on a model-
world metaphor, populated by high-level views of the objects,
presented as directly manipulable graphical elements that do
not need intermediary tools [19], [10]. Traditional IDEs make
use of direct manipulation as the means to modify the objects,
e.g., methods can be moved using drag & drop, and refactorings
are available from a contextual menu that acts upon a code
fragment. IDEs provide some form of high level views, such
as the outliner depicting the structure of classes and packages.
However, the feeling of direct engagement is lessened, as the
direct manipulation operations and abstractions are decoupled
from the textual representations of the objects. Object-focused
environments attain a higher level of direct manipulation and
abstraction, by coupling operations and representations into
the same graphical element, removing explicit tools.



Fig. 2. Environments related to Gaucho: Self, CodeCanvas, Relo, CodeBubbles

III. RELATED WORK

Researchers and practitioners proposed several programming
environments that either abstract from the text-based metaphor,
or propose an alternative metaphor for manipulating code.
Figure 2 depicts the ones most related to Gaucho.

Self [9] is the seminal object-focused environment. Self is
both a language and an interface for direct manipulation of
uniform graphical objects that populate a malleable world. A
Self object has a single outliner tool that reveals the inner
structure and provides the means to manipulate itself. In the
Self prototype-based language, all the objects have the same
structure, hence a single tool can suffice. Code Canvas [20]
provides an infinite zoomable surface for software development.
A canvas both houses editable forms of project documents and
allows multiple layers of visualization over those documents.
Code Canvas leverages spatial memory to keep developers
oriented. Code Bubbles [1] is a programming environment
that represents code as lightweight, editable fragments called
bubbles, forming concurrently visible working sets that avoid
the continuous back and forth navigation typical of traditional
IDEs. The bubbles exist on a pannable 2-D space. Relo [2]
supports program comprehension by enabling and facilitating
interactive code exploration. The graphical elements depict
high level views of software elements presented as UML
class diagrams. “Navigation buds” on each graphical element
allow developers to build graphs of software elements; Relo
automatically places each node according to relationships such
as inheritance, or containment.

Inspiration & differences. Gaucho takes inspiration from
Self, but provides a richer set of graphical elements because
instead of a prototype-based language it is designed for
Smalltalk [12], [14], a dynamic object-oriented language:
different kinds of objects coexist in the world, such as classes,
methods and packages, whereas Self offers a uniform interface.
Code Canvas and Code Bubbles address navigation problems
of mainstream file-based IDEs, using interfaces based on
alternative metaphors, thus making better use of the spatial
memory and the available real estate. In Gaucho we adopted a
similar approach by providing graphical elements—depicting
software entities—that can be freely placed in a 2-D canvas.
These graphical elements go beyond text: The developer
interacts with different visual representations for each software
artifact, stepping away from editing textual representations of
code. Code Bubbles instead are defined as interactive views of
source code fragments such as methods or collection of member

variables. Relo presents high-level views of software elements
that provide the means to interactively navigate between their
relationships. Gaucho provides the same facilities for interactive
and incremental exploration of the code, without constraining
the layout of the graphical elements.

IV. GAUCHO

Gaucho1 [10] is an object-focused environment built on top
of Pharo [21], a modern open-source Smalltalk IDE. Gaucho
is based on a model-world metaphor populated by directly
manipulable representations of the artifacts that make up a
software system. Figure 3 shows a screenshot of the current
version of Gaucho. The two pivotal concepts in the tool are:

1) Pampas, a 2-D surface hosting the graphical elements
that make up a system (e.g., packages, classes, methods,
class references, recent changes) as shapes.

2) Shapes, manipulable high-level views of software arti-
facts that populate the pampas.

