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Making the most of small Software Engineering
datasets with modern machine learning

Julian Aron Prenner, Romain Robbes

Abstract—This paper provides a starting point for Software Engineering (SE) researchers and practitioners faced with the problem of
training machine learning models on small datasets. Due to the high costs associated with labeling data, in Software Engineering,
there exist many small (< 5,000 samples) and medium-sized (< 100,000 samples) datasets. While deep learning has set the state of
the art in many machine learning tasks, it is only recently that it has proven effective on small-sized datasets, primarily thanks to
pre-training, a semi-supervised learning technique that leverages abundant unlabelled data alongside scarce labelled data.
In this work, we evaluate pre-trained Transformer models on a selection of 13 smaller datasets from the SE literature, covering both,
source code and natural language. Our results suggest that pre-trained Transformers are competitive and in some cases superior to
previous models, especially for tasks involving natural language; whereas for source code tasks, in particular for very small datasets,
traditional machine learning methods often has the edge.
In addition, we experiment with several techniques that ought to aid training on small datasets, including active learning, data
augmentation, soft labels, self-training and intermediate-task fine-tuning, and issue recommendations on when they are effective. We
also release all the data, scripts, and most importantly pre-trained models for the community to reuse on their own datasets.

Index Terms—Small Datasets, Transformer, BERT, RoBERTA, Pre-training, Fine-Tuning, Data Augmentation, Back Translation, Soft
Labels, Active Learning.
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1 INTRODUCTION

SMALL datasets are commonplace for many Software
Engineering problems. While the creation of a labelled

dataset is always a significant undertaking, this is even more
the case for Software Engineering. In many cases, significant
expert knowledge is required to label Software Engineering
data, making it difficult to use crowd-sourcing techniques,
as is often done in other fields such as in computer vision
[1]. Moreover, some labelling tasks involve detailed (text
or source code) understanding, making the labelling of a
single example time consuming. Dataset size may be further
reduced by the need to label the same examples multiple
times and to compute inter-rater agreement. Due to all these
factors, it is thus not uncommon for hand-labelled Software
Engineering datasets to number only a few thousands or
even hundreds of samples. For instance, the 13 datasets
used in this work (described in Section 2) range from 200
to 62,275 samples, with three datasets having more than
5,000 samples, and four having less than 1,000. In this work,
we consider datasets with less than 5,000 samples “small”;
those with less than 100,000 as “medium sized”.

Historically, small Software Engineering datasets were
used with traditional machine learning algorithms, such
as Support Vector Machines (SVMs), Logistic Regression
or Random Forests, often combined with manual feature
engineering. In recent years, early experiments with deep
learning architectures [2]–[5], such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
showed mixed results, suggesting that for many tasks where
training data is scarce, deep learning does not provide a
clear benefit, especially in light of its considerably higher
computational costs.
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Whether deep learning is in fact not well suited for these
small datasets, and if so, for which kind of tasks and dataset
sizes is the central question of this paper. The motivation to
take a second look at this problem is the recent advent of
semi-supervised learning [6]. Semi-supervised learning is a
machine learning paradigm in which both labelled data and
unlabelled data are leveraged in the learning process, with
the latter being much cheaper to acquire. While prevalent in
computer vision, it is only since 2018 that semi-supervised
learning has become viable in the NLP domain [7], [8], in the
form of pre-training. Since 2019, pre-trained Transformer-
based models such as BERT [9] or RoBERTa [10] have set
many records in NLP and related fields, and considerably
improved the state of the art on important benchmarks
such as GLUE [11] and SQuAD [12], in which there are
small datasets. In addition to pre-training, several additional
techniques have the potential to benefit small datasets,
including Domain-specific Fine-Tuning, Intermediate-Task
fine-tuning, Active Learning, Self-Training, Data Augmenta-
tion, and Soft Labels. Thus, a better understanding of when
to combine these techniques is necessary. We provide back-
ground on the Transformer Architecture, Semi-supervised
learning via pre-training and other techniques in Section 3.

While previous work showed promising results in ap-
plying pre-training to SE problems [13]–[17], this work
examines this phenomenon in more depth, by applying
the pre-training paradigm on thirteen different small and
medium-sized Software Engineering datasets selected from
the literature. These datasets span natural language, source
code, and source code comments, in a variety of domains
(several sentiment analysis tasks, several app review clas-
sification tasks, technical debt detection, comment classi-
fication, code comment coherence, code smell detection,
code readability, code complexity). In addition, and unlike
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previous work, we also investigate the impact of the ad-
ditional techniques mentioned above, when they are rele-
vant. Section 4 presents methodological details such as pre-
processing, baselines, and training, testing and validation
modalities, for all the scenarios we consider. This section
also presents the pre-trained and fine-tuned models we
use in this work, including StackOBERTflow, a Transformer
model pre-trained on 26 million Stack Overflow comments.

Section 5 presents the results of the paper, answering the
following research questions:

RQ1. For which domains and tasks does the pre-training
paradigm outperform the baselines and which pre-
training regimen is most effective? We find that pre-
training is effective for tasks working on natural lan-
guage and source code comments, but is not as effective
for tasks working on source code yet; further pre-
training is the most effective strategy in most cases.

RQ2. Which additional techniques are effective, and if so in
which circumstances? We find that some techniques,
such as domain-specific pre-training, and data augmen-
tation are effective in some (but not all) settings, while
we find limited evidence for the effectiveness of others,
such as active learning.

Finally, we close the paper by documenting the limi-
tations of our study, and the opportunities for additional
studies in Section 6.2. We conclude the work in Section 7,
summarizing initial recommendations on the effectiveness
of pre-training and the additional techniques. Additional
material can be found in three appendices: Appendix A
provides additional information on datasets; Appendix B
provides results; last but not least, Appendix C provides
instructions on how to access the data, scripts, and pre-
trained models we used in our experiments. These models
can be fine-tuned for a wide range of tasks relating to
software artifacts; we hope that they will prove useful to
other researchers in the field.

2 DATASETS AND RELATED WORK

We selected thirteen datasets introduced in the Software En-
gineering literature in recent years, aiming for both variety
in terms of artifacts, dataset size, and classification tasks [2],
[3], [18]–[26]. Another selection factor was the availability
of a comparable baseline or a way to reproduce the initial
experiment. Seven datasets involve natural language, two
code comments, and the remaining four source code (one
with comments). They vary from 341 to 62,275 examples,
and from 2 to 16 classes. The datasets cover nine different
tasks: a) sentiment classification of software artifacts, such
as Stack Overflow comments, app and code reviews b) de-
tection of informative app reviews c) classification of app
reviews d) detection of self-admitted technical debt through
code comments e) classification of code comments f) predic-
tion of code-comment coherence g) detection of linguistic
code smells h) prediction of code runtime complexity and
i) prediction of code readability.

Next, we discuss general related work as well as related
work to each of these tasks. For a more concise overview
refer to Table 1.

TABLE 1
Datasets considered in this work, along with their size, number of

classes and usage.

Name Size # Cl. Type Usage

Sentiment Classification
(Stack Overflow) [18] 4,423 3 Natural

language
Train, Test,

Valid.

Sentiment Classification
(Stack Overflow) [19] 1,500 3 Natural

language Test

Sentiment Classification
(JIRA Issues) [3] 926 2 Natural

language Test

Sentiment Classification
(App Reviews) [19] 341 3 Natural

language Test

Informative App Review
Detection [20] 12,000 2 Natural

language
Train, Test,

Valid.

App Review
Classification [21] 3,691 4 Natural

language Train, Valid.

App Review
Classification [34] 3,000 7 Natural

language Train, Valid.

Self-Admitted Technical
Debt Detection [22] 62,275 2 Comments Train, Test,

Valid.

Comment Classification
[23] 11,232 16 Comments Train, Valid.

Code-Comment Coherence
Prediction [24] 2,881 2 Code w/

Comments
Train, Test,

Valid.

Linguistic Smell Detection [2] 1,753 2 Code Train, Valid.

Code Runtime Complexity
Classification [25] 933 5 Code Train, Valid.

Code Readability
Prediction [26] 200 2 Code Train, Valid.

Related Work

Wang et al. [27] analyzed code-comment coherence by
means of a Bi-LSTM model which was evaluated also on
the above dataset. However, because a different evaluation
methodology was used, a direct comparison was not possi-
ble. Arnaoudova et al. [28], in addition to introducing the
already mentioned code smell taxonomy, provide an ex-
haustive treatment of this subject, including also an in-depth
empirical study of how developers perceive such smells. A
system to detect linguistic code smells in infrastructure as
code scripts was developed by Borovits et al. [29]. There ex-
ists further literature on smell detection in a broader context:
for instance, Fontana et al. [30] presented a machine learning
approach to code smell detection whose results, however,
were called into question in a later replication study [31].
More recently, Sharma et al. [32] used deep learning models
such as CNNs and LSTM networks to detect code smells
in C# and Java code. Also related, is work done by Arcelli
Fontana and Zanoni [33], who experiment with machine
learning models for code smell severity prediction, which
can be considered an extension of the simpler detection task.

2.1 Natural Language Datasets

These datasets contain mainly natural language, but may
occasionally contain some source code identifiers. They are
the closest to the original setting for models pre-trained on
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a generic English corpus, although they come from very
specific domains.

Sentiment Classification
In sentiment classification, a model assigns a sentiment class
(e.g., one of positive, negative, neutral) to a sentence or short
piece of text; in our case the text’s domain is related to
software development.

The dataset compiled by Calefato et al. (Senti4SD [18])
contains 3,097 training and 1,326 test samples each labeled
as either positive, negative or neutral; all samples were ex-
tracted from questions, answers and comments of Stack
Overflow posts. Along with their dataset, the authors also
released individual rater annotations, i.e., three rater labels
per sample, from which the final labels were obtained by
applying a majority vote rule. The dataset is used to evaluate
an SVM classifier using word embeddings trained on a Stack
Overflow corpus as features; we include this SVM as a
baseline (see Table 3).

Lin et al. [3] created a sentiment classification datasets
consisting of 1,500 sentences (from 178 text fragments) ex-
tracted from Stack Overflow discussions. They also adapted
two previous datasets of 636 Jira issues (926 sentences),
and 130 app reviews (341 sentences) [35], [36]. The JIRA
issues dataset has only two sentiment classes (positive and
negative) while the other two have an additional neutral
class. All three datasets were used in a study of several
sentiment analysis tools, and a novel model introduced in
the same work [3]; we include all of them as baselines in our
comparison (Table 3). To allow for a comparison with these
baselines, all three datasets are only used as test sets in this
work.

Informative App Review Detection
An app review is considered informative if it contains
valuable information for the application developer, such as
feature suggestions or bug reports. The dataset presented
by Chen et al. [20] contains 12,000 app reviews belonging to
four popular mobile apps from the Google Play Store. The
dataset is partitioned into predefined test (2000 samples per
app) and train sets (1000 samples per app). Three raters an-
notated each review as either informative or non-informative,
with a majority vote to determine the final label. This work
also presented AR-MINER, a tool based on an expectation
maximization with Naive Bayes (EMNB) classifier to detect
such informative app reviews; this tool is our baseline.

App Review Classification
Maalej et al. [21] compiled a dataset of 4,400 reviews crawled
from Apple’s App Store and Google Play. Each review was
categorized by two raters into one of four classes (bug report,
feature request, user experience or rating); reviews with rater
disagreement were discarded. The authors experimented
with various types of classifiers, finding that an ensemble of
binary classifiers performs considerably better than a single
multiclass classifier. We only study multiclass classification,
for comparability reasons, use the author’s multiclass clas-
sifier as a baseline. Scalabrino et al. [34] and Villarroel et al.
[36] introduce CLAP, a tool for automatic classification and
clustering of app reviews that is evaluated on a dataset of

3,000 app reviews created by the same authors. We use the
CLAP dataset in a data augmentation experiment.

Related Work
There is a vast literature on sentiment analysis and clas-
sification. For a general overview see e.g., Mäntylä et al.
[37]. Zhang et al. [15] provide an in-depth comparison
of pre-trained Transformers with six different sentiment
analysis tools, including both, tools for general sentiment
analysis and tools specifically targeted towards Software
Engineering. The study uses some datasets that we also
use (e.g., from Lin et al. [3]), they defined custom training
and testing sets while we used them solely for testing, which
makes comparisons difficult. While they explored additional
Transformer architectures (XLNet [38] and ALBERT [39]),
their study was limited to only fine-tuning: they did not
investigate the use of task-specific pre-training, nor any
other of the additional methods that we study. Ahmed et
al. [40] introduced SentiCR, a sentiment analysis tool that
uses of Part Of Speech (POS) tags and Gradient Boosting
Trees, while Chen et al. [41] present SEntiMoji, a model that
leverages emojis to improve SE sentiment classification.

