
SPY: A Flexible Code Profiling Framework

Alexandre Bergel, Felipe Bañados, Romain Robbes David Röthlisberger
DCC, University of Chile University of Bern

Santiago, Chile Switzerland

www.bergel.eu
www.dcc.uchile.cl/∼fbanados
www.dcc.uchile.cl/∼rrobbes

www.droethlisberger.ch

Abstract

Code profiling is an essential activity to increase software quality. It is commonly
employed in a wide variety of tasks, such as supporting program comprehension, de-
termining execution bottlenecks, and assessing code coverage by unit tests.

SPY is an innovative framework to easily build profilers and visualize profiling in-
formation. The profiling information is obtained by inserting dedicated code before or
after method execution. The gathered profiling information is structured in line with the
application structure in terms of packages, classes, and methods. SPY has been instan-
tiated on four occasions so far. We created profilers dedicated to test coverage, time
execution, type feedback, and profiling evolution across version. We also integrated
SPY in the Pharo IDE.

SPY has been implemented in the Pharo Smalltalk programming language and is
available under the MIT license.

Keywords: Smalltalk, profiling, visualization

1. Introduction

Profiling an application commonly refers to obtaining dynamic information from
a controlled program execution. Common usages of profiling techniques include test
coverage [1], time execution monitoring [2], type feedback [3, 4, 5], or program com-
prehension [6, 7]. The analysis of gathered runtime information provides important
hints on how to improve the program execution. Runtime information is usually pre-
sented as numerical measurements, such as number of method invocations or number
of objects created in a method, making them easily comparable from one program ex-
ecution to another.

Even though computing resources are abundant, execution optimization and anal-
ysis through code profiling remains an important software development activity. Pro-
gram profilers are crucial tools to identify execution bottlenecks and method call graphs.

Preprint submitted to Enter journal name November 4, 2010

http://www.bergel.eu
http://www.dcc.uchile.cl/~fbanados/
http://www.dcc.uchile.cl/~rrobbes/
http://www.droethlisberger.ch

Most professional programming environments include a code profiler. Pharo Smalltalk
and Eclipse, for instance, both ship a profiler [8, 9].

A number of code profilers are necessary to address the different facets of software
quality [10]: method execution time and call graph, test coverage, tracking nil values,
just to name a few. Providing a common platform for runtime analysis has not yet been
part of a joint community effort. Each code profiler tool traditionally comes with its
own engineering effort to both acquire runtime information and properly present this
information to the user.

Most Smalltalk systems offer a flexible and advanced programming environment.
Over the years different Smalltalk communities have been able to propose tools such
as the system browser, the inspector or the debugger. These tools are the result of a
community effort to produce better software engineering techniques and methodolo-
gies. However, code profilers have little evolved over the years, becoming more an
outdated Smalltalk heritage than a spike for innovation. A survey of several Smalltalk
implementations—Squeak [11], Pharo [8], VisualWorks [12], and GemStone—reveals
that none shines for its execution profiling capabilities: indented textual output holds a
royal position (see Section 2).

In the Java world, JProfiler1 is an effective runtime execution profiler tool that, be-
sides measuring method execution time, also offers numerous features including snap-
shot comparisons, saving a profiling trace in an XML file and estimating method call
graphs. Cobertura2 is a tool dedicated to measure test coverage. Similarly to JPro-
filer, test coverage information may be stored in an XML file which contains method
call graph analysis and coverage. However, JProfiler and Cobertura do not share any
library besides the standard Java libraries. There are multiple reasons why JProfiler
and Cobertura are separated from each other even though both have to gather similar
runtime information. One of them is certainly a lack of a common profiling framework.

This paper presents SPY, a framework for easily prototyping various types of code
profilers in Smalltalk. The dynamic information returned by a profiler is structured
along the static structure of the program, expressed in terms of packages3, classes and
methods. One principle of SPY is structural correspondence: the structure of meta-level
facilities corresponds to the structure of the language manipulated4. Once gathered, the
dynamic information can easily be graphically rendered using the Mondrian visualiza-
tion engine [14]5.