Gaucho includes a specific shape for each type of software
artifact. Such shapes depict every aspect of the underlying
artifacts and provide the means to manipulate themselves.
Gaucho shapes have the following properties:

a) Direct manipulation: Shapes provide quick access to
the most important operations that act upon them in the form of
buttons., e.g., a class shape presents the attributes and methods
of the class, and provides buttons for adding new methods and
attributes; a package shape presents the list of classes of the
package, and provides a button for adding new classes.

b) Exploring the system: Shapes provide a customized set
of navigation icons for exploring their relationships across the
system. For instance, class shapes provide icons for opening
the group of class references, the class hierarchy, the group
of subclasses and the package of the class. The icons have a
prominent placement since direct tool support for interactive
exploration helps one to manage the context and perform
program comprehension tasks [2].

c) Pampas layout: Shapes can be freely placed within
the pampas, thus eliminating the constraints of mainstream
file-based IDEs, that force code to be confined into tabbed text
areas competing for real estate and focus. The customizable
layout and the persistent visual arrangement allows developers
to use secondary notations, such as spatial memory, and to
form side-by-side views of objects.

1Available at http://gaucho.inf.usi.ch



Class
Shape

Group
Shape

Group
Shape

Method
Shape

TestCase
Shape

Test Run
ShapeToolbar

Package
Shape

Pampas

Fig. 3. The Gaucho development environment

d) Abstractions: In Gaucho the burden of the UI is
lessened because a developer interacts with a class, a method,
a package, a developer and a system shape in a uniform
and consistent manner. Gaucho presents software artifacts as
high-level views—instead of raw text that the developer must
decode into meaningful chunks of information—thus easing
the comprehension of the structure and relationships between
the system’s objects. Text is the means to specify behavior,
i.e., to write the statements that make up a method. We avoid
visual representations at the behavioral level, because at this
level, visual programming makes the understanding of the code
a convoluted process; choosing an intuitive visual notation is
cumbersome and non-trivial [22].

V. EVALUATION

We claim that the use of Gaucho eases the comprehension of
the structure and relationships between the entities making up
a software system, compared to the use of traditional IDEs. To
assess the validity of this claim, we performed a preliminary
controlled experiment. This experiment served also to detect
usability issues and to collect impressions from developers
using Gaucho.

Research Questions. The research questions underlying our
experiment are:

RQ1. Does the use of Gaucho reduce the time necessary to perform
program comprehension tasks, compared to a traditional
IDE?

RQ2. Does the use of Gaucho increase the correctness of the
answers to the program comprehension tasks, compared to
a traditional IDE?

Variables. The purpose of the experiment is to assess the
metaphor in use by Gaucho. Thus, the use of the metaphor
is the single independent variable of the experiment. This
variable has two levels: the object-focused metaphor and the
view-focused metaphor, respectively represented by Gaucho
and a baseline. The dependent variables of our experiment are
correctness of the task solutions and their completion time.

Baseline. We searched for a baseline within the modern
object-oriented IDEs that treat objects as text and settled
on the Pharo Smalltalk IDE, a traditional image-based (not
depending on files) IDE built around a WIMP (windows, icons,
menus, pointing device) metaphor [8]. Since Pharo—as many
mainstream IDEs—includes the standard development tools
for navigating, inspecting and testing the objects in the system,
we found it to be an ideal candidate to compare Gaucho to.
While it would be interesting to compare Gaucho against the
non-bento box tools presented in III, this is not our goal.

Object system & Treatments. We chose Lumière [23] as
our object system. Lumière is a framework for creating and
rendering 3-D scenes in OpenGL, consisting of 10 packages,
139 classes, 1,741 methods, for a total of 9,493 lines of code.
The system is large enough that subjects unfamiliar with it have
to perform program exploration and program comprehension
to complete the tasks they were asked to perform. Subjects
were randomly assigned one of the two following treatments:

Tool Object Description

Gaucho Lumiere Gaucho application with a loaded model of Lumiere
Pharo Lumiere Pharo IDE with default development tools and a

loaded model of Lumiere

Operation. The experiment was performed at the University
Of Chile (with 3 professors, 1 PhD student, 1 software engineer,
and 2 Msc students) and at the University Of Lugano (with one
MSc student). We presented a video demonstration of Gaucho
to each subject of the experimental group. An experimental
run consisted in a session of up to one hour, during which the
subjects solved the tasks with the assigned treatment.

Data collection. We used an automated experiment runner
toolset, called Biscuit, that (1) presented the experiment to the
subjects, (2) collected subjects data, (3) guided them through
the tasks until completion, (4) stored the answers and durations
of each task, and (5) issued a post-experiment questionnaire.



