
On the Evaluation of Recommender Systems with Recorded Interactions

Romain Robbes
REVEAL

Faculty of Informatics
University of Lugano

romain.robbes@lu.unisi.ch

Abstract

Recommender systems are Integrated Development En-
vironment (IDE) extensions which assist developers in the
task of coding. However, since they assist specific aspects
of the general activity of programming, their impact is hard
to assess. In previous work, we used with success an eval-
uation strategy using automated benchmarks to automati-
cally and precisely evaluate several recommender systems,
based on recording and replaying developer interactions.
In this paper, we highlight the challenges we expect to en-
counter while applying this approach to other recommender
systems.

1. Introduction

Developing software systems is a complex and difficult
task relying on a large skill set, including program compre-
hension, creative thinking, problem solving and algorithmic
skills. To assist developers as they program, Zeller envi-
sions the future IDE as featuring a set of recommendation
and assistance systems, each focusing on a type of com-
monly recurring problem [12]. We refer from now on to
this type of tools simply as recommenders. Zeller’s vision
is already partially fulfilled, as state-of-the-art IDEs such as
Eclipse already feature several recommenders, such as:

• Code completion, which assists the the seemingly sim-
ple task of typing program statements;

• Error correction, which, based on compilation warn-
ing and errors, proposes automated edit operations to
address common classes of errors, such as importing
missing namespaces (Eclipse’s Quickfix);

• Change prediction, exemplified in tools such as
eROSE, recommends entities to change alongside cur-
rently changed entities, based on the history of previ-
ous changes to the system [13];

• Navigation aids, such as Mylyn [4] or NavTracks [10],
which based on what the programmer is currently
looking at, recommend other entities to look at.

If all these recommenders are intuitively useful, having
more definitive proof is difficult. The most common evalu-
ation strategy that comes to mind is to perform a user study.
A simple experimental protocol is to gather two groups of
people, and ask them to perform a given development task,
one group with the help of the recommender system, the
other without. Each subject is either observed while they
perform the task by the experimenter, or asked to fill a ques-
tionnaire after completing the task. From this data, the im-
provement that the recommender yields can be quantified.
Many variants of this design exist, but they all share the fol-
lowing shortcomings:

Many variables: Each developer has a distinct experience
with programming languages, tools, and a different
way to solve problems. Some might type much faster
than other. In short, there are many variables that could
explain an observed variation in productivity. A larger
number of subjects is needed to smooth out individual
differences.

Subjectivity: Since coding relies on an array of skills, the
developer or the observer themselves may have trouble
discerning the impact of the recommender. How can a
developer evaluate the accuracy of a code completion
engine when he is focusing on finishing a non-trivial
development task? Answering a questionnaire after-
wards may hence yield vague or subjective answers
that are hard to interpret.

Expensive: Recruiting a sufficient amount of people and
carefully laying out the experimental protocol is time-
consuming and potentially expensive. “Dry runs” of
the experiment are necessary to weed out mistakes in
the protocol. Finding the subjects for the experiment
is also a difficult task as people value their time.



Hard to reproduce: User studies must have a very de-
tailed protocol in order to be repeated. Lung et al.
documented the hurdles they went through when they
attempted to reproduce an experiment [5]. Reproduc-
ing user studies is hence hard and uncommon.

Of course, a user study is essential to ensure the good
usability of a recommender, but these shortcomings mean
that incremental improvements to a recommender are hard
to evaluate this way. Indeed, the smaller the increment in
productivity is, the larger the group of users need to be in
order to rule out statistical error. The difficulty in reproduc-
ing a study and to compare the results of two studies is a
further impediment to gradual optimizations. Such an opti-
mization of the recommender is however essential to ensure
that it is as accurate and useful to the developers as it could
be. Without it, the algorithms and heuristics used by the
recommender may be far from optimal.

There is however an evaluation strategy that is better
suited to the comparative evaluation that is needed to op-
timize the algorithms at the heart of recommenders: Auto-
mated benchmarks [9]. An automated benchmark is a fully
automatic process that takes as parameters a recommenda-
tion algorithm to evaluate and the data to evaluate it on, and
computes the accuracy of the algorithm. This allows easy
reproducibility and comparison between variants of the al-
gorithm, making the technique ideal to optimize a recom-
mender system.

In order to evaluate recommender systems in this way,
the challenge lies in gathering the data necessary for the
evaluation. In previous work, we introduced Change-Based
Software Evolution (CBSE), which models with accuracy
how software systems evolve over time [6]. CBSE relies
in recording the changes as they happen in the IDE. Based
on the change data we gathered on several systems, we ap-
plied a benchmarking strategy in order to evaluate several
variants of two recommender systems, Code Completion
and Change Prediction. The focus of this paper is hence
to draw from this experience and outline the challenges that
lies ahead in order to generalize this approach to other rec-
ommenders.