Dhinakaran et al. [42] investigated the application of
active learning for app review analysis, using the dataset
by Maalej et al. They employ traditional machine learning
algorithms (naive Bayes, logistic regression, and SVM). A
similar experiment, carried out on the same dataset can also
be found in this work.

2.2 Datasets of Code Comments
Source code comments somewhat differ from natural lan-
guage: they may often contain source code identifiers, code
annotations, and specific idioms common in source code
documentation.

Self-Admitted Technical Debt Detection
Self-admitted technical debt (SATD) is technical debt known
to and acknowledged by the author. It is often expressed
in code comments with a short description of a flaw or
shortcoming and sometimes, but not always, marked with
specific keywords, such as FIXME, TODO or HACK. Detection
of such comments can be useful to assess software quality,
aid decision-making or direct further development.

The dataset by S. Maldonado et al. [22] contains SATD
comments extracted from 10 prominent Java projects (for
more details, see Table 13 in Appendix A). With over
60,000 samples, it is by far the largest dataset used in
this work. Each dataset sample is assigned to one of five
SATD categories informed by an established ontology of
technical debt [43] (design debt, requirement debt, defect debt,
documentation debt or test debt) or labeled as not containing
any SATD at all. In this work, we concentrate on the binary
version of the problem (detecting presence of SATD), for
two reasons: (1) because there are large class imbalances
(i.e., the document debt class makes up less than 0.1% of
the total data), and (2) to compare performance to binary
classifiers from previous work. In addition to introducing
this dataset, the authors also perform various SATD detec-
tion and classification experiments using traditional NLP
and machine learning methods; we use their SATD detection
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model as a baseline. Baselines also include the CNN-based
approach from Ren et al. [4] as well as the more recent HATD
system by Wang et al. [44], which combines self-attention
with ELMo [45], word embeddings extracted from a pre-
trained LSTM Language Model.

Comment Classification
Pascarella and Bacchelli [23] released a dataset of over
11,000 comments from open-source Java projects classified
according to a taxonomy of 16 different comment categories.
They evaluate their dataset on a multinomial Naive Bayes
classifier which serves as our baseline for this task.

Related Work
For a more general survey on self-admitted technical debt
see e.g., Sierra et al. [46]. Santos et al. [5] use a Long
short-term memory network (LSTM) to classify SATD, also
making use of the dataset by S. Maldonado et al.; since
we confined ourselves to SATD detection this work was not
included. A text-mining based approach to SATD detection
can be found in [47], [48]; in this work, unfortunately, only a
subset of the dataset was used and results are thus not com-
parable. In a closely related comment classification work,
Pascarella [49] focus on comment classification in mobile
applications.

2.3 Datasets of Source Code
These datasets significantly differ from natural language: on
the one hand, code has a very specific and unambiguous
syntax and are much more repetitive than natural language
[50]; on the other hand, code has very complex semantics,
and has many identifiers, leading to vocabulary issues [51].

Code-Comment Coherence Prediction
Corazza et al. [24], [52] and Cimasa et al. [53] examine the
concept of code-comment coherence, i.e., the “relatedness”
of a method’s code and its lead comment. The authors intro-
duce a dataset of 2,883 Java methods along with their leading
comment and a binary label indicating whether coherence
exists between the two or not [24].In follow-up work, the
authors trained an SVM classifier on their dataset using
features based on tf-idf [52] and later word embedings [53].
We include both of these models as baselines.

Linguistic Smell Detection
Fakhoury et al. [2] examine the automatic detection of lin-
guistic code smells (also known as linguistic antipatterns),
that is, code smells emerging from the use of misleading
identifier names or the violation of common naming con-
ventions. Examples of this are variable names as if they were
lists or arrays when in fact they have a scalar type, or getter
methods with side effects.

They labeled a dataset of roughly 1,700 code snippets,
following a taxonomy of linguistic smells [28], which com-
prises 18 different types of linguistic antipatterns. They then
trained a number of models on this dataset and compared
their performances. These models include CNNs in various
configurations, SVMs with different kernels and a Random
Forest classifier. All models are binary, that is, they only
determine whether a given sample is “smelly” or not and

do distinguish between different types of antipatterns. In-
terestingly, the authors found that a thoroughly tuned SVM
model outstrips the CNN in all its configurations. This not
only in terms of performance metrics but also in terms of
memory consumption, training time and ease of use. Their
best-performing models were selected as baselines.

Code Runtime Complexity Classification
Sikka et al. [25] investigate the use of machine learning
to automatically predict the code runtime complexity class
(e.g., O(n2)) of short programs. To this end, they collected
933 Java implementations of various algorithms from a
competitive programming platform and annotated each
with the corresponding complexity class (i.e., one of O(1),
O(log n), O(n), O(n log n), O(n2)). They experiment with
various traditional machine learning approaches, training,
such as Random Forests and SVMs on manually engineered
features (such as numbers of loops, numbers of variables
etc.) and code embeddings obtained from the programs’
abstract syntax tree through graph2vec [54].

Code Readability Prediction
What constitutes readable code and what does not, seems
to be largely a matter of personal taste. Notwithstanding
this, research by Buse and Weimer [55] suggests that code
readability can, at least in part, be measured objectively.

A relatively small number of papers [26], [55]–[58] ex-
amine models for automatic code readability estimation.
Most recently, Scalabrino et al. [26], [58] compiled a dataset
by letting 30 Computer Science students rate the readabil-
ity of 200 methods, previously selected from well-known
Java projects. Each method received 9 readability ratings:
these ratings were then averaged and compared against a
threshold value to assign a single binary readability label.
Further, they developed a logistic regression model for code
readability estimation by combining structural readability
features proposed in Buse and Weimer [55] and Dorn [57]
with novel textual features. We base all of our experiments
on above dataset; previous datasets by Buse and Weimer
[55] and Dorn [57] were not included due to lack of baselines
suitable for comparison.

2.4 Uses of Pre-training and Transformers in Software
Engineering

In previous work, we investigated the usefulness of the
pre-training paradigm (using the earlier ULMFit approach
[8]), finding it promising in limited sentiment analysis ex-
periments [13]. Mahadi et al. [14] experimented with cross-
dataset classification of design discussions, but had mixed
results.

Zhang et al. [15] provide a detailed study on the use of
Transformers for sentiment analysis of Software Engineer-
ing artifacts, comparing existing sentiment analysis tools
with Transformer models (BERT, RoBERTa, XLNet). Biswas
et al. [17] pursue a similar avenue, training BERT on a newly
compiled dataset of 4,000 sentences from Stack Overflow
discussions and comparing results with recurrent models.

Hey et al. [16] present NoRBERT, a BERT model fine-
tuned to classify functional and non-functional require-
ments that achieves results competitive to state-of-the-art
models on the PROMISE NFR dataset.
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Keim et al. [59] attempt to use a standard BERT (i.e., pre-
trained on English natural language) for the detection of
architectural tactics in Java code and report mixed results
that lag behind state-of-the-art approaches in one case study.

Svyatkovskiy et al. [60] introduce IntelliCode compose, a
system for intelligent code completion based on the GPT-2
Transformer language model.

Finally, Feng et al. [61] present CodeBERT, a RoBERTa-
based Transformer that was trained on natural language
and code (bimodal), allowing for code-related tasks that also
involve natural language, such as code search or documen-
tation generation.

To the best of our knowledge, none of the previous
work has studied the performance of pre-trained and fine-
tuned Transformers on a variety of different small Software
Engineering datasets, under different training regimens as
well as in addition to techniques such as intermediate fine-
tuning, self-training, etc. In particular, for our code experi-
ments we used models that have been pre-trained or fine-
tuned on large code corpora, and we also use software-
specific pre-training corpora for other tasks (Stack Overflow,
app reviews).

3 BACKGROUND

This section provides an overview of the various machine
learning techniques that we investigate in order to evaluate
their effectiveness starting with the pre-training paradigm,
then covering self-training, data augmentation, active learn-
ing, and soft labels. We also highlight the uses of pre-
training in software engineering.

3.1 Pre-training with Transformers, BERT, and
RoBERTa

The Transformer architecture
Transformer [62] networks are a relatively recent architec-
ture, particularly popular in the domain of natural language
processing (NLP). They have replaced Long short-term
memory (LSTM) networks as the prevailing architecture
for text-based data. Transformers are based on attention,
a mechanism previously used in LSTM networks to align
the information flow between the encoder and decoder part
of the network [63]. Attention allows a model to connect
related parts of a sentence and form complex structures of
interdependence between them. Unlike LSTMs, Transformer
networks are not recurrent and instead have a fixed-size
input window of tokens (typically 512 tokens): this allows
for more efficient training and avoids vanishing-gradient or
long-dependency problems extant in recurrent architectures.
To summarize, each layer of the Transformer uses the atten-
tion mechanism to learn relationships between its inputs,
which, in the case of the first layer are the input tokens;
when used for classification, a final fully-connected layer is
used as output layer.

Pre-training via Language Modelling
BERT [9] (Bi-Directional Encoder Representations from
Transformers) is an extension of the Transformer archi-
tecture and comes with a specific semi-supervised learning
training regimen: BERT heavily relies on pre-training, a

form of unsupervised learning, before being fine-tuned on a
downstream task in a classical supervised fashion.

During pre-training, BERT is trained on large amounts
of unlabeled data via Mask Language Modelling (MLM).
MLM is a prediction task where some of the input tokens
are randomly replaced by blanks (“masked”) and the model
is trained to predict the tokens behind these blanks, taking
into account the textual context on both sides of the blank
(see the BERT paper for more details on the pre-training
itself [9]). Intuitively, this general task is supposed to initial-
ize the weights to a state in which certain general concepts
and relationships useful for a large number of downstream
tasks are already present: BERT learns a Representation of the
tokens. Unlike word embeddings [64], these are contextual
representations: they depend both on the token, and its
surrounding tokens.

Of note, earlier work also used Language Modelling as
a pre-training task (ELMo and ULMFit [7], [8]) with LSTMs,
and were used with some varying amount of success in
Software Engineering [13], [14]. BERT’s pre-training is more
efficient for two reasons: BERT’s bidirectional architecture
uses the context before and after the token, whereas LSTMs
use only the context before the token; and BERT uses Byte-
Pair Encoding (BPE) [65] to tokenise text in subwords rather
than entire words, leading to better modelling of the vo-
cabulary (see previous work by Karampatsis et al. for an
extended discussion of this aspect for source code [51]).

RoBERTa [10] is a refinement of BERT, in particular relat-
ing to its pre-training regimen (e.g., RoBERTa uses a larger
pre-training corpus, dynamic masking, and a variation of
the pre-training task) and with only minor architectural
changes (RoBERTa uses Byte-level BPE tokenization, rather
than character-level BPE).

Fine-tuning
Both BERT and RoBERTa are hardly ever trained from
scratch. Instead, starting from a pre-trained model with
pre-initialized weights, the model weights are further fine-
tuned by training on task-specific labeled data (called a
downstream task). This involves replacing the last layer of
the model (useful for the pre-training task), with a task-
specific layer, and resuming training. The model can lever-
age the pre-trained representations to be able to learn the
downstream task effectively, even with a limited amount of
data, allowing BERT and RoBERTa to set the state of the art
on NLP benchmarks, even on tasks with limited data (the
GLUE benchmark [11] includes several task with less than
10,000 examples).

Impact of the Pre-training corpora
The standard BERT and RoBERTa models have both been
pre-trained on a large English natural language corpus, with
several models available in various sizes. There exist pre-
trained BERT models for many other natural languages and
even programming languages [61]. Intuitively, one would
expect a generic pre-training corpus to be a “jack of all
trades, master of none”, with a more specific pre-training
corpus to be more suited for more specific domains (such
as software engineering). There is evidence of this for word
embeddings in Software Engineering [66], but how much of
an impact a domain-specific pre-training corpus has for a
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EN Leppie, that’s great news! I look forward to trying
IronScheme!

EN →DE Leppie, das sind großartige Neuigkeiten! Ich freue
mich darauf, IronScheme auszuprobieren!

DE →EN leppie, those are great news! I am looking forward to
try out IronScheme!

EN →FR Leppie, c’est une excellente nouvelle! J’ai hâte
d’essayer IronScheme!