TABLE I
TASKS OF THE EXPERIMENT

Id Goal Questions

T1 Locate the class that represents a rotation of a scene graph in the Lumiere framework Q1
T2 Indicate the correct names of all the instance variables of the class LLight Q6, Q16, Q17
T3.1 Locate the root class of the hierarchy of nodes of a scene graph in Lumiere Q1, Q8
T3.2 Indicate the correct names of all the (direct) subclasses of LLumiereShape Q9
T3.3 Indicate all the subclasses (direct or not) of LMiddleNode that override the method #accept: Q11
T4.1 How many packages make up Lumiere? Q6
T4.2 Indicate the two packages in Lumiere with the largest number of classes Q7
T5.1 Create a new layout class named LStackLayout, located in the same package and with the same superclass as LPolarLayout Q7, Q8, Q17
T5.2 Add an instance variable named ”translations” to LStackLayout, and create the accessors Q17
T6.1 The base Layout implements the method #runLayout. Indicate all the layout classes that implement the same method Q5, Q11
T6.2 Indicate the name of the instance variable that is assigned (set) by most implementors of the method #runLayout Q10, Q15
T6.3 Define the method LStackLayout >> runLayout (cut and paste the code) Q6
T7.1 How many test case methods reference the class LVerticalGridLayout ? Q15
T7.2 Indicate the test case class where most of the layout behavior is tested Q6, Q12

Biscuit provided the means to set up an experiment made up
of tasks, each task consisting in a description and goals to be
accomplished by the subjects. Using Biscuit, we automatically
generated a user interface for each experimental session, via an
application running either on top of Gaucho or Pharo. Figure 4
shows Biscuit running on top of Gaucho.

Fig. 4. Biscuit: task list and a running task example

We collected the data produced by each subject in the form
of a Biscuit output file. The output file contains the answers
and solutions to each task, and some meta-data such as the
participant’s name, the total completion time, the correctness
of the answers, and the post-experimental task evaluations.

Tasks. We designed 3 programming and 11 program com-
prehension tasks based on the set of questions composed by
Sillito et al. [6]. Sillito et al. organized the questions into 4
categories: (1) finding focus points, (2) expanding focus points,
(3) understanding a subgraph, and (4) questions over groups
of subgraphs. We devised the tasks of the experiment based
on the first two categories. We omitted questions from the 3rd
and 4th category because both Gaucho and Pharo lack support
for maintaining context while answering multiple questions.
The rationale supporting the tasks is that each of them relates
to one or more questions of Sillito et al., i.e., real questions
developers ask during their development activities.

We selected a set of questions pertaining to program
comprehension, designed tasks related to them that can be
solved using both treatments, and ordered them according to
similarity and prerequisites of the necessary data.

TABLE II
REFERENCED QUESTIONS FROM SILITO’S FRAMEWORK

Q1 Which type represents this domain concept/UI element/action?
Q5 Is there an entity named XXX in that project/package/class?
Q6 What are the parts of this type?
Q7 Which types is this type a part of?
Q8 Where does this type fit in the type hierarchy?
Q9 Does this type have any siblings in the type hierarchy?
Q10 Where is this field declared in the type hierarchy?
Q11 Who implements this interface or these abstract methods?
Q12 Where is this method called or type referenced?
Q15 Where is this variable or data structure being accessed?
Q16 What data can we access from this object?
Q17 What does the declaration or definition of this look like?

In Table I we list the tasks, and in Table II the developer
questions included in the experiment.

Subject and expertise analysis. At the beginning of each
experimental session run by Biscuit, the subjects answer
questions related to their expertise.

TABLE III
SUBJECT’S EXPERTISE

Pharo Gaucho

Expertise Pharo OOP Smalltalk OOP Smalltalk

None 1 0 0 0 1
Beginner 3 1 3 1 1
Knowledgeable 0 1 1 1 1
Advanced 0 2 0 0 1
Expert 0 0 0 2 1

The results, depicted in Table III, show that the subjects
of the control group have little or no experience using the
Pharo IDE; the same level of expertise can also be assumed
for the subjects of the experimental group, given that their first
encounter with Gaucho occurred during this experiment. The
expertise of the subjects—regarding Object-oriented concepts in
general, and Smalltalk in particular—is also balanced among
treatments, as can be seen in Table III. The subjects were
unfamiliar with the object system chosen, the Lumière toolset.