SPY has been used to implement a number of code profilers. The SPY distribution
offers a type feedback mechanism, an execution profiler [15], an execution evolution
profiler, and a test coverage profiler. Creating a new profiler comes at a very light cost
as SPY relieves the programmer from performing low-level monitoring.

To ease the description of the framework, SPY is presented in a tutorial like fashion:
We document how we instantiated the framework in order to build a code coverage tool.

1http://www.ej-technologies.com/products/jprofiler/screenshots.html
2http://cobertura.sourceforge.net
3In Pharo, the language used for the experiment, a package is simply a group of classes.
4According to the terminology provided by Bracha and Ungar [13], ensuring structural correspondence

makes SPY a mirror-based system.
5http://www.moosetechnology.org/tools/mondrian

2

http://www.ej-technologies.com/products/jprofiler/screenshots.html
http://cobertura.sourceforge.net
http://www.moosetechnology.org/tools/mondrian

The main contributions of this paper are summarized as follows:

• The presentation of a flexible and general code profiling framework.

• The construction of an expressive test coverage tool as an example of the frame-
work’s usage.

• The demonstration of the framework flexibility, via the description of three addi-
tional framework instantiation, and of its integration with Mondrian and Smalltalk
code browsers.

The paper is structured as follows: first, a brief survey of Smalltalk profilers is
provided (Section 2). The description of SPY (Section 3) begins with an enumeration
of the different composing elements (Section 3.1) followed by an example (Section 3.2
– Section 3.6). The practical applicability of SPY is then demonstrated by means of
three different situations (Section 4) before concluding (Section 5).

2. Current Profiler Implementations

This section surveys the profiling capabilities of the Smalltalk dialects and imple-
mentations commonly available.

Squeak. Profiling in Squeak6 is achieved through the MessageTally class (MessageTally>>
spyOn: aBlock). As most profilers, MessageTally employs a sampling technique, which
means that a high-priority process regularly inspects the call stack of the process in
which aBlock is evaluated. The time interval commonly employed is one millisecond.

MessageTally shows various profiling information. The method call graph trig-
gered by the evaluation of the provided block is shown as a hierarchy which indicates
how much time was spent, and where. Consider the expression MessageTally spyOn:
[MOViewRendererTest buildSuite run]. It simply profiles the execution of the tests
contained in the class MOViewRendererTest. The call graph is textually displayed as:

75.1% {10257ms} TestSuite>> run:
75.1% {10257ms} MOViewRendererTest(TestCase)>> run:

75.1% {10257ms} TestResult>> runCase:
75.1% {10257ms} MOViewRendererTest(TestCase)>> runCase
...

This information is complemented by a list of leaf methods and memory statistics.

Pharo. Pharo is a fork of Squeak and its profiling capabilities are very close to those
of Squeak. TimeProfiler is a graphical facade for MessageTally. It uses an expandable
tree widget to comfortably show profiling information (Figure 1).

Gemstone. The class ProfMonitor allows developers to sample the methods that are
executed in a given block of code and to estimate the percentage of total execution

6http://wiki.squeak.org/squeak/4210

3

http://wiki.squeak.org/squeak/4210

Figure 1: TimeProfiler in Pharo

time represented by each method7. It provides essentially the same ability as Mes-
sageTally in Squeak. One minor variation is offered: methods can be filtered from a
report according to the number of times they were executed (ProfMonitor>> monitor-
Block:downTo:interval:).

VisualWorks. The largest number of profiling tools are available in VisualWorks8.
First, a profiler window offers a list of code templates to easily profile a Smalltalk
block: profiling results may be directly displayed or stored in a file. Statistics may also
be included.

VisualWorks uses sampling profiling. Repeating the code to be profiled, with times-
Repeat: for example, increases the accuracy of the sampling. An additional mechanism
to control accuracy is to graphically adjust the sampling size.

The profiling information obtained in VisualWorks is very similar to Message-
Tally’s. It is textually rendered, indentations indicate invocations in a call graph, and
execution times are provided in percentage and milliseconds. Methods may be filtered
out based on their computation time. Similarly to TimeProfiler, branches of the call tree
may be contracted and expanded.