2 Benchmarking Recommenders

The approach we propose is based on the openness of
state-of-the-art IDEs. IDEs such as Eclipse, Squeak or Vi-
sualworks allow one to easily monitor and record how the
developer is using the IDE to incrementally develop a piece
of software. Such an IDE issues all kinds of events (neces-
sary for its internal architecture) in response to actions the
developer perform. Examples of such events are navigation
events indicating that the developer is looking at a given
part of the system, tool usage event indicating that the de-
veloper is using the refactoring engine, the compiler or the

debugger, and edition events describing how the developer
changes the system, from keystroke events to higher-level
events such as addition of entities.

If the IDE is open enough and allows access to these
events to third-party extensions, one can record these
events, and, ensuring that they are descriptive enough, re-
play them at will in an automated manner. If the informa-
tion is accurate enough, such an approach allows one to ef-
fectively simulate –in an entirely automatic way– the inter-
actions of the developer with the IDE as he is building the
system.

Automation is key to allow the definition of interaction
benchmarks as a methodology to repeatedly and accurately
measure the accuracy of recommender systems. It allows
one to inexpensively run several variants of the same recom-
mendation algorithm and compare their performance with a
precisely and objectively computed metric. This allows one
to truly optimize the recommendation algorithm and make
the recommender as accurate as possible.

Assuming that a recorded interaction history H is avail-
able, computing the accuracy A of a recommender R on the
interaction history proceeds as shown by Algorithm 1 (E is
the model of the system and the developer that the recom-
mender uses).

Input: H , R
Output: A

foreach Interaction I in H do
if I is of interest to R then

Ask R to predict I , given the environment E
Compare R to I and update A

end
Replay I in order to update E

end
Algorithm 1: Computing the accuracy of a recommender
on an interaction history

Of course, Algorithm 1 assumes that the interaction his-
tory H exists. For this to be the case, one must follow the
following steps:

Frame the problem of the evaluation of the recommender
in terms that allow the automation. This implies isolat-
ing only the parts of the recommender that are relevant
to the task, such as the central algorithm providing rec-
ommendations from unnecessary parts like the GUI.

Identify the information needed by the recommender to
function properly, and from it, the interactions that
need to be recorded to rebuild the information needed
by the recommender.

Define the prediction format that the recommender uses
and the kind of interaction triggering its evaluation.

2



Define the accuracy measure that will be computed. De-
pending on the types and format of the predictions, dif-
ferent measure will work, such as a single accuracy
measure or both precision and recall.

Record interactions. Once the type of information needed
is defined, one has to gather it by monitoring the activ-
ity of a large enough set of developers as they work for
a long enough period of time, so that the set of interac-
tion histories gathered can be deemed representative.

We now illustrate this process with the two examples
in which we applied it successfully. In both cases, we re-
produced and introduced several variants of each recom-
menders, and improved on the state of the art.

Example: Code Completion We used recorded interac-
tions to measure the accuracy of several code completion
engines [7]. Code completion is a recommender used to as-
sist typing that presents to the user a list of words or function
names that may correspond to the word the programmer is
presently typing, saving her keystrokes.

To automate testing, we consider the completion engine
only, that is the part of the recommender taking as input the
prefix of a word, and returning a list of candidates matches.
Since variants of the code completion engine rely on the
state of the program and the recent changes to the system,
the interactions we recorded were the changes made to build
the system. Of these, the interactions of interest to the rec-
ommender were the changes that inserted new method calls
in the system: The completion engine was asked to return
a list of candidates which ideally contained the name of the
method being inserted. The list was cut off at ten items, as
a longer list of candidates was deemed too long to be read
in its entirety by the programmer. To compute the accuracy,
we measured the index of the correct match in the list, and
rewarded correct matches that were in the first items, and
for shorter prefixes (we tested each insertion of a method
call by asking for the recommender’s guess with a prefix of
2, 3 ... up to 8 letters). The data used in the benchmark were
the recorded changes performed on 8 small to medium scale
systems, totalling more than 3 years of development.

Example: Change Prediction Our evaluation of change
prediction approaches [8] was very similar as it relied on
the same recorded interactions, the changes to the system
as they evolve. Change prediction attempts to predict the
entities (classes or methods) that the programmer is going
to change after the one he changes, in order to either remind
him to change them (error prevention) or to provide easy
access to them (navigation assistance).

The portion of the change predictor we tested was the
algorithm that, given entities changed in the past, proposed

a list of potential change-prone entities. The data recorded
was the change sequence developers made when building
programs. The entities of interest for which the change
predictors was tested where the sequence of changed enti-
ties, filtering out repetitive changes to the same entities and
changes originating from automated tools. The accuracy of
the change predictor was defined as the similarity between
a list of n change-prone entities returned by the predictor
with the actual n next changing entities. The data set we
used was very similar (it contained one additional change
history from a Java program).

Note that a similar evaluation strategy was used by
previous change prediction approaches, but based on
SCM transactions, rather than recorded change sequences
[3][13][11][2]. Using SCM transactions instead of recorded
IDE interactions is more convenient, since a lot of data is
already available, but less accurate, since the data is more
coarse.

3 Challenges in Further Applications

We believe this approach is applicable to other kinds of
recommenders and we expect the same benefits from its ap-
plication. However, certain particularities of the approach
mean that care must be taken in fulfilling the steps we de-
scribed above. Indeed, recording the data is a costly and
time-consuming operation. Hence the kind of data that has
to be recorded must be carefully defined upfront. In the
following we make a tentative list of recommender systems
that we envision being evaluated in the same way, and high-
light the needs for each of them.