VI. RESULTS

The 14 tasks were automatically graded, yielding a maximum
score of 14 points, and the time taken to solve each task was
measured by means of the ouput analyzer features of Biscuit.

The subjects of the experimental group outperformed the
subjects of the control group regarding the correctness of the
tasks (cf. Figure 5(a)). The subjects using Gaucho scored,
on average, 10.4 points, while the subjects using the Pharo
treatment scored, on average, 8.5 points.

On the contrary, regarding the completion time, the subjects
of the control group outperformed the experimental group (cf.
Figure 5(b)). The total completion time, on average, of the
subjects using the Gaucho treatment was 38:08 minutes, while
the subjects using the Pharo treatment spent, on average, 28:48
minutes for all the tasks.

Therefore, although the limited number of subjects does not
allow us to draw any statistically relevant conclusions, our data
gives us strong indications that we can answer the first research
question (time) negatively, and the second one (correctness)
positively. We now proceed with a qualitative evaluation of the
results of each task.

0

0.25

0.5

0.75

1

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo Gaucho

(a) Task correctness

0

75

150

225

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo Gaucho

(b) Completion time (seconds)

Fig. 5. Experiment results

Task analysis

To better analyze the obtained results we grouped the
tasks according to the similarities between their goals. In the
following discussion, for each group of tasks, we present the
IDs, a summary of the goals to be accomplished by the subjects,
and comment the obtained results.

T1: The goal is to find the class named LRotationNode,
by searching the class that most resembles a rotation node
of a Lumière scene graph. We wanted to assess if the global
search widget of Gaucho was accessible and provided the
means to effectively perform concept location; it is similar to
the lexical or static analysis based search tools of IDEs. The
results of the subjects of the experimental group were similar
to the control group in terms of correctness. However, they
spent—on average—more time than the subjects in the control
group, mostly because of usability issues with the global search
widget of Gaucho: it currently lacks support for performing
concept location via pattern matching.

T2, T4.1, T4.2: These tasks relate to structural compre-
hension of classes and packages. The goal is to choose the
correct answer from a multiple choice scheme of the set of
instance variables of the class LLight (task T2), the number
of packages that make up Lumière (task T4.1), and the two
packages in Lumière with the largest number of classes (task
T4.2). With these tasks we investigate whether the structure of
an object is correctly understood when depicted using a high-
level view—the class or package shape—as opposed to lower-
level mechanisms such as reading a textual representation of the
class definition in the IDE. The results for task T2 show that the
subjects of the control group outperformed the subjects using
Gaucho. This negative score was a result of a misunderstood
scrollable widget of the class shape (cf. Figure 3), which only
reveals four instance variables at a time; most subjects were not
aware that this list could be scrolled down to reveal the fifth
instance variable, thus answering incorrectly. The results for
T4.1 and T4.2 show that the experimental group outperformed
the control group, but the subjects using Gaucho took more
time on T4.2 and less on T4.1 than the subjects using Pharo.
In T4.1, a single package shape is involved (the package shape
representing Lumière), whereas T4.2 requires interacting with
a larger number of package shapes, as they must be placed
side by side to compare their sizes; there are still usability
issues when positioning shapes within the pampas.

T3.1, T3.2, T6.2, T7.1: With these tasks we wanted to assess
the usability and validity of the direct manipulation features
available in the shapes, which allow navigating between the
relationships of the represented object with the rest of system.
The goal is to locate the root class of the hierarchy of nodes of
a scene graph in Lumière (T3.1), to choose the correct names of
all the (direct) subclasses of LLumiereShape amongst 4 choices
(T3.2), to indicate all the layout classes that implement the
method #runLayout (T6.2), and to specify how many test case
methods reference the class LVerticalGridLayout (T7.1). Tasks
T3.1 and T3.2 both involved navigating the class hierarchy
from a class shape, the first on super classes and the second on
subclasses. Task T6.2 revolved around navigating references
to the uses of methods, while Task T7.1 revolved around
navigating the references (uses) of a class, and narrowing the
results into those who are test case methods. The subjects of
the experimental group outperformed the subjects in the control
group in the task T3.1, regarding correctness of the answers; but
again they did so by taking more time than the subjects using
the Pharo treatment , because of the mentioned layout problems
when displaying multiple shapes on the pampas. The subjects
using the Gaucho treatment were faster and more correct on
the task T7.1. The navigation facilities on the shapes allowed
quick access to the references of the LVerticalGridLayout
class, as opposed to the traditional use of a contextual menu—
on a selected list item in the browser—for navigating the
references of the class. In task T6.2 both groups performed
similarly regarding the correctness, but the subjects using
the Gaucho treatments were faster because placing side by
side shapes depicting the relevant methods eased performing
the comparison. Unfortunately, the subjects in both groups