Conclusion. The Smalltalk code profilers available are very similar. They provide a
textual list of methods annotated with their corresponding execution time share. None

7Page 301 in http://www.gemstone.com/docs/GemStoneS/GemStone64Bit/2.4.3/
GS64-ProgGuide-2.4.pdf

8Page 87 in http://www.cincomsmalltalk.com/documentation/current/
ToolGuide.pdf

4

http://www.gemstone. com/docs/GemStoneS/GemStone64Bit/2.4.3/GS64-ProgGuide-2.4.pdf
http://www.gemstone. com/docs/GemStoneS/GemStone64Bit/2.4.3/GS64-ProgGuide-2.4.pdf
http://www.cincomsmalltalk.com/documentation/current/ToolGuide.pdf
http://www.cincomsmalltalk.com/documentation/current/ToolGuide.pdf

packageName
classes

PackageSpy package
superclass
metaclass
methods

ClassSpy

afterRun:with: in:
beforeRun:with:in:
run:with:in:

methodName
class
originalMethod
outgoingCalls
incomingCalls
timeExecution

MethodSpy

profile: aBlock
runTests: tests
allMethods
registryName

packages
currentTest

Profiler

Core

TCPackage TCClass

TCMethod

beforeRun:with:in:
numberOfDifferentReceivers
nbOfExecutions
isCovered
initialize
viewBasicOn:

numberOfExectutions
receiverTable

view
ratioExecutedMethods
ratioCoveredClasses
viewBasicOn:
registryName

TestCoverage

TestCoverage

Figure 2: Structure of SPY

of these profilers is easily extensible to obtain a different profiling such as test coverage.
The SPY framework described in the following addresses particularly this issue.

3. The SPY Framework

3.1. SPY in a nutshell
The essential classes of SPY are depicted in Figure 2 and explained in the following:

• The Profiler class contains the features necessary for obtaining runtime infor-
mation by profiling the execution of a block of Smalltalk code. Profiler offers
a number of public class methods to interface with the profiling. The profile:
aBlock inPackagesNamed: packageNames method accepts as first parameter a
block and as second parameter a collection of package names. The effect of
calling this method is to (i) instrument the specified packages; (ii) to execute the
provided block; (iii) to uninstrument the targeted packages; and (iv) to return the
collected data in the form of an instance of the Profiler class which contains in-
stances of the classes described below, essentially mirroring the structure of the
program.

Profiles are globally accessible by other development tools. The method registry-
Name has to be be overridden to return a symbol name. Other IDE tools can then
easily access the profiling.

• PackageSpy contains the profiling data for a package. Each instance has a name
and contains a set of class spies.

• ClassSpy describes a Smalltalk class. It has a name, a superclass spy, a metaclass
spy and a set of method spies.

5

• MethodSpy describes a method. It has a selector name and belongs to a class
spy. MethodSpy is central to SPY. It contains the hooks used to collect runtime
information. Three methods are provided for that purpose: beforeRun:with:in:
and afterRun:with:in: are executed before and after the corresponding Smalltalk
method. These empty methods may be overridden in subclasses of MethodSpy to
collect relevant dynamic information, as we will see in the following subsections.
The run:with:in method simply calls beforeRun:with:in:, followed by the execu-
tion of the represented Smalltalk method, and ultimately calls afterRun:with:in:.
The parameters passed to these methods are: the method name (as a symbol), the
list of arguments, and the object that receives the intercepted message.

The SPY framework is instantiated by creating subclasses of PackageSpy, ClassSpy,
MethodSpy and Profiler, all specialized to gather the precise runtime information that
is needed for a particular system and task.

3.2. Instantiating SPY

Test coverage. We motivate and demonstrate the usage of the SPY framework by
building a test coverage code analyzer. Identifying the coverage of the unit tests of an
application may be considered as a code profiling activity. A simple profiling reveals
the number of covered methods and classes. This is what traditional test coverage tools
produce as output (e.g., Cobertura).