FR →EN leppie, this is great news! I can’t wait to try Iron-
Scheme!

Fig. 1. Example of back-translation. The original English sentence is
first translated to German and French, then translated back into En-
glish; resulting variation underlined. Google Translate was used for the
translation.

BERT or RoBERTa model is still an open question, which we
investigate. Of note, the ULMFit approach [8] continues the
pre-training task on the task-specific data (without using
labels), before the actual fine-tuning, finding that it does
improve performance.

3.2 Additional techniques to make the most of small
datasets

Intermediate-Task Fine-Tuning
Intermediate-task fine-tuning (ITT), also known as two stage
fine-tuning, STILTs [67], or TANDA [68] is a technique
whereby the model is fine-tuned twice (with labeled data):
first on an intermediate task, a task different from but closely
related to the target task, and finally on the actual target
task (e.g., training for sentiment analysis on movies, before
switching to sentiment analysis on books). This is particu-
larly attractive whenever only little data is available for the
target task whilst large amounts of data are available for a
similar, possibly slightly simpler, but different intermediate
task. The idea is that the target task might benefit from
“knowledge” that the model acquired during intermediate-
task training. Pruksachatkun et al. [69] presents a survey on
when this method offers good prospects in NLP.

Self-Training
Self-training (also known as self-labelling or self-
learning) [70], [71], is a very simple semi-supervised
learning method. It can be explained as follows. A model
is first trained on a (possibly too small) labeled dataset.
Next, this model is used to evaluate a number of additional
unlabeled samples. The model’s predictions for these
unlabeled samples are then simply used as their gold labels.
We now have additional labeled data, albeit noisier ones;
after adding it to the original dataset we retrain the model.
Predictions can be filtered by confidence to reduce the
probability of introducing noise into the training set.

Data Augmentation and Back-Translation
Data augmentation is a well-known technique to increase
the amount of labeled data without any human labeling
effort, which is especially valuable in cases where train-
ing data is in short supply. It works by adding slightly
varied copies of already existing, labeled samples to the
dataset, assuming the variations do not affect the label. The
technique was first used in computer vision, where data

augmentations are easier to define, such as flipping images
horizontally (a dog looking left instead of right), or cropping
images randomly (a closeup of the dog’s head should still
be classified as a dog). For text data, several such meth-
ods for augmentation have been proposed in recent years,
among others: a) replacing words with synonyms [72], [73],
b) replacing, adding or deleting words randomly [73], c) re-
placing words with the nearest neighbor in an embedding
space [74], [75], d) replacing words with predictions from
a masked language model such as BERT [76], e) translating
into an intermediate language and then back into the source
language (back-translation) [77].

Augmentation is typically applied at training time by
simply adding the augmented samples to the training set
and then proceeding as usual. Alternatively, augmentation
can also be carried out at test time by aggregating (e.g.,
averaging) the prediction for an original test sample with
the predictions for its augmented copies, thus obtaining
potentially more stable or more accurate predictions.

Figure 1 shows an example of augmentation through
back-translation: a sample in the dataset (here an English
sentence) is translated into German and French, then back
into English, causing slight variations.

Active Learning

The goal of active learning is to make the process of manual
data labeling more efficient. Active learning avoids present-
ing samples to the rater that the model is likely to classify
correctly and thus provide little new information.

Initially, a human rater labels a small number of samples,
called the seed. There is also a second, larger set of yet
unlabeled samples, called the pool. A model is first trained
on the seed. In a next step, this model is used to select those
samples from the pool that the model found most “difficult”
to classify. “Difficulty” is measured by means of a confidence
or acquisition function which calculates a confidence score
from the model’s prediction. In classification, this is usu-
ally a distribution over the target classes and acquisition
functions are thus applied to class probabilities. Selecting
samples by confidence score is called confidence sampling.
The rater then labels the selected samples, which are then
removed from the pool and added to the model’s training
set. This process is repeated until a satisfying number of
samples have been labeled or the model reaches a partic-
ular target accuracy. A possible problem with confidence
sampling is that selected samples, albeit being difficult for
the model, might all be very similar, reducing the efficiency
of the process. Confidence sampling is often paired with
diversity sampling: selected samples are subsequently filtered
for diversity, for instance using a clustering algorithm such
as k-means. A common way to evaluate and compare active
learning approaches is a simulation with an already labeled
dataset. See Settles [78] for an overview of variants and
extensions of active learning.

Soft Labels

In classification, usually, every sample is associated with a
single target class. For many machine learning algorithms,
in particular for neural networks, the target label of a sample
is represented as a probability distribution over classes.
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While optimizations exist for handling the common single-
label case, conceptually we can say that the target label is
denoted by a distribution vector which assigns probability
one to the class it belongs to and probability zero to all other
classes. Take, for example, a classification problem where
each sample belongs to either class A, B or C . A sample
will have the target vector (A: 0, B: 1, C : 0) if it belongs to
class B and (A: 0, B: 0, C : 1) if it belongs to class C .

The term soft label is used when this distribution vector is
fuzzy, i.e., is not comprised of a single one and many zeros.
Intuitively, this means that a sample can belong to multiple
classes, with a degree expressed by the class probabilities:
a target distribution such as (A: 0.4, B: 0.6, C :0) belongs
to both, class B and class A. Most datasets do not come
with soft-labels. In cases where each sample in a dataset was
classified by multiple raters (which is common in order to
compute inter-rater agreement), instead of using a majority
vote, the rater’s votes can be converted into a soft-label.
Intuitively, an example in which raters disagree can be
seen as more ambiguous. Providing this information to the
model can help it differentiate between “easy” examples
and “hard” examples.

4 METHODOLOGY

This section covers general aspects of the methodology, that
apply to all the experiments. To ease readability, method-
ological details that refer to a specific technique (e.g., active
learning) are described jointly with the results of this tech-
nique in Section 5.

For each of the “additional techniques” we select a
suitable dataset. We apply domain specific pre-training to
all natural language tasks as here language is rather tech-
nical, (i.e., software related) and thus differs slightly from
the generic English that was used to pre-train BERT and
RoBERTa. For code-related tasks, there is no such linguistic
discrepancy and we do not further pre-train code models.
For our back-translation experiment we select the sentiment
and app review classification tasks: these datasets are of
high quality and their size (3,000-4,000 examples) is within
the capacity of our Google Translate based back-translation
pipeline. The same datasets were also selected for the active
learning experiments for much of the same reasons.

We select the SATD detection task for self-training. For
this task, domain-specific unlabeled samples (i.e., Java code
comments) are easy to obtain. For the related comment
classification task our models already reach a high recall of
close to 90% without any aiding technique; hence, it is not a
good candidate, as self-training is supposed to boost recall.

For intermediate task training, having a meaningful and
“natural” intermediate task to train on is crucial. Such a task
was easily found for comment-code coherence. Instead of
coherence, in the intermediate task, the model must detect
whether a lead comment truly belongs to the method or
was assigned randomly. The corresponding training set was
obtained by simply shuffling the lead-comments in a set of
Java methods.

Soft-labels were only available for the sentiment classi-
fication task, where they could be derived from the multi-
rater labels which were released together with the dataset.

Label-smoothing was applied to the same dataset: this al-
lowed a comparison between the performance of “true” and
“smoothed” soft labels.

Finally, the readability task offered itself for task-specific
tokens as way to “inject” hand-engineered features into
the input. Our models lagged far behind simpler models
using manually crafted features. Previous work found line
length to be a particularly effective feature: we thus tried to
introduce line length information through special tokens.

4.1 Pre-Trained models
Off-the-shelf models
We use several “off-the-shelf” pre-trained model, which
were trained on a corpus of generic English text.

• BERT-base, a 12 layer Transformer model ( 110 million
parameters), pre-trained on a 3.3 billion words from
books and Wikipedia [9].

• BERT-large, a 24 layer Transformer model ( 340 million
parameters), pre-trained on the same corpus [9].

• DistillRoBERTa, a 6 layer Transformer model ( 82 mil-
lion parameters), a compressed version of the larger
RoBERTa model.

Domain-specific models
We pre-train a range of Transformers on data from different
domains and of different sizes, to gain insights on the
effectiveness of pre-training on domain-specific data. One
model (StackOBERTflow) is entirely trained on domain-
specific data, while the others are “off-the-shelf” models
pre-trained on English, that are further pre-trained on some
domain-specific data.

• BERT-reviews, a 12-layer (base) BERT model trained
on 169,097 (8.4MB) unlabeled app reviews from the
AR-MINER dataset. We employed this model in the
informative app review detection and app review clas-
sification tasks.

• BERT-comments, a 12-layer (base) BERT model trained
on 487,693 (48MB) comments extracted from well-
known Java projects and used for comment-related
tasks (SATD and classification).

• BERT-SO-1M and BERT-SO-2M, two 12-layer (base)
BERT models trained on one (147MB) and two millions
(304MB) of Stack Overflow comments, respectively,
taken from the Stack Exchange Data Dump1. These mod-
els were used in the SATD, sentiment classification, and
informative app review detection tasks.

• BERT-SO-1M-large, a 24-layer (large) BERT model
trained on one million Stack Overflow comments (as
above), used, however, only in the sentiment classifica-
tion experiments.

• StackOBERTflow, a 6-layer (small) RoBERTa model
trained from scratch on 26.2 million Stack Overflow
comments (3.6GB). The Stack Overflow corpus was
tokenized using byte pair encoding (BPE) subwords
and a large vocabulary size of 52,000. We use this model
in the informative app review detection, comment clas-
sification, app review classification and sentiment clas-
sification tasks.

1. https://archive.org/details/stackexchange

https://archive.org/details/stackexchange
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Source code models
For the code tasks, we use the following two models:

• CodeBERTa2, a small (6-layer) RoBERTa model trained
on the polyglot CodeSearchNet [79] source code corpus
and released by Hugging Face. The model supports
multiple programming languages: Go, Java, Javascript,
PHP, Python and Ruby.

• CodeBERT [61], a larger 12-layer model trained on the
same corpus, but with a bimodal training regimen: the
model takes as input pairs of natural language and
code and primarily targets code-related tasks that also
involve natural language (e.g., code search or summa-
rization). Since none of our code experiments involves
natural language, we use an empty string as natural
language input, except for the code-comment coherence
task, where, after stripping comment markers, com-
ments are treated as natural language.

Scratch model
To get a rough estimate of the effect of pre-training, we
also train, for the sentiment classification task, model fully
from scratch. This model has the same architecture as
StackOBERTflow (a 6-layer, small RoBERTa model), but is
randomly initialized and train solely on the training set.

4.2 Preprocessing

Pre-trained models do not require extensive pre-processing,
such as stemming or removing stop words. In fact, these
may be harmful to performance, as the models were pre-
trained on data that was not pre-processed. In addition,
large neural networks have enough parameter capacity to
pick up on subtleties such as word order and negation.
Thus for most of the datasets, in line with the practice, we
did very little preprocessing. For the sentiment analysis and
app review datasets, we used raw, unpreprocessed input.
For the app review classification tasks we concatenated the
review title and body and prepended the review’s rating (a
number in the range 1-5). We applied heavier preprocessing
for tasks with code comment input. Here, similarly to [22],
we removed newlines, comment delimiters (such as //,
/*, */), stripped HTML tags and removed all punctuation
except periods and question marks as well as repeated
whitespace characters. Our goal was to reduce the length
of the comments to fit in the Transformer’s input window:
each punctuation mark is treated as an additional token,
taking away a spot in the window.

Preprocessing was also necessary for some source code
tasks. In the code-comment coherence task, we simply took
the concatenation of the lead comment and the method
body as input. Moreover, we reformated all code files in
the complexity prediction dataset using Google’s Java code
formatter3 such that, for instance, all of them use the same
indentation width. For the remaining dataset and tasks no
preprocessing was done.

After this, we used each pre-trained model’s tokenizer to
properly segment the data in the subword units specific to
this model, as each model may have a different vocabulary.

2. https://huggingface.co/huggingface/CodeBERTa-small-v1
3. https://github.com/google/google-java-format

4.3 Dataset Partitioning and Evaluation

We tried to replicate the baseline models’ training and
evaluation methodology as closely as possible. In particular,
we use the same split ratio or number of folds (in case k-fold
cross validation was used) as was used to train or evaluate
the respective baseline with the only exception of the lin-
guistic code smells task. There, we approximated a leave-
out-one cross validation with a 15-fold cross validation,
as the former was computationally too expensive for our
models. Independent of the different evaluation strategies,
we repeat all of our experiments at least three times with
varying random seeds and average results to reduce noise.