failed task T3.2 because of a misunderstanding in the goals
description; the subjects also included indirect subclasses in
the answer. Nevertheless, since the subjects answered all the
indirect subclasses correctly and given the similarities between
the completion time, we can conclude that a class hierarchy
can be well understood in both treatments because they share
a similar graphical depiction of a class and its subclasses.

T3.3, T6.1: We wanted to observe how well Gaucho behaves
on tasks that force the subject to look at multiple classes,
methods and relationships at once, in order to assess the
supposed benefit of the unconstrained layout of the Pampas
and the simple graphical representations of objects, against the
rigid and complex tools of the IDE. The goal is to indicate
all the subclasses of LMiddleNode that override the method
#accept (T3.3), and indicate the name of the instance variable
that is assigned (set) by most implementors of the method
#runLayout (T6.1). The subjects of the experimental group
outperformed the subjects of the control group regarding the
correctness, but again spent more time solving the task. The
difference was more marked in T6.1, possibly because by then
the subjects had already gained experience and made better
use of the Pampas and the shapes.

T7.2: The goal is to indicate the test case class where most
of the layout behavior is tested. We devised this task because
before implementing a test, the developers must locate the
proper test case class where the test method should be added;
this forces developers to search across the test cases of the
system to find the one that references the most the Lumière
layout classes. On this task the subjects using Pharo performed
better than those using Gaucho. We observed that grouping
all the tests into a single tool, called the test runner, allowed
the Pharo users to quickly locate the desired test. In Gaucho
the subjects could access one test at a time by opening a class
shape of a Lumière layout class, and navigate the test case
references to find the most suitable one, which is less efficient.

T5.1, T5.2, T6.3: The goal of these tasks is to create a
class, an instance variable, and several methods. To evaluate
the completeness of Gaucho, we wanted to assess whether
novel users of the object-focused environment could create
and manipulate new classes and methods, by interacting with
the shapes, without intermediaries (the tools). The subjects of
the experimental group made use of the direct manipulation
facilities of the shapes to correctly create and modify the
requested objects; for example by creating the class using the
add button of the package shape, instead of editing the class
definition in the browser tool of the IDE. The difference in
correctness in T5.2—and completion time—is due to some
Pharo users failing to create the accessors, while Gaucho creates
them automatically; subjects of both groups performed equally
well in terms of correctness for the other two tasks—Pharo
retains the edge in completion time.

VII. REFLECTIONS

The results indicate that Gaucho outperforms the IDE
regarding the correctness of the tasks, while it is slower with
respect to the completion time. Despite the preliminary nature

of the results, mostly due to the low number of subjects, we
believe that we can indeed question the usage of traditional
IDEs as program comprehension aids.

The positive answer to the second research question, RQ2,
regarding the correctness of the tasks, might indicate that
an object-focused development environment such as Gaucho
provides better support for performing program comprehension
tasks. We believe this result derives from the following
differences between Gaucho and the baseline:

The high-level views of the graphical elements in Gaucho
(the shapes) helped developers to better understand the com-
position of the objects involved in tasks T3.1, T3.3, T4.1, and
T6.1; as opposed to manually decoding the relevant information
from textual class definition, and searching lists of classes and
methods names from the tools of the IDE.

The direct manipulation of the shapes eased operations
such as addition, in task T5.2, or navigation through the
relationships between objects in tasks T3.2, T6.1, and T7.1; as
opposed to textual edition of the class definitions, and the use
of contextual menus acting upon a selected item in the IDE.