We go one step further with our test coverage tool running example. In addition
to raw metrics such as percentage of covered methods and classes, we retrieve and
correlate a variety of dynamic and static metrics:

• number of method executions – how many times a particular method has been
executed.

• number of different object receivers – on how many different objects a particular
method has been executed.

• number of lines of code – how complex the method is. We use the method code
source length as a simple proxy for complexity.

The intuition behind our test coverage tool is to indicate what are the “complex”
parts of a system that are “lightly” tested, and what are the “apparently simple” compo-
nents that are “extensively” tested. There is clearly no magic metric that will precisely
identify such a complex or simple software component. However, correlating a com-
plexity metric (i.e., number of lines of code in our case) with how much a component
has been tested (i.e., number of executions and number of different receivers) provides
a good indication about the quality of the test coverage.

Instantiating SPY. The very first step to build our test coverage tool is to subclass the
relevant classes. TestCoverage, TCPackage, TCClass, and TCMethod, respectively,
subclass Profiler, PackageSpy, ClassSpy and MethodSpy.

6

Profiler subclass: #TestCoverage

PackageSpy subclass: #TCPackage

ClassSpy subclass: #TCClass

MethodSpy subclass: #TCMethod
instanceVariableNames: ’numberOfExecutions receiverTable’

TCMethod defines two variables, numberOfExecutions and receiverTable. The for-
mer variable is initialized as 0 and is incremented for each method invocation. The
latter keeps track of the number of receiver objects on which the method has been ex-
ecuted. Recording the hash value of each receiver object can be easily implemented to
provide a good approximation of the number of receivers in most cases.

TCMethod >> initialize
super initialize.
numberOfExecutions := 0.
receiverTable := BoundedSet maxSize: 100

The class BoundedSet is a subclass of Set in which the number of different values
is no greater than a limit. In our case, no more than 100 different elements may be
inserted in a bounded set. This value is actually arbitrary and depends very much on
how the related metric will be used. In our environment, for the types of programs
we write, given the resources we can expend, we have not been able to devise a way
to efficiently and easily keep track of all receiver objects of a method call. Using
an ordered collection in which we insert the object receiver at each invocation is not
practically exploitable. There is a number of reasons for this. As soon as a method is
called many times, e.g., one million times, then one million elements have been added
to the collection. Allowing the ordered collection to grow up to one million elements
significantly slows down the overall program execution. In addition to this, identifying
the number of different elements in a list with one million elements is also slow. The
same schema applies for all the recursively called methods.

The method beforeRun:with:in: is executed before the original method. We simply
increment the execution counter, and record the receiver.

TCMethod>> beforeRun: selector with: args in: receiver
numberOfExecutions := numberOfExecutions + 1.
receiverTable at: receiver hash put: true.

A number of utility methods are then necessary:

TCMethod>> isCovered
ˆ numberOfExecutions > 0

TCMethod>> numberOfExecutions
ˆ numberOfExecutions

TCMethod>> numberOfDifferentReceivers
ˆ (receiverTable select: #notNil) size

The ratio of executed methods and covered classes are defined on TestCoverage:

7

TestCoverage>> ratioExecutedMethods
ˆ ((self allMethods select: #isCovered) size /

self allMethods size) asFloat

TestCoverage>> ratioCoveredClasses
ˆ ((self allClasses

select: [:cls | cls methods anySatisfy: #isCovered]) size /
self allClasses size) asFloat

The method allClasses is defined on Profiler, the superclass of TestCoverage.

3.3. Running Spy
Our TestCoverage tool can be run using the profile:inPackagesNamed: class method.

In this example, we run it on the test cases of the Mondrian visualization framework.

coverage :=
TestCoverage

profile: [MOViewRendererTest buildSuite run]
inPackage: ’Mondrian’

Executing the code above returns an instance of TestCoverage.