Sentiment classification. We trained our models on the
predefined training set of the Senti4SD dataset [18], 30%
of which we use for validation; the corresponding test set
was used for testing. All the remaining sentiment analysis
datasets were solely used as test sets (as was done in previ-
ous work). Whenever a test set lacked a neutral sentiment
class, as was the case for the JIRA issues dataset, we treated
neutral predictions from the model as negative.

Informative app reviews. A predefined train-test split is
also given for the informative app reviews detection task.
Here, the test set is actually larger than the training set
(2,000 and 1,000 samples, respectively). We used 15% of the
training set for validation.

App review classification. We used Monte Carlo cross-
validation: we split the dataset in 10 random training and
validation partitions with a ratio of 70:30. Reported results
are averages over 10 runs.

SATD. We use cross-validation, with a 9 → 1 cross-project
setting: we train on 9 out of the 10 total projects; the
remaining project acts a test set.

Code-comment coherence. The model in [52] was trained on
75% of the dataset while the remaining 25% were used for
testing. Because this train-test split was chosen randomly,
an exact comparison is not possible. To obtain more stable
performance metrics, we re-evaluated this baseline model
with three random train-splits and averaged the results. We
train our own model in the same way, and use 10% of the
training data for validation.

Linguistic code smells. As pointed out in the initial work,
the leave-one-out cross validation strategy used for training
the linguistic smell detection baselines is prohibitively ex-
pensive for a deep neural network. We resorted to 15-fold
cross validation, putting the baselines at a slight advantage:
they were trained on over 99% (all but one example) of the
entire dataset, while our model uses only 93% (14/15th) of
the data for training.

Other datasets. Finally, the code runtime complexity predic-
tion, comment classification and code readability prediction
datasets were evaluated using k-fold cross-validation with
k equal to 5, 10 and 10 respectively.

4.4 Fine-Tuning and Testing

We tried several different hyper-parameters on the Senti4SD
dataset, varying learning rate (2e-5, 4e-5, 5e-5, 5e-5), batch
size (8, 12, 16, 32), and drop-out rate (0.05, 0.07, 0.1). We

https://huggingface.co/huggingface/CodeBERTa-small-v1
https://github.com/google/google-java-format
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found that general recommendations give good results in
most cases (e.g., a learning rate of 5e-5 for fine-tuning
BERT). Interestingly, on Senti4SD a configuration with a
relatively small batch size of 12 worked best. On the remain-
ing tasks batch size was selected so as to fill the available
GPU memory4 (16-48 depending on GPU and task). This
means that for medium-sized models, the batch size was
halved with respect to small models, such as CodeBERTa or
StackOBERTflow. We also reduced the Transformers input
window size from 512 to 256 tokens on datasets where
input sentences where so short that the bulk of them (>
98%) fit this narrower window; a smaller window reduces
memory consumption (and thus allows for a larger batch
size) and speeds up training. Exceptionally long samples
that occurred occasionally were truncated to the used win-
dow size. For the natural language tasks, truncation affected
less than 2% of examples. However, more truncation was
needed for code tasks. For the code complexity task, where
a single example consists of a whole Java class definition,
up to 36% of the examples did not fully fit into the window
and had to be truncated. Truncation was also relatively
frequent in the code readability and code coherence tasks.
In the former, 8% of the examples were truncated (but less
than 3% of total tokens); 6% of examples in the latter. We
stopped training after validation performance converged,
which usually happened after 4-6 epochs.

5 RESULTS AND DISCUSSION

We first start by giving an overview of the performance
on each task compared to the available baseline, before
diving into the details of the impact on the performance of
each of the techniques that we investigate. Of note, due to
limitations in the datasets and the run-time needed for each
experiment, we were limited in the number of experiments
we could run for each additional technique. For an overview
of our results, refer to Table 2. For reasons of comparability,
we use the same metrics5 that were used for the evaluation
of the baselines.

We try to give answers to the following research ques-
tions:

RQ1. For which domains and tasks does the pre-training
paradigm outperform the baselines? (RQ 1.1) and
which pre-training regimen is most effective? (RQ 1.2)

RQ2. Which additional techniques are effective, and if so in
which circumstances? In particular we ask RQ2.1: can
multi-rater and soft labels be leveraged for better model
performance?, RQ2.2: is back translation a suitable
remedy for small datasets?, RQ2.3: how effective is
active learning for selected Software Engineering tasks,
RQ2.4: how can self-training be leveraged to improve
model performance? RQ2.5: can intermediate task train-
ing raise model performance?

5.1 Comparison with Baselines (RQ1.1)

4. the sentiment classification and SATD tasks were carried out on a
NVIDIA V100 GPU with 32GB of memory; the remaining experiments
on two NVIDIA RTX 2080TI with a total of 20GB of memory.

5. Acc. = TP+TN
TP+TN+FP+FN

; Prec. = TP
TP+FP

; Rec. = TP
TP+FN

;
F1 = 2·Prec.·Rec.

Prec.+Rec.
; for AUC see e.g., [80]

TABLE 2
Overview of tasks, experiments, and results in this work. We consider

an experiment’s outcome as improving ( ) if our best model’s
performance is more than 1% above the baseline’s for a given

task-related metric, competitive (G#) if it is within 1% of the baseline’s
performance and not competitive (#) otherwise. A technique’s benefit
depends not only on performance improvement but also on effort and

applicability and is further discussed in Section 6. Clicking on the circle
symbols in the “Outcome” column will take you to the respective results

table. Clicking on a results table’s title will take you back to this
overview table.

Sentiment Classification
[3], [18], [19]  3 7 37 3

Informative App Review
Detection [20]  3

App Review
Classification [21], [34]  3 7 3

Self-Admitted Technical
Debt Detection [22] G# 7 3

Comment Classification
[23]  7

Code-Comment Coherence
Prediction [24] G# 3

Linguistic Smell Detection [2] #

Code Runtime Complexity
Classification [25]  

Code Readability
Prediction [26] # 7

Outcome

Domain-specific pre-training

Active Learning

Back-translation Augmentation

Self-Training

Intermediate-Task Fine-tuning

Label-Smoothing & Soft-Labels

Task-Specific Tokens

#= not competitive G#= competitive  = improving
7= no clear benefit 37= little benefit 3= likely benefit

Sentiment Analysis. On the sentiment analysis datasets,
Transformers are ahead of previous methods on most
datasets (Table 3). In particular, this is also true for the
slightly out-of-domain datasets, such as the JIRA dataset,
which the Transformers were not directly trained on, with
one exception: Transformers lag behind SentiStrength on the
second Stack Overflow test set, but only in terms of F1 (by
less than 1%), not accuracy.

App Review Analysis. In both, app review classification
and informative app review detection Transformer models
clearly outperform baselines (Table 4). The BERT model that
was further pre-trained on app reviews is in the lead, but all
of the Transformers manage to improve upon baselines. Fi-
nally, also on the CLAP dataset StackOBERTflow-comments
was able to achieve a 5% higher macro F1 score over the
previous random forest model proposed by Scalabrino et al.
[34] (Table 10).
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TABLE 3
Accuracy, macro F1 and per-class precision and recall for different

models and datasets. Values reported are means over five runs, each
with different seed (only our models). All models were trained on the

Senti4SD [18] Stack Overflow dataset.

Dataset Model Acc. F1

Senti4SD [18]
(Test Set)

BERT (base) 87.9 87.8
BERT-SO-1M-large 89.4 89.4
BERT-SO-2M 88.8 88.7
BERT-SO-1M 88.8 88.7
DistilRoBERTa (small) 87.4 87.3
RoBERTa (small, no pretr.) 78.4 77.8
Senti4SD [18] - 86.0
SentiCR [18] - 82.0
SentiStrengthSE [18] - 80.0
SentiStrength [18] - 84.0
StackOBERTflow 88.7 88.6

App Reviews [19]

BERT (base) 64.9 50.2
BERT-SO-1M-large 66.0 51.9
BERT-SO-2M 67.7 53.1
BERT-SO-1M 68.3 53.7
DistilRoBERTa (small) 60.9 48.5
NLTK [3] 54.0 40.8
RoBERTa (small, no pretr.) 48.0 42.2
SentiStrength+AC0-SE [3] 58.9 46.6
SentiStrength [3] 62.5 48.2
StackOBERTflow 72.0 57.4
Stanford CoreNLP SO [3] 41.6 35.5
Stanford CoreNLP [3] 69.5 56.0

JIRA Issues [3]

BERT (base) 95.7 95.0
BERT-SO-1M-large 94.8 93.8
BERT-SO-2M 95.2 94.5
BERT-SO-1M 95.1 94.2
DistilRoBERTa (small) 93.7 92.7
NLTK [3] 29.8 46.5
RoBERTa (small, no pretr.) 84.0 80.1
SentiStrength+AC0-SE [3] 76.0 87.0
SentiStrength [3] 77.1 85.4
StackOBERTflow 93.5 92.5
Stanford CoreNLP SO [3] 36.0 44.2
Stanford CoreNLP [3] 67.6 73.7

StackOverflow [19]

BERT (base) 79.9 47.6
BERT-SO-1M-large 79.2 43.3
BERT-SO-2M 80.3 48.6
BERT-SO-1M 80.1 47.9
DistilRoBERTa (small) 78.8 44.3
NLTK [3] 77.9 43.2
RoBERTa (small, no pretr.) 75.5 42.2
SentiStrength+AC0-SE [3] 78.0 46.8
SentiStrength [3] 69.5 49.5
StackOBERTflow 79.3 44.1
Stanford CoreNLP SO [3] 75.9 47.5
Stanford CoreNLP [3] 40.3 35.5

SATD. The Transformer models are able to outperform the
CNN model [4]. They remained, however, slightly behind
HATD [44], an ELMo-based [45] model which represents
the current state of the art for SATD detection (see Table 5).
Both HATD and Transformers clearly outperform the other
models; both leverage pre-training. The dataset contains a
considerable number of exact duplicates and near duplicates
(those arising after preprocessing): we report results with
and without removal of such duplicates; we do not know
whether baseline have been trained with or without such
duplicates.

Comment Classification. The Naive Bayes baseline lags
behind all three Transformer models (StackOBERTflow-
comments, standard BERT, and a domain-specific pre-

TABLE 4
Results (macro F1) for the app review-related datasets. Our numbers

are averages over at least three runs with different seeds.

Model Face-
book

Tap
Fish

Temple
Run2

Swift-
Key Avg.

StackOBERTflow 90.9 89.4 88.6 85.1 88.5
BERT (base) 90.6 88.2 89.2 85.4 88.4
BERT-SO-1M 92.1 90.0 91.1 87.5 90.2
BERT-reviews 93.3 91.4 91.3 89.9 91.5
EMNB [20] 87.7 76.1 79.7 76.4 80.0

(a) Informative app review detection (AR-MINER)

Bug
reports

Feature
request Ratings User

experience Avg.

StackOBERTflow 61.1 42.0 79.4 49.8 58.1
BERT (base) 61.8 39.7 79.4 49.4 57.6
BERT-reviews 64.1 44.7 80.2 51.0 60.0
Decision Tree1 [21] 62.0 42.0 54.0 50.0 52.0
Naive Bayes1 [21] 62.0 47.0 54.0 53.0 54.0
1 multiclass, bag of words + metadata

(b) App review classification

trained BERT) by a margin of 4% (Table 6). A BERT model
further pre-trained on task-specific data (i.e., Java com-
ments) performed slightly worse than standard BERT.

Code-Comment Coherence. The SVM baseline by Corazza
et al. [52] performs better than the CodeBERTa Transformer,
even when employing intermediate-task training (+1% ac-
curacy, Table 7a). In a later work, Cimasa et al. [53] ex-
periment with word embeddings: the resulting baseline is
weaker than their first and outperformed by the Trans-
former. As already noted, roughly 6% of examples had
to be truncated. When training and evaluating only on
the shortest 90% of examples, all entirely fitting the input
window, accuracy increased from 81.4 to 83.1%.

Linguistic Smell Detection. We compare with the baselines
established by Fakhoury et al. [2] in Table 7b. CodeBERTa
is able to outperform the manually tuned SVM and the
also CNN but clearly remains behind the SMO (sequential
minimal optimization) model that was automatically tuned
using Bayesian optimization (through Auto-Weka [81]).

Runtime Complexity Classification. The complexity classi-
fication task was the only code task where the Transformer
exceeded all baselines (Table 7c), including the Random
Forest classifier and the SVM trained on AST embeddings.