The unconstrained layout of the pampas allowed devel-
opers to create side by side views of shapes, hence creating
their own views of the system, to correctly solve tasks T3.3
and T6.1. Using Pharo, the developer can also create side by
side views of one or more tools, using windows; nevertheless
in Gaucho the shapes are simpler, smaller, and more intuitive
depictions of the objects than the tools of the IDE, making it
easier for the developer to take advantage of the available real
state, and hence compare two graphical elements.

We believe the negative answer to the first research question,
RQ1, regarding the completion time of the tasks, is an indication
of the lack of maturity and exposure of the interface of Gaucho
compared to a traditional IDE. Gaucho is a novel environment,
and the subjects were not only exposed to the tool for the first
time, but also had to adapt to the usage of an object-focused
metaphor. On the other hand, the traditional tools of the IDE
are widely known to developers; and even though most subjects
of the control group claimed to have little or no experience
with Pharo, they asserted to be at least knowledgeable in object-
oriented programming and Smalltalk. We interpret this in a
positive light: the Gaucho UI has potential to be matured and
made more user-friendly, while the rigid structure of traditional
IDEs seems to have slowly exhausted the means to advance.
A sign of this stalling is the vast number of Eclipse plugins
which have to fight over a limited amount of screen space [24].

The subjects using Gaucho spent more time on most of
the tasks because of some usability issues found in Gaucho
1.2; mostly regarding the lack of an automatic layout or non-
overlapping scheme that forced developers to spend time and
effort re-arranging and closing the shapes in the screen. For
example the subjects using Gaucho took more time to solve
the tasks T6.1 and T3.3, which involve creating side by side
views of shapes. We believe this result does not reveal an
inherent problem of the object-focused metaphor but it is
accidental complexity introduced by the current implementation
of Gaucho. We plan to solve this issue by implementing a better



layout policy scheme in the next version of Gaucho, similar to
Code Bubbles [1]. Currently, Gaucho lacks the feature to open
the complete system and position the shapes according to a
default layout. We plan to add this feature to the next version,
and perform more experiments to asses whether developers
make effective use of the freedom of placement, and to better
understand how does the pampas metaphor scale when viewing
large programs, managing a large number of opened shapes.

Threats To Validity. The design of the tasks may have
been biased towards Gaucho. To alleviate this threat we based
each of the tasks on a subset of the real questions asked by
developers during development sessions. This increases the
chances that we devised real tasks that developers frequently
solve using traditional IDES. The tasks lasted on average 150
seconds, such a short duration can indicate that the tasks were
too simplistic. We based the tasks on questions pertaining
to the first and second category presented in Silito’s work,
described as low level questions that can be quickly answered,
yet realistic.

We were able to compare such short tasks accurately due
to the tracking facilities of Biscuit. Biscuit keeps track of the
elapsed time for each task by recording a timestamp whenever
the users commences a new task and when he provides the
answer (using the Biscuit widgets overlaid on top of the tool).
Since the timing is done automatically, we are confident the
resolution of the time measurement is precise enough.

To answer both of our research questions, we evaluated the
results of the experiments regarding the correctness and the
completion time of each task. A possible threat is that we
omitted the effort of completing a task from our analysis, i.e.,
the history of every user interaction would enable us to analyze
how the subjects fulfilled each task, by measuring the effort
using the GOMS model [25].

Another threat is the small number of subjects who per-
formed the experiment (8), mainly because is too small to
formally evaluate the results and claim statistical significance.
We plan a larger experiment, once we fix the current usability is-
sues of Gaucho, that will aim to provide statistically significant
results. Regarding the subjects, the experiment currently lacks
a balanced number of subjects from academia and industry
(although the experiment feature one practitioner). A better
distribution of the expertise of the subjects would provide the
means to analyze beginners and advanced IDE developers.

VIII. CONCLUSIONS AND FUTURE WORK

We started by questioning the use of text as the primary
means to present and interact with programs. We reviewed
the current state-of-the-practice of integrated development
environments, pointing out a number of shortcomings that affect
program comprehension. We then presented an object-focused
IDE named Gaucho, which aims to alleviate the shortcomings
that we identified in the current crop of view-focused IDEs.