3.4. Visualizing Runtime Information
The Mondrian visualization engine framework [14] easily produces visualizations.

Mondrian is a visualization engine that offers a rich domain specific language to define
graph-based rendering. Each element of a graph (i.e., node and edge) has a shape that
defines its visual aspect. Nodes may be ordered using a layout. Consider the method:

TestCoverage>> viewBasicOn: view
view nodes: self allClasses forEach: [:each |

view shape rectangle
height: #numberOfLinesOfCode;
width: [:m | (m numberOfDifferentReceivers + 1) log * 10];
linearFillColor:

[:m | ((m numberOfExecutions + 1) log * 10) asInteger]
within: self allMethods;
borderColor:

[:m | m isCovered
ifTrue: [Color black] ifFalse: [Color red]].

view interaction action: #inspect.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
view gridLayout gapSize: 2.

].
view edgesFrom: #superclass.
view treeLayout

The visualization is rendered by evaluating:

coverage viewBasic

An excerpt of the visualization obtained is depicted in Figure 3. The displayed
class hierarchy represents Mondrian shapes. The root is MOShape. The visualization
has the following characteristics:

8

Figure 3: Test coverage visualization

9

• Outer boxes are classes.

• Edges between classes represent class inheritance relationships. A superclass
appears above and a subclass below a particular class node. A tree layout is used
to order classes which is adequate since Smalltalk uses single inheritance.

• Inner boxes are methods. Methods are sorted according to their source code
length.

• White boxes with a red border are methods that have not been executed when
running the coverage.

• The height of a method is the number of lines of code.

• The width of a method is the number of different receivers. We use a logarithmic
scale to accommodate the variability of this metric.

• The color of a method is the number of method executions. We use a logarithmic
scale also for this metric.

From what is depicted in Figure 3, a number of patterns can be visually identified:

• Some classes contain red methods only. This means that the class is absent from
all the execution scenarios specified in the tests.

• Red methods that are tall and thin are long, untested methods. They are excellent
targets for new test additions.

• Gray methods (few executions) and narrow methods (few receivers) are probably
good candidates for further testing.

• Dark and large methods are extensively tested.

• Horizontally flat methods are very extensively tested more since they contain just
a few lines of code and are still executed many times.

As it is the case for most software visualizations, the goal of our test coverage
visualization is not to precisely locate software deficiency. Rather, it aims at assisting
the programmer to identify candidates for software improvement. In this case, the
visualization pinpoints red methods, and thin, gray methods, as likely candidates to
consider in order to improve the coverage of the code by tests.

3.5. Call graph and execution time
Profiler defines an instance method getTimeAndCallGraph which simply returns

false. By overriding this method in a subclass to make it return true, the execution
time (in milliseconds and percentage) and the call graph for each method is computed
during the block execution.

TestCoverage>> getTimeAndCallGraph
”Each instance of TCMethod contains information about
execution time and outgoing and incoming calls”

ˆ true

10

The call graph and execution time is estimated by regularly sampling the method
call stack. For that very purpose, SPY contains a class called Sampling, which is a
simplified version of MessageTally9. Each method spy will now store the execution
time it took, as well as a list of outgoing calls and incoming calls.

By determining the method call graph from these incoming and outgoing calls, all
packages involved during the block evaluation are easily identified. The profiling can
now be realized using the profile: method. There is no need to provide a package name
to extract the call graph of the execution.

coverage :=
TestCoverage

profile: [MOViewRendererTest buildSuite run]

Now that the method call graph is computed, we can add an entry point to a new
visualization. The script defined in TestCoverage>> viewBasicOn: may be refined with
a new menu item for methods:

...
view interaction action: #inspect;

item: ’view call graph’ action: #viewBasic.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
...

For a user-selected method, the following script renders the method call graph,
using the outgoingCalls method of MethodSpy:

TCMethod>> viewBasicOn: view
| methods |
methods := self withAllOutgoingCalls asSet.
view shape rectangle

height: #numberOfLinesOfCode;
width: [:m | (m numberOfDifferentReceivers + 1) log * 10];
linearFillColor: [:m | ((m numberOfExecutions + 1) log * 10)

asInteger]
within: self package allMethods;
borderColor: [:m | m isCovered

ifTrue: [Color black]
ifFalse: [Color red]].

view nodes: methods.
view shape arrowedLine width: 2.
view edges: methods from: #yourself toAll: #outgoingCalls.
view treeLayout

The visualization we provide may be enriched with information about the method
execution time. Overriding the printOn: method will change the text that is displayed
by Mondrian when hovering the mouse over a node.