Dealing with whole Java classes, this task had the largest
number of examples that did not fit the Transformer’s input
window. We found that truncation has a profound effect
on performance. We sorted data by length and separately
evaluated only on the lower and upper half. 84.6% accuracy
was achieved on the lower half (shorter examples), in which
no examples had to be truncated. On the upper half (longer
examples), 58% of samples had to be truncated; performance
dropped to 65.7%.

Code Readability Prediction. The logistic regression base-
line trained on manually engineered features by Scalabrino
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TABLE 5
Macro F1 scores for the SATD detection task. As far as our results are concerned, numbers are means over five runs, each with different seed.

without duplicates with duplicates
BERT-
SO-1M

BERT-
comments

BERT
(base)

Stack-
OBERTflow

BERT-
SO-1M

BERT-
comments

BERT
(base)

Stack-
OBERTflow

CNN
[4]

NLP
[22]

HATD
[44]

Apache Ant 70.2 66.9 65.4 67.5 70.3 68.8 67.2 69.0 66.0 51.2 71.3
ArgoUML 89.8 90.0 89.7 89.3 89.4 90.0 89.7 89.0 87.8 81.9 90.3
Columba 90.9 90.4 91.0 90.0 91.4 91.4 91.9 90.6 85.2 75.0 92.4
EMF 73.5 72.4 73.2 69.2 72.5 69.5 74.4 71.0 67.9 46.2 76.5
Hibernate 88.6 87.5 88.2 87.4 88.7 88.3 88.9 87.7 82.6 76.3 89.9
JEdit 72.7 70.6 71.9 73.9 72.0 70.8 70.5 72.2 59.9 46.1 82.6
JFreeChart 77.7 80.7 79.2 77.6 64.1 64.7 63.8 63.0 73.9 51.3 70.1
JMeter 87.0 87.5 87.4 86.6 86.4 85.8 86.2 84.3 82.8 71.5 84.4
JRuby 91.1 91.2 90.8 90.5 92.1 92.4 92.3 91.4 86.3 77.3 91.8
SQuirrel 79.1 78.2 78.8 78.6 80.5 79.5 80.5 78.4 73.9 59.3 80.6

Average 82.1 81.5 81.6 81.1 80.7 80.1 80.5 79.7 76.6 63.6 83.0

TABLE 6
Results for the comment classification task. Task-specific pre-training
failed to improve performance. As far as our models are concerned,

results are averages over three runs with different seeds.

Model F1 Prec. Rec.

StackOBERTflow 88.4 89.6 90.1
BERT-comments 88.3 90.6 89.0
BERT 88.4 90.5 89.1
Naive Bayes Multinomial [23] 84.3 82.0 87.2

TABLE 7
Results for code-related tasks. As far as our number are concerned,

values are means over at least three runs with different seeds.

Model Acc. AUC

CodeBERTa 81.4 80.1
CodeBERTa+ITT 82.5 80.9
CodeBERT 81.6 80.0
SVM [52]1 83.5 81.3
SVM [52]2 83.3 82.2
SVM+WE [53]3 80.5 -

1 single seed; value from [52]
2 average over 5 seeds; repro-
duction
3 word embeddings

(a) Comment-code coherence

Model F1 Prec. Rec.

CodeBERTa1 81.1 81.5 81.1
CodeBERT1 71.2 73.7 71.5
SMO Poly2 [2] 88.8 91.8 86.0
SVM RBF2 [2] 74.8 76.2 73.4
CNN2 [2] 74.5 75.6 73.5

1 15-fold cross validation
2 leave-one-out cross validation

(b) Linguistic smell detection

Model Acc.

CodeBERTa 78.2
CodeBERT 78.4
Random Forest [25] 74.3
Logistic Regr. [25] 73.2
SVM [25] 73.0
SVM+graph2vec [25] 73.9

(c) Code runtime complexity predic-
tion

Model Acc.

CodeBERTa 73.1
CodeBERTa+LLT 72.5
CodeBERT 69.3
Logistic Regr. [58] 84.0

(d) Readability prediction

et al. [58] is out of reach for the Transformer: the accuracy
achieved by the baseline is over 10% higher (Table 7d). From
all the selected tasks, the readability prediction task was the
hardest for the Transformer.

RQ1.1: Pre-trained transformers were able to outperform
baselines on domains closer to natural language; for source
code, results were mixed.

5.2 Pre-Training (RQ1.2)

Our results suggest that, in particular for natural language
tasks, the most promising approach seems to be to further
pre-train models already pre-trained on general English.
When available, in-domain data should be used for pre-
training, but even close-to-domain data can yield good im-
provements. For instance, pre-training BERT on Stack Over-
flow comments helped to improve accuracy also on the app
review dataset (+1.8 F1, see Table 4). Further pre-training
an already pre-trained model should also be preferred over
pre-training from scratch. The further pre-trained models
outperformed our model pre-trained from scratch for most
tasks and metrics even though pre-training from scratch
required considerably more training time and (unlabeled)
training data. This comparison comes with a grain of salt:
our further pre-trained models have twice as many layers
as our pre-trained-from-scratch model, which, in turn, has a
much larger vocabulary (52,000 vs 30,522). While not having
a larger model pre-trained from scratch is a limitation of this
work, it also highlights how expensive it is.

What speaks for our small model, and for small models
in general, is of course their size: with only half the layers,
training and evaluation is roughly twice as fast, the memory
footprint is much smaller and, depending on the task, the
performance hit may be acceptable.

Our experiments also indicate that further pre-training
is effective even with relatively small amounts data. In the
sentiment classification task as little as 150MB (1 million
samples) of pre-training data seems to be sufficient and
able to “saturate” the model. Doubling the amount of pre-
training data resulted in virtually negligible improvements
(see BERT-SO-1M versus BERT-SO-2M in Table 3). Similarly,
for our large model (BERT-SO-1M-large) improvements are
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marginal: on the Senti4SD test set, i.e., the test set that
“matches” the training set, it outperforms the base-sized
models by only 0.6%, while on the other test tests it lags
behind them.

While domain-specific pre-training was also effective on
the app review datasets where it boosted F1 between +2.4
and +3 (Table 4), this was not the case for code comment
tasks. Interestingly, our BERT-comments model, a general
English model further pre-trained on Java comments, per-
forms slightly worse than the same model without this task-
specific pre-training (i.e., a standard BERT) on both datasets
it was applied to (-0.1 F1, see Tables 6 and 5). As to why this
is the case we can only speculate: A possible explanation is
that the comments in our pre-training dataset are very repet-
itive and have low linguistic diversity (e.g., Java docstrings).
Thus, the model might have unlearned some of its general
language capabilities during task-specific pre-training.

Figure 2 demonstrates that pre-training is essential:
a randomly initialized model not only converges much
slower, it also has higher variance and typically reaches
much lower peak performance. In sum, our experiments
show that there is very little reason not to use an already
pre-trained, general natural language model as the basis
for further domain-specific pre-training and should in most
cases be preferred over pre-training from scratch, which, in
relation to training time, hardly seems worth the effort.
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Fig. 2. F1 score on different sentiment classification datasets with and
without pre-training. Number of optimization steps is shown on the x-
axis; error bands are 95% confidence intervals.

RQ1.2: Pre-training is essential. Further pre-training a
generic model on domain-specific data is often beneficial,
and is much more effective than pre-training from scratch.

5.3 Soft Labels (RQ2.1)
Since Calefato et al. [18] released multi-rater labels (three
per sample) along with the majority label, we conducted
a soft label experiment. For instance, if one voter assigned
the positive label to a sentence, while two raters assigned
neutral, majority voting would label it as neutral. Instead,
the soft label captures all three rater labels, assigning the
distribution: (positive: 0.33, negative: 0, neutral: 0.66) to the
sentence.

TABLE 8
Macro F1 for different label types and datasets: mean, maximum and
standard deviation over five runs, each with different seed. All models

were trained on the Senti4SD [18] Stack Overflow dataset.

Dataset Label Type F1
µ± σ max

App Reviews [19] All Label Votes 57.5± 2.2 59.1
Majority Label 57.4± 1.6 59.7

JIRA Issues [3] All Label Votes 93.5± 1.0 94.7
Majority Label 92.5± 0.5 93.2

StackOverflow [19] All Label Votes 42.4± 1.0 43.8
Majority Label 44.1± 2.9 46.4

Senti4SD [18] All Label Votes 89.1± 0.5 89.6
Majority Label 88.6± 0.5 89.1

Method. We train a subset of the models with hard-labels
and soft-labels on Senti4SD, and evaluate on all sentiment
analysis datasets (see Table 8).

Result. On the Senti4SD test set, training with all three
rater labels resulted in an increase of 0.5%. On the JIRA
test set, soft labels yielded an improvement of 1%. On
the other hand, performance dropped on the second Stack
Overflow test set. While these improvements are not cer-
tain, and might seem modest, they come almost for free.
Whenever multi-rater labels are available, we recommend
to tentatively use them in this way and encourage creators
of datasets to also release labels of individual raters.

RQ2.1: When available, individual rater labels may im-
prove performance at very low cost. We hope this result
will encourage more researchers to release them.

5.4 Back-Translation Augmentation (RQ2.2)
We performed back-translation experiments on the senti-
ment and app review classification tasks by translating
the entire datasets into French, German and Russian using
Google Translate and from these languages back into En-
glish (see Figure 1 for an example).

Method. For the CLAP and Senti4SD datasets we do
training-time and test-time augmentation, both, separately
and combined, using the StackOBERTflow model (Table
10). On the other app review dataset [21] we do training-
time augmentation alone, and combine it with test-time
augmentation: here the the experiment is carried out on
several different models (Table 9).

Result. Back-translation augmentation led to a clear increase
in F1 and accuracy on the CLAP app review dataset, in
particular when training and testing time augmentation
were combined (+1.1% accuracy, Table 10). On Senti4SD,
data augmentation yields modest improvements (+0.3%);
in fact, augmenting at test time only caused a slight drop
in performance. Table 9 suggests that the effect of back-
translation augmentation depends on the model and pre-
training choice. With train-time augmentation only, we see a
modest increase of 0.6% in F1 for our small StackOBERTflow
model and 1.1% on a general BERT model, while BERT-
reviews shows better performance without augmentation.
The latter does however benefit from combined augmenta-
tion (+0.4%). However, the question of whether in general
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TABLE 9
F1 scores for app review classification with training-time

back-translation augmentation (+BT) and training-time and test-time
back-translation augmentation (+BTT). Change is relative to the same
model without any augmentation. Results are averages over three runs

with different seeds.

Bug
reports

Feature
request

Rat-
ings

User
exper-
ience

Avg. Change

StackOBERTflow+BT 62.5 43.3 79.0 50.2 58.7 +0.6
StackOBERTflow+BTT 62.7 44.3 79.6 50.6 59.3 +1.2
BERT (base)+BT 62.0 43.1 79.4 50.2 58.7 +1.1
BERT (base)+BTT 62.5 42.6 80.0 50.1 58.8 +1.2
BERT-reviews+BT 63.2 43.9 79.5 51.0 59.4 -0.6
BERT-reviews+BTT 63.7 46.7 80.1 51.2 60.4 +0.4

TABLE 10
Macro F1, precision and recall for back-translation augmentation at
training and test time on the Senti4SD (sentiment classification) and

CLAP (app review classification) datasets using the StackOBERTflow
model. Results are averages over three runs with different seeds.

Dataset Augmentation Acc. F1 Prec. Rec.

CLAP

Train+Test 89.2 81.4 84.2 82.3
None 88.1 79.7 80.6 81.7
Test 88.3 80.2 81.8 81.5
Train 88.9 81.1 83.7 82.0

Senti4SD

Train+Test 88.7 88.6 88.7 88.5
None 88.4 88.2 88.2 88.4
Test 88.2 88.0 88.1 88.0
Train 88.4 88.3 88.3 88.5

task-specific pre-training diminishes the effects of data aug-
mentation cannot be answered given this limited data and
would require further experiments.

RQ2.2: When possible, back translation yields improve-
ments, particularly if used at both training and test time.

5.5 Active Learning (RQ2.3)

TABLE 11
Acquisition functions used in our active learning experiment, adapted
from [82]: least confidence (CLC ), margin of confidence (CMC ), ratio

of confidence (CRC ), entropy (CE ) and random confidence (Crand). y∗1
and y∗2 are the classes with highest and second highest probabilities,

respectively; n is the number of classes. All functions have range [0, 1].