Code Completion and Change Prediction: In our com-
parison of approaches, missing data prevented us to
reproduce every approach we wished. The navigation
information necessary for some approaches was miss-
ing. Further, a precise notion of task (i. e. the set of
entities related to a task) was only approximated. This
missing data is needed to further improve our results.

Task Detection: The missing notion of task context could
be a recommendation by itself. We would like to anno-
tate our change information with task information and
experiment with several approaches to detect them.

Clone Detection: The presence of duplicated code in code
bases is an established fact, and several tools exist to
detect it. Based on our recorded change histories, we
could annotate changes that introduce new clones in
the system as interactions of interest.

Clone Evolution: A possible solution to the clone problem
is to co-evolve clones when one of them changes [1].
The techniques proposed so far are based on simple

3



string rewriting. An automated benchmark comparing
the actual changes with the future changes could assess
whether more complex techniques are needed.

Error prevention and correction: With the necessary an-
notations of the change data, tools such as Quickfix
could be formally evaluated, and new heuristics fulfill-
ing their shortcomings could be defined.

Based on the potential applications, we identified the fol-
lowing issues that are open to discussion:

Additional sources of information. An effort is needed to
identify all the necessary sources of information to
be recorded, beyond those that we already identified,
changes and navigation information. Tool support
should then be implemented to record this data.

Annotations of the interactions. Annotations are needed
to mark the entities of interest for each recommender,
such as clones, tasks, errors and the interactions caus-
ing and/or solving them. A systematic review of the
recorded interaction is needed to annotate them, and
tool support is needed to perform it efficiently. Such a
review would also filter out interactions featuring un-
wanted behavior, such as cases where the developer
was in the wrong track for a part of the session.

Recording more data. The amount of data we recorded so
far is still small, and some of it is incomplete. To
provide more significant result, an effort is needed to
record much larger interaction histories.

Community involvement. Recording a large amount of
data, implementing the necessary tools, and improv-
ing on the state of the arts of recommenders once the
infrastructure is there is a significant effort for which
we welcome members of the community. In particu-
lar, a shared effort to record development histories of
student projects would be the most immediate way to
gather a larger amount of data.

4 Conclusion

Recommenders are a growing part of a programmer’s
tool set, yet optimizing them remains a difficult problem.
We presented a general approach to evaluate the perfor-
mance of recommenders in a systematic way, allowing in-
cremental optimization of a recommender’s overall useful-
ness to developers. The approach is based on the record
and replay of programmer interaction histories in order to
repeatedly simulate the activity of a developer. We outlined
some of the challenges that we need to overcome in order
to adapt the approach to various kinds of recommenders,
namely identifying the kind of information one needs to

record, recording of a large and representative enough set of
interaction histories, annotating the interaction history in or-
der to emphasize the relevant interactions when needed, and
the development of a common infrastructure allowing the
sharing of the data and the easy dissemination of the results
necessary to foster a community around recommenders [9].

References

[1] E. Duala-Ekoko and M. P. Robillard. Tracking code clones
in evolving software. In Proceedings of the 29th Intera-
national Conference on Software Engineering (ICSE 2007),
pages 158–167, 2007.

[2] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 40–49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society.

[3] A. E. Hassan and R. C. Holt. Replaying development his-
tory to assess the effectiveness of change propagation tools.
Empirical Software Engineering, 11(3):335–367, 2006.

[4] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of SIGSOFT FSE
2006, pages 1–11, 2006.

[5] J. Lung, J. Aranda, S. M. Easterbrook, and G. V. Wilson. On
the difficulty of replicating human subjects studies in soft-
ware engineering. In Robby, editor, ICSE, pages 191–200.
ACM, 2008.

[6] R. Robbes. Of Change and Software. PhD thesis, University
of Lugano, 2008.

[7] R. Robbes and M. Lanza. How program history can im-
prove code completion. In Proceedings of ASE 2008 (23rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering), pages 317–326. ACM Press, 2008.

[8] R. Robbes, M. Lanza, and D. Pollet. A benchmark for
change prediction. Technical Report 06, Faculty of Infor-
matics, Università della Svizzerra Italiana, Lugano, Switzer-
land, October 2008.

[9] S. E. Sim, S. M. Easterbrook, and R. C. Holt. Using bench-
marking to advance research: A challenge to software en-
gineering. In ICSE, pages 74–83. IEEE Computer Society,
2003.

[10] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Support-
ing navigation in software maintenance. In Proceedings of
the 21st International Conference on Software Maintenance
(ICSM 2005), pages 325–335. IEEE Computer Society, sep
2005.

[11] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
source code changes by mining change history. Transactions
on Software Engineering, 30(9):573–586, 2004.

[12] A. Zeller. The future of programming environments: Inte-
gration, synergy, and assistance. In Proceedings of the 2nd
Future of Software Engineering Conference (FOSE 2007),
pages 316–325, 2007.

[13] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In ICSE,
pages 563–572. IEEE Computer Society, 2004.

4