9Sampling is not represented in Figure 2 since a user is not expected to use it directly.

11

Figure 4: Call graph of the method MOViewRenderer>> testTranslation

TCMethod>> printOn: stream
super printOn: stream.
stream nextPutAll: self executionTime printString, ’ ms’

By right-clicking on a method node, a menu item renders the call graph for the
method (Figure 4). Methods are ordered from top to down. The arrowed edges repre-
sent the control flow between methods.

3.6. Summary

This section presented a simple application of SPY. It described the essential steps
to create a code profiler: (i) recovering the required profiling information by instan-
tiating the framework; (ii) visualizing this information with Mondrian; (iii) gathering
further execution and call graph information; and (iv) visualizing this additional infor-
mation.

Effective profiling visualizations may be produced using Mondrian. The fact that
the profiling information follows the code structure leads to comprehensive and famil-

12

Figure 5: Integration of profiling information into the Pharo IDE

iar visualizations that are easy to implement as the profiling information’s representa-
tion matches the one often used by Mondrian visualizations.

4. Applications

In this section, we present some of the profiling tools we built on top of SPY.

4.1. Extracting types from unit tests

As a first application of SPY, we proposed a mechanism for extracting type infor-
mation from the execution of unit tests10 [15]. For a given program written in Smalltalk,
we can deduce the type information from executing the associated unit tests., as has
been proposed by other researchers as well [16]. The idea is summarized as follows:
(i) we instrument an application to record the runtime types of the arguments and return
values of methods; (ii) we run the unit tests associated with the application; and (iii)
we deduce the type information from what has been collected. The idea is to record the
type of each message argument and return value to later deduce the most specialized
types for each argument and return type. We refer to the most specialized type as the
most direct supertype that is common for a set of classes. Method signatures of the
base program are then determined by the values provided to and returned by method
calls while the tests are being executed.

As a concrete use case, we exploit the extracted type information to find software
faults. Type information combined with test coverage helps developers identifying

10http://www.moosetechnology.org/tools/Spy/Keri

13

http://www.moosetechnology.org/tools/Spy/Keri

methods that were not invoked with all possible type parameters. By covering these
missing cases, we identified and fixed four anomalies in Mondrian.

4.2. Time profiling blueprints

As a second application, we proposed a time execution profiler11. Time profiling
blueprints are graphical representations meant to help programmers (i) assess the pro-
gram execution time distribution and (ii) identify and fix bottlenecks in a given program
execution. The essence of profiling blueprints is to enable a better comparison of el-
ements constituting the program structure and behavior. To render information, these
blueprints use a graph metaphor, composed of nodes and edges.

The size of a node gives hints about its importance in the execution. When nodes
represent methods, a large node means that the program execution spends “a lot of
time” in this method. The expression “a lot of time” is then quantified by visually
comparing the height and/or the width of the node against other nodes.

Color is used to either transmit a boolean property (e.g., a gray node represents a
method that always returns the same value) or a metric (e.g., a color gradient is mapped
to the number of times a method has been invoked).

We propose two blueprints that help identify opportunities for code optimization:
the structural profiling blueprint visualizes the distribution of the CPU effort along the
program structure and the behavioral profiling blueprint along the method call graph.
These blueprints provide hints to programmers to refactor their program along the fol-
lowing two principles: (i) make often-used methods faster and (ii) call slow methods
less often. The metrics we adopted in this paper help developers finding methods that
are either unlikely to perform a side effect or always return the same result, good can-
didates for simple caching-based optimizations.