CLC(x)= n
n−1

(1− Pθ(y∗1 |x))

CMC(x)=1− (Pθ(y
∗
1 |x)− Pθ(y∗2 |x))

CRC(x)=
Pθ(y

∗
1 |x)

Pθ(y
∗
2 |x)

CE(x)=− 1
log2(n)

∑n
i=1 Pθ(yi|x)log2(Pθ(yi|x))

Crand(x)=rand([0, 1])

We try active learning on the Senti4SD sentiment anal-
ysis dataset and an app review dataset. In both cases we
compare several acquisition functions (Table 11).

Method. We carry out the experiment as follows: initially
we split the training set into the seed set Dseed containing
5% of all samples and the pool set Dpool, containing the
remaining samples. We let Dtrain := Dseed and train the
model. Then we evaluate Dpool as well as the test set on this
model. Next, for each x ∈ Dpool we calculate a confidence
score by applying the acquisition function (from Table 11).
After that, we let Dtop be the k = 180 samples with the
highest confidence score. We remove these samples from
Dpool and add them to Dtrain This procedure is repeated
until Dpool is empty.
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Fig. 3. Accuracy of Dpool and the test set at each iteration of the active
learning process for different acquisition functions with (c = 3) and
without (c = 1) diversity sampling for the sentiment classification task
(Senti4SD). Error bands are 95% confidence intervals. Same plot for
the review classification task can be found in the appendix (Figure 5)

We also combine confidence sampling with diversity
sampling to avoid introducing similar samples into the pool.
Instead of k samples, we select c · k samples from the pool,
where c determines the cluster size. We use the k-means
algorithm to cluster the c · k samples into k clusters, each of
size c. We then select a single sample from each cluster, for
a total of k samples. Then, we proceed as above.

Result. Figure 3 shows evaluation results at each iteration
step with a cluster size of c = 3 for the sentiment classifi-
cation task. The outcome of our active learning experiments
remained behind expectations: in both tasks, neither con-
fidence sampling alone nor confidence and diversity sam-
pling combined showed an appreciable advantage over the
random baseline. The choice of acquisition function did not
seem crucial, but a more systematic study would be needed
to draw more solid conclusions. On the other hand, the plot
of pool accuracy (top left) indicates that the active learning
process worked as expected: a random acquisition function
without diversity sampling had constant performance.

RQ2.3: Active learning simulations did not prove success-
ful. Selecting new examples randomly performed as well
as selecting examples with low model confidence.

5.6 Self-Training (RQ2.4)

We investigate the use of self-training for the SATD detec-
tion task.
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Method. We extract 350,000 comments from various popular
Java libraries and frameworks. Then we train a classifier
model on the entire original dataset, which we use to classify
the 350,000 comments as either technical debt or not technical
debt. We only keep the 7,904 positive comments, i.e., those
classified as technical debt, and discard all other samples
to avoid increasing the class imbalance already extant in
the original dataset. For each positive sample we calculate
a confidence score using CLC (Table 11). We take the top
5%, and 80% most confidently classified comments, equal to
6,092 and 7,880 additional comments, respectively, and add
them to the original training set. Finally, the model is trained
and evaluated on this extended training set.
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Fig. 4. Precision, recall and F1 under different self-training settings for
the Apache Ant project. Error bands are 95% confidence intervals.

Result. Figure 4 shows that self-training increases recall
(and possibly F1) but causes precision to drop. This is, of
course, not surprising: the added samples increase dataset
variance which likely explains an increased recall. Similarly,
the precision drop can be explained by the lower quality
self-training labels. Thus, one can tune the precision-recall
trade-off according to task-specific needs, such as when a
recall is more important than precision, or the model’s pre-
cision is high enough to be partly sacrificed for better recall.
Figure 4 shows different self-training settings for Apache
Ant: F1 score went up 4% (precision: -1%, recall +10%),
when using a 5% confidence threshold. The change in F1
strongly depends on the confidence threshold and varies
across projects: EMF sees an 8% F1 drop (precision: −28%,
recall: +15%); other projects range from −1% to +4%.

RQ2.4: Self-training increases recall at the expense of
precision, but the confidence threshold should be tuned
carefully.

5.7 Intermediate-Task Training (RQ2.5)

We evaluate Intermediate-Task Training (ITT) on the code-
comment coherence task, as it is the only setting for which
we could define such an intermediate task.

Method. We use 38,000 Java methods along with their lead
comments from the CodeSearchNet [79] dataset. We assign
half of the methods to their actual lead comments (assumed

to be coherent) and shuffle the other half randomly (thus
assumed to be incoherent). The model is then fine-tuned on
the intermediate task of detecting whether a method was
paired with its true lead comment or a random one. Finally,
we fine-tune on the code-comment coherence dataset as
usual.

Result. ITT improved the performance of the Transformer
model on the code-comment coherence task (Table 7a): we
observed a modest rise in AUC (area under the precision-
recall curve [80]) of 0.8%, and a slightly higher increase
in accuracy (+1.1%). If an appropriate intermediate task
for the task at hand can be found, ITT can be done with
relatively little effort: in our case, the training procedure for
the intermediate-task was mostly identical to the one for the
target task; the bulk of the work consisted in generating the
intermediate-task dataset (e.g. selecting, shuffling and pre-
processing the data from CodeSearchNet).

RQ2.5: When applicable, ITT may improve performance;
however finding a suitable intermediate task may be diffi-
cult.

6 DISCUSSION

6.1 Summary and implications of the results

Types of datasets. Overall, we see that Transformers work
very well for natural language datasets, but that perfor-
mance on source code is “hit or miss”. This comes with
caveats: the models used so far are multilingual, which
might reduce performance. They are also trained with less
computational resources, and on an order of magnitude less
data: While CodeSearchNet is around 1.7 GB, the train-
ing data for BERT is around 16GB, while it is 160GB for
RoBERTa (CodeSearchNet). Models where also small (6 lay-
ers), or had a dual input (text and code). We would expect a
Java-specific model trained on a similar size corpus as BERT
to perform better. Moreover, source code is quite different
from natural language: code snippets are often larger than
sentences, and much more structured. This might pose
limits on what an unstructured model with a small window
size might achieve. Indeed, many more code samples than
natural language samples were truncated to fit the Trans-
former’s window, which we suspect affected performance.
Recent adaptations of the Transformer architecture allow the
model to better make use of the tree-like structure of code
(e.g. [83], [84]), while others allow it to efficiently use a larger
window (e.g., [85], [86]). Investigating these architectures in
connection with small datasets remains an issue for future
research.

Domain-specific pre-training. proved effective in natural
language settings, improving performance at a moderate
cost in terms of computation and data. The only case where
it did not work well was for code comments. While we
are not sure why, one reason could be that code com-
ments are too far way from regular English (needing a
specific model instead), or that careful curation of the data
set (avoiding too many duplicates) is needed. Both cases
could lead to catastrophic forgetting [87] of the initial pre-
training. Leveraging the resources that were used to train
BERT and fine-tuning it further proved much more effective
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than training a model from scratch. We have not evaluated
domain-specific training from English to source code, as
we hypothesized that the two domains are very different—
the tokenization alone might differ significantly [51]. This
intuition is supported by the literature, which reports an
example where an English BERT was applied to source code,
with underwhelming results [59].

Data Augmentation. While data augmentation is effective
for natural language, it is not immediately applicable to
source code. Source code can not be “back translated” easily.
Data augmentation for code is largely still an open issue.
The only work we are aware of is Jain et al. [88] who used
various code transformations on JavaScript code for better
representation learning. These transformations include e.g.,
reformatting, dead-code elimination and insertion, as well
as variable renaming or transforming for-loops into while-
loops.

Intermediate Task Training. Another alternative is to define
suitable intermediate training tasks. We have found initial
evidence of this, and a recent paper adds further evidence,
in the context of traceability [89]. However, it used a very
similar task and dataset. Thus, the challenge here is not
whether intermediate task training helps, but rather whether
a suitable task exists for a given problem.

Soft Labels. Soft labels that reflect the uncertainty of raters
(and thus the difficulty of the samples) can be useful as well,
and at a minimal cost. However these are not common, as of
now. We call on dataset builders to release them alongside
the majority label, as was done by Calefato [18].

6.2 Limitations and Threats to Validity
External Validity
Limited Number of experiments. While we try to report
results as extensively as possible to increase their general-
isability, we are limited for two main reasons: 1) we have
limited computational resources, and 2) some techniques are
specific to some settings.

Selected Datasets. We selected 13 datasets from different
Software Engineering domains, involving different tasks
and types of language (natural language, code comments
and source code). While we tried our best to have a diverse
set of datasets, we cannot fully preclude that the findings
of these work carry over to datasets not used in our experi-
ments, even if similar in nature.

Internal Validity
Limited resources. Deep learning is famously resource in-
tensive. While fine-tuning is less resource intensive than
training models from scratch, it still requires significant
time on one or more dedicated GPUs, particularly for larger
models. A single run is measured in hours. This limits the
number of experiments, particularly as we repeat experi-
ments several times with different random seeds.

Hyper-parameters. Limited resources also impact the ex-
tent to which we perform hyper-parameter optimisation,
as thorough parameter searches (whether by grid, random
or bayesian methods) would be prohibitively expensive. A
second limit is that some hyper-parameters are fixed by

the usage of a pre-trained model (e.g. number of layers,
number of attention heads, embedding size, vocabulary
size). A silver lining is that, given the interest in pre-trained
models, general recommendations for hyper-parameters ex-
ist and are broadly applicable. Thus, we started with these
recommendations, and investigated some variations of the
hyper-parameters on the Senti4SD dataset, confirming that
the recommendations worked well. We then applied those
hyper-parameters on other experiments, varying only the
most important ones in some cases (learning rate, batch
size). Cross-validation also makes evaluation and hyper-
parameter tuning more complex and resource intensive.
Since we limited hyper-parameter tuning, we are not at risk
of overfitting to the test fold when doing cross validation.
An alternative would be to use doubly nested cross valida-
tion, but this further increases the resource needed. We note
that dedicated test sets ease this considerably.

Random Seeds. Dodge et al. [90] found that the choice of the
random seed can have a substantial impact on performance,
especially for small datasets. We ran most of our experi-
ments five times and all of them at least three times, with
different seeds. While this surely mitigates the problem, it
might not fully clear it up.

Comparisons with previous work. We do our best to pro-
vide a fair comparison with previous work, while avoiding
methodological issue (e.g. averaging seeds). We do not al-
ways exactly know how previous work was evaluated eval-
uation (e.g., hyper-parameter selection strategy, whether
simple or nested cross-validation was used, or whether
some data points were excluded) as code is not always
released. In some other cases, other factor presents us to
make an exact comparison (e.g. use of leave-one-out cross
validation is not practical for our setting). To alleviate this
in the future, we release our source code (see Appendix C).

Active Learning. While we could not see an advantage to
active learning, this is not in line with previous work by Dhi-
nakaran et al. [42] and Tu et al. [91]. Of note, our results are
obtained through simulation based on an existing labelled
dataset. While this is a practice often used to evaluate active
learning methods, a realistic application of active learning
on a larger set of unlabelled data would lead to a different
training set, which may be substantially more varied, and
thus more effective. However the difference in labelled data
would have made any comparison with existing work or
other presented techniques unfair and thus seemed to not
match the theme of this paper. A future study investigating
the interaction between active learning and pre-training
would be very interesting. It is also possible that the impact
of active learning is less visible when pre-training is used.

Implementation Bugs. Our implementations are based on
Hugging Face’s transformers Python package [92], a
high quality implementation of common Transformer mod-
els. However, despite careful reviews we cannot fully pre-
clude errors in our own code and adaptations.

Transformer Window Size. Our models have a window
size of 512 tokens (which is the default for BERT and
RoBERTa). While this posed no problem for the studied
natural language datasets, where only a few outliers (<
2%) exceeded the window size, it did so for the code tasks
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(6-36%). In particular, when examples are whole classes
and not just single methods, as in the runtime complexity
task, where up to 36% of examples had to be truncated.
Restricting training and evaluation to shorter, non-truncated
examples increased performance (+1.7-6%), suggesting that
the limited window size is a hindrance for code tasks.
However, an alternative explanation for the performance
increase could be that shorter examples are simply easier
to learn. Recent architectures such as the Longformer [85] or
Reformer [86] might remedy this issue in the future.