We evaluated Gaucho in the context of program comprehen-
sion by means of a preliminary controlled experiment with 8
subjects, based on a set of common comprehension tasks. We
found that users of Gaucho were on average more correct, but

slower, than users of a more conventional IDE; usability issues
were identified as a primary factor for slowness. Although
based on a preliminary experiment, our findings point out a
suboptimal and stalling situation regarding traditional IDEs.
While we investigated the context of program comprehension,
the discussion is pertinent at all levels. In short, the time may
be right for developing new solutions from the ground up.

Acknowledgements. The subjects of the experiment (University
Of Chile), the Swiss Science foundation (SNF Project No. 129496,
“GSync”), the European Smalltalk User Group (www.esug.org), and
the Swiss Group for Object-Oriented Systems and Environments.

REFERENCES

[1] A. Bragdon, S. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles:
Rethinking the user interface paradigm of integrated development
environments,” in Proceedings of ICSE 2010. ACM, 2010, pp. 455–464.

[2] V. Sinha, D. Karger, and R. Miller, “Relo: Helping users manage
context during interactive exploratory visualization of large codebases,”
in Proceedings of ETX 2005. ACM, 2005, pp. 21–25.

[3] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in ides,” in Reverse Engineering, 2009. WCRE ’09.
16th Working Conference on, 2009, pp. 237 –246.

[4] E. Chikofsky and J. Cross, “Reverse engineering and design recovery:
A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan. 1990.

[5] G. Weinberg, The Psychology of Computer Programming, silver anniver-
sary ed. Dorset House Publishing, 1998.

[6] J. Sillito, G. C. Murphy, and K. D. Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of FSE-14. ACM
Press, 2006, pp. 23–34.

[7] C. Myers and E. Baniassad, “Silhouette: visual language for meaningful
shape,” in OOPSLA 2009, ser. OOPSLA ’09. ACM, 2009, pp. 917–924.

[8] A. Cooper and R. Reimann, About Face 2.0 - The Essentials of Interaction
Design. Wiley, 2003.

[9] R. B. Smith, J. Maloney, and D. Ungar., “The self-4.0 user interface,”
in OOPSLA ’95, October 1995, pp. 47–60.

[10] F. Olivero, M. Lanza, and M. Lungu, “Gaucho: From integrated
development environments to direct manipulation environments,” in
Proceedings of FlexiTools 2010 (1st International Workshop on Flexible
Modeling Tools), 2010.

[11] C. Ghezzi and M. Jazayeri, Programming Language Concepts, 3rd ed.
Wiley, 1997.

[12] D. H. Ingalls, “Design principles behind smalltalk,” BYTE Magazine,
vol. 6, no. 8, pp. 286–298, 1981.

[13] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation
interfaces,” Human-Computer Interaction, vol. 1, no. 4, 1985.

[14] O. Nierstrasz and T. Gı̂rba, “Lessons in software evolution learned by
listening to smalltalk,” in Proceedings of SOFSEM 2010. Springer.

[15] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in ICSE 2011, 2011, p. to be published.

[16] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in Proceedings of AOSD 2005. ACM, 2005, pp. 159–168.

[17] D. J. Barnes and M. Kölling, Objects First with Java, fourth edition ed.
Prentice Hall / Pearson Education, 2008.

[18] S. Cooper and W. Dann, “Teaching objects-first in introductory computer
science,” SIGCSE 2003.

[19] B.-W. Chang, D. Ungar, and R. B. Smith, Getting Close to Objects:
Object-Focused Programming Environments. Prentice-Hall, 1995.

[20] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of ICSE NIER 2011, 2011.

[21] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and M. Denker,
Pharo by Example. Square Bracket Associates, 2009.

[22] M. Petre, “Why looking isn’t always seeing: Readership skills and
graphical programming,” Communications of the ACM, vol. 38, 1995.

[23] F. Olivero, M. Lanza, and R. Robbes, “Lumiére: A novel framework for
rendering 3d graphics in smalltalk.” ACM Press, 2009, pp. 20–28.

[24] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented IDEs: a detailed study of corrective and perfective
maintenance tasks,” in ICSE 2005. ACM, 2005, pp. 126–135.

[25] J. Raskin, The humane interface: new directions for designing interactive
systems. ACM Press/Addison-Wesley Publishing Co., 2000.