Construct Validity
Results in specific settings. While resources are limited, we
still wanted to try each technique on at least two datasets.
However, some techniques were applied to a single dataset.
For soft labels, we needed multiple ratings: only a single
sentiment analysis dataset had the required three ratings per
sample. We could only define a reasonable intermediate task
for code-comment readability prediction. We considered
using self-training for comment classification, but did not,
due to the large number of imbalanced classes.

7 CONCLUSIONS

Software Engineering datasets are often small, by necessity.
In this work, we trained various Transformer models on 13
small and medium-sized dataset selected from the recent
Software Engineering literature. We not only compared
Transformers of different size and different pre-training
regimes but also applied several machine learning tech-
niques that promised a possible benefit for small datasets.
These techniques were data augmentation, self-training,
intermediate-task training, active learning and soft labels.

Overall, we found that on natural language tasks, Trans-
formers usually outperform existing baselines. On source
code tasks, however, results were mixed. Significant work
lies ahead to define effective pre-trained source code models
either by training larger models on more data, or by incor-
porating more structural information during training. For
some source code tasks, training models with larger input
windows than 512 tokens might be beneficial; however these
models are not widely available for source code at this time
of writing.

In general, we advise against pre-training a new model
from scratch as it is extremely resource intensive, for mixed
results. Instead, an already pre-trained model can be further
pre-trained on task-specific data. If such task-specific data is
unavailable, training on close-to-domain data is worth a try.
We provide several such pre-trained models in Appendix C.

Several additional techniques were useful at a relatively
low cost. We particularly recommend the use of soft labels
derived from multi-rater labels if available, and call on
dataset authors to release these multi-rater labels. Back-
translation is similarly useful, if more expensive. It is un-
fortunately not easily applicable to source code.

Other techniques were less applicable. We find that self-
training is advisable only in cases where the user wants to
boost recall and is willing to sacrifice precision. If circum-
stances allow it, intermediate task training seems promising,
but it seems rarely applicable, and has a much higher cost.
Finally, our active learning experiments were inconclusive;

a wider study on a larger set of dataset might be required to
draw a clearer picture.

While these general guidelines are useful on their own,
their applicability is limited. To this extent, we release all
the scripts and pretrained models that were built as part of
this work, so that the community can easily fine-tune the
models on their own Software Engineering datasets, and
apply additional techniques as they see fit (see Appendix C).
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Fig. 5. Accuracy of Dpool and the test set at each iteration of the active
learning process for different acquisition functions with (c = 3) and
without (c = 1) diversity sampling for the review classification task. Error
bands are 95% confidence intervals.

APPENDIX A
ADDITIONAL INFORMATION ON THE DATASETS

Data Quality. On the SATD dataset we noticed that false
positives often contain keywords such as FIXME, TODO, or
HACK; while this might raise questions about quality, we
found that only 1.2% of the negative instances contain such
keywords, compared to 6% among positives. Similarly, in
the app review dataset by Maalej et al. [21] we found that
9% of the samples appear twice, with different labels. We left
these duplicates in the dataset as we did not know how this
issue was handled by previous work, nor which duplicates
to remove and which to keep.

Additional examples and Statistics. Table 12 shows a rep-
resentative example of each dataset, alongside with its class.
Table 13 shows detailed statistics (per project) on the Self-
Admited Technical Debt Dataset.

APPENDIX B
ADDITIONAL RESULTS

B.1 Active Learning

Figure 5 shows the results of active learning on the app
review classification dataset. On this dataset, all pool curves
show a noticeable drop at the end. A possible explanation
for this might be data quality: we observed that the app
review dataset by Maalej et al. [21] contains a number of
duplicates with conflicting labels. Having learned one of
the duplicate samples, all its copies will be considered very
“easy” and not be selected until the very end, at which point
the model will predict the label of the duplicate selected
first, which will, as labels are conflicting, be wrong, causing
accuracy to drop towards the end of the active learning
process.

B.2 Label Smoothing

A method to obtain soft-labels that does not require any
additional information is label smoothing [93], [94]. In label
smoothing, the original target distribution is mixed with
the uniform distribution over all classes: For a given target
vector y, its smoothed version is calculated as: ysmooth =
(1− α) · y+ α · 1

K , where K is the number of classes and α
controls the smoothing strength. As an example, smoothing
the target vector (A: 0, B: 1, C : 0) with α = 0.2 results in
(A: 0.06, B: 0.86, C : 0.06), now a soft-label. Label smoothing
is a form of regulation: intuitively, it dampens the model’s
prediction confidence, forcing it to make more “cautious”
predictions.

We carried out a label-smoothing experiment on the
Senti4SD dataset in addition to soft labels. We train a subset
of our Transformer models with hard-labels, soft-labels and
different degrees of label-smoothing (α = 0.1, 0.05 and 0.03)
respectively, and evaluate on all sentiment analysis datasets;
refer to Table 14 for a comparison of the results. While label
smoothing can occasionally improve performance (e.g. on
Jira issues), it is more likely to either degrade performance,
or not affecting it significantly.

B.3 Task-Specific Tokens

In the code readability task, our Transformer models cannot
compete with manually engineered features used by the
baseline. Since Buse and Weimer [55] found that line length
is one of the most important features for predicting code
readability, we attempt to provide this information explicitly
to our model in form the of special line length tokens, added
to line ends. These tokens range from <l1>, indicating a
short line, up to <l10> for very long lines and are inserted
before newline tokens. We fine-tuned the same model with
and without these special tokens.

Line length tokens failed to improve the performance.
In fact, they seem to hurt performance (see Table 7d). The
logistic regression model by Scalabrino et al. outperforms
our Transformer model by a wide margin. We were able
to successfully reproduce the results of Scalabrino’s model,
which was implemented using Weka [95]. We found that for
their model, attribute selection is crucial; without it, in our
experiments, accuracy dropped significantly (below 60%).

A simple logistic regression model implemented using
scikit-learn [96], even with attribute selection, was
similarly unable to beat their Weka model; neither was
TPOT [97], a framework for automated machine learning,
that automatically evaluates a large number of combinations
of different machine learning algorithms. By first using
Weka’s attribute selection algorithm and feeding selected
attribute to a scikit-learn logistic regression model we
were eventually able to obtain results close to the Weka-only
model.

B.4 Sentiment Analysis

Full results, including per-class precision and recall for
sentiment classification (Table 15). Finally, as can be seen
in table 16, sentences that are most confusing to the model
are hard to classify even for humans. Similar observations
can be made in other datasets (e.g., SATD, not shown here).
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Name Sample Class

Sentiment Classification
(Stack Overflow) [18] I want them to resize based on the length of the data they’re showing. neutral

Sentiment Classification
(Stack Overflow) [19] When I run my client, it throws the following exception. negative

Sentiment Classification
(JIRA Issues) [3] This is always a really bad way to design software. negative

Sentiment Classification
(App Reviews) [19] amazing! a must have app positive

Informative App Review
Detection [20] not able to download any pictures please fix these bugs immediately informative

App Review
Classification [21] Best game I’ve played on Android rating

App Review
Classification [34] good but... it has ads...please remove ads from this... usability

Self-Admitted Technical
Debt Detection [22] // FIXME: Is "No Namespace is Empty Namespace" really OK? SATD

Comment Classification
[23] @return a string for throwing usage

Code-Comment Coherence
Prediction [24]

/**
* Returns the current number of milk units in
* the inventory.
* @return int
*/
public int getMilk() {

return milk;
}

coherent

Linguistic Smell
Detection [2]

public void ToSource(StringBuilder sb) {
sb.append(";");
this.NewLine(sb);

}

smelly
(transform method

does not return)

Code Runtime Complexity
Classification [25]

class GFG {
static int minJumps(int arr[], int n) {

int[] jumps = new int[n];
int min;
jumps[n - 1] = 0;
for (int i = n - 2; i >= 0; i--) {

if (arr[i] == 0) jumps[i] = Integer.MAX_VALUE;
else if (arr[i] >= n - i - 1) jumps[i] = 1;
else { ... }

}
return jumps[0];

}
public static void main(String[] args) {...}

}

O(n logn)

Code Readability
Prediction [26]

@Override
public void configure(Configuration cfg) {

super.configure(cfg);
cfg.setProperty(Environment.USE_SECOND_LEVEL_CACHE, ...);
cfg.setProperty(Environment.GENERATE_STATISTICS, ...);
cfg.setProperty(Environment.USE_QUERY_CACHE, "false" );
... // more cfg.setProperty calls

}

readable

TABLE 12
Arbitrarily selected examples from the datasets along with their class. Some of the code samples have been shortened with ellipses.
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TABLE 13
Projects in the SATD dataset along with the number of samples

classified as self-admitted technical debt.

SATD not SATD Total

Apache Ant 131 3,967 4,098
ArgoUML 1,413 8,039 9,452
Columba 204 6,264 6,468

EMF 104 4,286 4,390
Hibernate 472 2,496 2,968

JEdit 256 10,066 10,322
JFreeChart 209 4,199 4,408

JMeter 374 7,683 8,057
JRuby 622 4,275 4,897

SQuirrel 286 6,929 7,215

Total 4,071 58,204 62,275

TABLE 14
Macro F1 for different label types and datasets: mean, maximum and
standard deviation over five runs, each with different seed. All models

were trained on the training set of the Stack Overflow dataset from
Calefato et al. [18].

Dataset Label Type F1
µ± σ max

App Reviews [19]

All Label Votes (α = 0.03) 56.9± 3.3 61.6
All Label Votes (α = 0.05) 56.2± 2.9 58.8
All Label Votes (α = 0.1) 56.4± 2.6 59.0
All Label Votes (no smooth.) 57.5± 2.2 59.1
Majority Label (α = 0.03) 55.7± 3.8 60.4
Majority Label (α = 0.05) 55.9± 1.5 57.6
Majority Label (α = 0.1) 56.7± 1.6 58.8
Majority Label (no smooth.) 57.4± 1.6 59.7

JIRA Issues [3]

All Label Votes (α = 0.03) 92.7± 1.4 94.2
All Label Votes (α = 0.05) 93.2± 0.7 94.0
All Label Votes (α = 0.1) 93.1± 1.1 94.2
All Label Votes (no smooth.) 93.5± 1.0 94.7
Majority Label (α = 0.03) 91.6± 1.9 94.3
Majority Label (α = 0.05) 92.4± 1.3 93.6
Majority Label (α = 0.1) 93.5± 0.7 94.3
Majority Label (no smooth.) 92.5± 0.5 93.2

StackOverflow [19]

All Label Votes (α = 0.03) 41.6± 1.3 43.6
All Label Votes (α = 0.05) 42.5± 2.4 46.1
All Label Votes (α = 0.1) 41.0± 1.4 42.7
All Label Votes (no smooth.) 42.4± 1.0 43.8
Majority Label (α = 0.03) 42.8± 3.5 47.4
Majority Label (α = 0.05) 42.7± 2.3 45.6
Majority Label (α = 0.1) 43.1± 1.4 45.2
Majority Label (no smooth.) 44.1± 2.9 46.4

Senti4SD [18]
(Test Set)

All Label Votes (α = 0.03) 88.9± 0.2 89.2
All Label Votes (α = 0.05) 89.0± 0.6 89.9
All Label Votes (α = 0.1) 89.0± 0.4 89.5
All Label Votes (no smooth.) 89.1± 0.5 89.6
Majority Label (α = 0.03) 88.4± 0.5 89.0
Majority Label (α = 0.05) 88.4± 0.4 89.1
Majority Label (α = 0.1) 88.5± 0.3 88.8
Majority Label (no smooth.) 88.6± 0.5 89.1

APPENDIX C
FURTHER DETAILS REPLICATION, IMPLEMENTA-
TION, AND RUN-TIME CONSIDERATIONS

Replicating results. All the code and pre-trained models
for our experiments are available on GitHub 6. To replicate
the results, the first step is to clone this repository. All
experiments related to one dataset are located in one
module under the experiments folder; there is one script
(default.py) for most datasets, or several for some
datasets (e.g., senti4sd, satd). To run an experiment
with the same random seeds we used, use: python

-mdl4se.experiments.<dataset>.<experiment> -seeds

100 200 300 400 500 -out_file=result_file.csv

Where dataset is one of the datasets listed in Table 17,
and experiment is one of the files in the modules (most
often default). Additional information is available in the
repository.

Configuration options such as which model to
use, which additional technique to apply, and default
hyper-parameters for each dataset can be found in
/dl4se/config/<dataset>.py. This configuration file
also contains the path to the pre-trained model files. You
need to download the respective model as ZIP archive from
our GitHub page and unpack it to specified path.

Source code for loading a dataset and pre-processing it
lies in /dl4se/datasets/<dataset>.py. The original
datasets have a variety of formats, and have to be pre-
processed in order to be converted to the specific format
used by the models. Note that we do not provide the original
datasets, as they were the product of separate work by
separate authors. Rather, we list either the location of the
datasets, or the relevant contact information, in Table 17.
If you use our work and also use some of these datasets
in follow-up work, you should cite both our work and the
original work; please refer to Table 1 for the correct citation.
Please contact if you have any difficulty with obtaining these
datasets.

Model implementations. For all our experiments we use
HuggingFace’s transformers package [92], a Python li-
brary based on pytorch that implements many different
Transformer architectures, including BERT and RoBERTa.
For our experiments, we implemented a variety of opti-
mizations to deal with the memory usage of Transformers,
such as gradient accumulation, mixed-precision training,
and distribution of models on various GPUs, although these
optimizations have since been superseded by the pytorch
and transformers library themselves.

Runtime considerations. All of our experiments were car-
ried out either on an NVIDIA V100 GPU with 32 GB of
memory or on up to three NVIDIA RTX 2080TIs with 10
GB memory each. We never compare results obtained with
different hardware, that is, while different GPUs were used
for different tasks, all runs belonging to a specific task were
carried out on the same hardware.

Our pre-training regimes are generally affordable even
with relatively modest computational budget, although an
extensive hyper-parameter search is hardly feasible. We

6. https://github.com/giganticode/small-datasets-ml-resources

https://github.com/giganticode/small-datasets-ml-resources
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TABLE 15
Accuracy, macro F1 and per-class precision and recall for different models and datasets. Values reported are means over five runs, each with
different seed (only our models). All models were trained on the training set of the Stack Overflow sentiment dataset from Calefato et al. [18].

Dataset Model Acc. F1 Precision Recall
Pos. Neg. Neu. Pos. Neg. Neu.

App Reviews [19]

BERT (base) 64.9 50.2 76.1 84.7 9.8 86.6 41.4 25.6
BERT-SO-1M-large 66.0 51.9 77.2 83.7 10.6 84.7 46.8 27.2
BERT-SO-2M 67.7 53.1 77.2 85.4 11.7 87.4 47.4 27.2
BERT-SO-1M 68.3 53.7 77.2 86.9 12.7 88.0 47.8 28.8
DistilRoBERTa (small) 60.9 48.5 75.3 74.7 10.1 77.3 43.5 28.8
NLTK [3] 54.0 40.8 75.1 100.0 9.3 81.2 16.9 44.0
RoBERTa (small, no pretr.) 48.0 42.2 73.8 68.9 8.5 53.0 42.0 42.4
SentiStrength+AC0-SE [3] 58.9 46.6 74.1 92.9 10.6 81.7 30.0 40.0
SentiStrength [3] 62.5 48.2 74.5 81.5 11.3 86.6 33.8 32.0
StackOBERTflow 72.0 57.4 79.7 86.4 15.1 88.4 56.6 29.6
Stanford CoreNLP SO [3] 41.6 35.5 77.0 47.0 8.4 25.3 66.9 32.0
Stanford CoreNLP [3] 69.5 56.0 83.1 66.7 17.6 71.5 75.4 24.0

JIRA Issues [3]

BERT (base) 95.7 95.0 92.4 97.2 - 94.0 96.4 -
BERT-SO-1M-large 94.8 93.8 93.3 95.4 - 89.7 97.0 -
BERT-SO-2M 95.2 94.5 92.2 96.8 - 92.9 96.3 -
BERT-SO-1M 95.1 94.2 93.1 96.0 - 91.0 96.9 -
DistilRoBERTa (small) 93.7 92.7 89.9 95.5 - 90.1 95.3 -
NLTK [3] 29.8 46.5 84.0 100.0 - 36.2 26.9 -
RoBERTa (small, no pretr.) 84.0 80.1 78.6 86.3 - 67.0 91.7 -
SentiStrength+AC0-SE [3] 76.0 87.0 94.8 99.6 - 88.3 70.4 -
SentiStrength [3] 77.1 85.4 85.0 99.3 - 92.1 70.3 -
StackOBERTflow 93.5 92.5 87.8 96.4 - 92.1 94.1 -
Stanford CoreNLP SO [3] 36.0 44.2 63.5 72.4 - 25.2 40.9 -
Stanford CoreNLP [3] 67.6 73.7 72.6 94.5 - 62.1 70.1 -

StackOverflow [19]

BERT (base) 79.9 47.6 32.1 79.9 82.0 15.9 21.1 95.7
BERT-SO-1M-large 79.2 43.3 29.8 78.2 81.2 13.4 13.8 96.2
BERT-SO-2M 80.3 48.6 33.7 79.8 82.4 16.2 23.0 95.9
BERT-SO-1M 80.1 47.9 34.9 80.0 82.1 16.8 20.8 95.9
DistilRoBERTa (small) 78.8 44.3 31.5 61.3 81.5 14.8 16.2 95.2
NLTK [3] 77.9 43.2 31.7 62.5 81.5 24.4 8.4 94.1
RoBERTa (small, no pretr.) 75.5 42.2 21.1 37.2 81.6 10.8 21.1 90.7
SentiStrength+AC0-SE [3] 78.0 46.8 31.2 50.0 82.6 22.1 18.5 93.0
SentiStrength [3] 69.5 49.5 20.0 39.7 85.8 35.9 43.3 77.2
StackOBERTflow 79.3 44.1 32.1 78.1 81.5 15.7 13.7 96.1
Stanford CoreNLP SO [3] 75.9 47.5 31.7 36.5 83.6 14.5 36.5 88.6
Stanford CoreNLP [3] 40.3 35.5 23.1 17.7 88.4 34.4 83.7 34.4

Senti4SD [18]
(Test Set)

BERT (base) 87.9 87.8 92.8 88.0 83.7 93.0 83.1 86.8
BERT-SO-1M-large 89.4 89.4 93.4 88.2 86.8 93.6 86.8 87.4
BERT-SO-2M 88.8 88.7 93.2 85.6 87.1 94.9 86.7 84.7
BERT-SO-1M 88.8 88.7 92.7 86.9 86.7 94.5 85.9 85.7
DistilRoBERTa (small) 87.4 87.3 92.3 81.2 87.9 92.7 88.6 81.8
RoBERTa (small, no pretr.) 78.4 77.8 84.0 72.4 77.6 86.1 69.1 78.1
Senti4SD [18] - 86.0 92.0 80.0 87.0 92.0 89.0 80.0
SentiCR [18] - 82.0 88.0 79.0 79.0 90.0 73.0 82.0
SentiStrengthSE [18] - 80.0 89.0 75.0 75.0 83.0 79.0 77.0
SentiStrength [18] - 84.0 89.0 67.0 95.0 92.0 96.0 64.0
StackOBERTflow 88.7 88.6 93.0 85.6 86.9 94.4 87.0 84.6

thus followed common recommendations and only tried a
few parameter combinations. With a training time of two
weeks, pre-training StackOBERTflow from scratch was by far
the most expensive (especially considering that this was
clearly not enough, as it ended up being out-performed
by the further pre-trained models). Further pre-training the
12-layer models required considerably less training time,
usually below 24 hours (on an NVIDIA V100 GPU).

Using the pre-trained models. Our models are publicly
available: the StackOBERTflow model can be obtained
through the Huggingface Model Hub7; our fine-tuned
BERT and RoBERTa models can also be downloaded from
GitHub8.

You can download our pre-trained models and use
them for your own experiments. All of our models,

7. https://huggingface.co/giganticode/
StackOBERTflow-comments-small-v1

8. https://github.com/giganticode/small-datasets-ml-resources/
releases/tag/0.1

including StackOBERTflow, can be automatically
downloaded using the transformers library. You
can instantiate a classification model using e.g., model =

AutoModel.from_pretrained(’giganticode/<model_name>’),
and then fine-tune on your task-specific data.
For a full list of our models, please visit
https://huggingface.co/giganticode.

Obtaining back-translation data. While the original works
introducing back-translation used an ad-hoc neural transla-
tion model, we found that the most efficient way to obtain
back-translations is to load the dataset into Google Sheet
and use the GOOGLETRANSLATE macro. An example is
available online9.

9. https://tinyurl.com/37zpebmv

https://huggingface.co/giganticode/StackOBERTflow-comments-small-v1
https://huggingface.co/giganticode/StackOBERTflow-comments-small-v1
https://github.com/giganticode/small-datasets-ml-resources/releases/tag/0.1
https://github.com/giganticode/small-datasets-ml-resources/releases/tag/0.1
https://huggingface.co/giganticode
https://tinyurl.com/37zpebmv
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TABLE 16
Sentences from the test set of the Stack Overflow [18] with highest loss along with predicted and actual labels and whether all raters agreed on the

actual label.

Sample Act. Label Pred. Label Agr.

This worked for me. positive neutral no

In addition to firebug (which should be your first port of call), the will also tell you where a given style is sourced from, just in
case IE - shock, horror - should be different.

negative neutral no

The named scopes already proposed are pretty fine. The clasic way to do it would be: positive neutral yes

I have a basic app written with ATL, using the wizard with VS2008. I have a treeview in the left side of the app. I see how to
(painfully) add tree items. Question is how do I show a menu when the mouse is right clicked? How do I trap any click events
on each item that could be selected?

negative neutral yes

Your implementation looks absolutely fine to me! A range-based away subscript is a type for performance reasons. It does not
copy the indicated sub-array, instead it just points to the range defined by the you provide to the subscript.

positive neutral no

Is it possible (or desirable?!) to set up to behave more like ? For example, instead of writing why can’t I just write Similarly,
instead of why not just

negative neutral no

This whole DB is almost entirely read only so I’m not too worried about it changing. positive neutral no

I would agree except they are related and I really hated the idea of writing 4 separate questions since they seemed to close. negative positive yes

I understand its not a desirable circumstance, however if I NEEDED to have some kind of HTML within JSON tags, e.g.: is this
possible to do in Python without requiring to to be escaped beforehand? It will be a string initially so I was thinking about
writing a regular expression to attempt to match and escape these prior to processing, but I just want to make sure there isn’t an
easier way.

negative neutral no

You can easily define a comparator for a one-level , so that lookup becomes way less cumbersome. There is no reason of being
afraid of that. The comparator defines an ordering of the _Key template argument of the map. It can then also be used for the
multimap and set collections. An example:

positive neutral no

I’m new to Flash but want to create a nice video for a product. It takes a long time to make a nice looking presentation , and I’m
hoping for a jump start. Are there any good templates which are free on the internet where I can quickly change the text in ,for
example, to make my video? I’ve tried looking in google, and there are too many websites, many of which look gimmicky. Any
recommendations? (A video like this one - - would be amazing!)

neutral positive no

TABLE 17
Different code modules along with the source of the used datasets.

Experiment Description Original Dataset URL

ar_miner Informative app reviews https://github.com/jinyyy666/AR_Miner/tree/master/
datasets

coherence Code-comment coherence http://www2.unibas.it/gscanniello/coherence/
comment_classification Comment classification https://zenodo.org/record/2628361
corcod Runtime complexity classification https://github.com/midas-research/corcod-dataset
readability Code readability classification https://dibt.unimol.it/report/readability/
review_classification Review classification https://mast.informatik.uni-hamburg.de/wp-content/

uploads/2014/03/REJ_data.zip, CLAP was requested from
the respective author

satd Self-admitted debt detection https://github.com/maldonado/tse.satd.data
senti4sd Sentiment analysis on Stack Overflow comments and JIRA is-

sues
https://github.com/collab-uniba/Senti4SD, https://sentidata.
github.io/

smell_detection Linguistic smell detection https://github.com/Smfakhoury/SANER-2018-KeepItSimple-

https://github.com/jinyyy666/AR_Miner/tree/master/datasets
https://github.com/jinyyy666/AR_Miner/tree/master/datasets
http://www2.unibas.it/gscanniello/coherence/
https://zenodo.org/record/2628361
https://github.com/midas-research/corcod-dataset
https://dibt.unimol.it/report/readability/
https://mast.informatik.uni-hamburg.de/wp-content/uploads/2014/03/REJ_data.zip
https://mast.informatik.uni-hamburg.de/wp-content/uploads/2014/03/REJ_data.zip
https://github.com/maldonado/tse.satd.data
https://github.com/collab-uniba/Senti4SD
https://sentidata.github.io/
https://sentidata.github.io/
https://github.com/Smfakhoury/SANER-2018-KeepItSimple-
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