4.3. Profiling differentiation

The use of profiling information might be taken a step further by profiling different
versions of an application. Spotting differences between them provides insights on
the causes of slowdowns, and what should be improved next. Comparing, e.g., time
profiling throughout a package’s history allows one to confirm an optimization trial as
an improvement and to find the potential bottlenecks that remain. The package Hip
helps us in this task. Hip allows one to build a collection of history profiles, following a
schema similar to the Hismo model [17]. Each method, class, and package profile can
access the profiles of its previous and next version. Queries about metrics may be then
formulated (e.g., has a metric increased?) as well as “differential measurements”12

(e.g., how much has a metric increased?).
Hip provides facilities to automatically profile a block throughout a set of package

versions available from a Monticello13 repository by loading each version, profiling it,
and adding the gathered profiling information to a Hip version collection structure.

11http://www.moosetechnology.org/tools/Spy/Kai
12This term is commonly employed in electronic and voltage measurement. We consider it to be descrip-

tive in our context.
13Monticello is the version control mechanism commonly employed in Pharo.

14

http://www.moosetechnology.org/tools/Spy/Kai

Hip opens the door to a wide range of options to visualize the evolution of a pro-
gram’s runtime behavior. As an example, we propose a semaphore-like view that helps
to identify bottlenecks. For a particular profiled object and version, Hip assigns one of
five colors. In the case of a metric such as the execution time—where lower is better—
source artifacts with a lower metric value compared to the previous version are colored
green; those with a greater value red; unchanged artifacts are colored in white; removed
ones black; and new ones yellow. The emphasis is on red and green artifacts for obvi-
ous reasons, and also on yellow artifacts, as from that version onward the developers
should put focus on newly created artifacts, as they were not available before.

4.4. IDE integration

The primary tool developers use to develop and maintain software systems is the
integrated development environment (IDE). For this reason we integrate profiling in-
formation gathered by SPY into Pharo’s IDE which is implemented using the Omni-
Browser framework [18]. As soon as a system’s test suite has been executed with SPY,
the IDE can access the test coverage information using the following statement:

Profiler profilerAt: #testCoverage

The Pharo IDE exploits the profiling information resulting from the execution of
tests to highlight in the source code perspectives methods and classes that have been
covered by the system’s test suite. The same color scheme as introduced in Section
3.4 is used to highlight the source artifacts. A non-executed method is colored red to
raise the awareness for untested code while methods colored dark (e.g., in a gradient
from gray to black) have been executed often and are hence tested extensively. Gray
methods, that is, methods that have not been executed often by the test suite, are good
candidates to look at in detail in order to reveal whether they could benefit from more
extensive testing. Visualizing profiling information directly in the IDE hence helps
developers to easily locate methods that should be better covered with tests to improve
a system’s test coverage. Figure 5 illustrates how profiling information is visualized in
the Pharo IDE.

5. Conclusion

SPY is a profiling framework for the Pharo Smalltalk environment designed to eas-
ily build application profilers. Profiling output is structured along the static structure of
the analyzed program composed of packages, classes and methods. The core of SPY
is composed of four classes, Profiler, PackageSpy, ClassSpy and MethodSpy. These
classes represent the profiler itself and profiling information for packages, classes and
methods.

Once the data about a program’s execution is gathered by SPY, one can explore the
data by visualizing it using a dedicated visualization framework such as Mondrian.

However, SPY is not cost free. Mondrian tests are 3 times slower when the coverage
is computed. Future effort of SPY will be dedicated to reducing information gathering

15

overhead based on bytecode transformation [19] and DTrace14. When method time
execution matter, the user has always the option to rely on a second profiling “pass”
triggered with the getTimeAndCallGraph option. The piece of code to profile is then
executed a second time, using a sampling approach, less costly, but also less precise.

We have shown by a simple example how one can instantiate SPY for a given prob-
lem, such as building a code coverage tool. Furthermore, we have demonstrated the fle-
xibility of SPY by presenting three additional applications we built on top of it, namely
a type extraction profiler, a time profiling visualization tool, and an evolutionary time
profiling visualization tool. Finally, we demonstrated that the information gathered via
SPY is useful beyond visualization, as we integrated our code coverage profiler with
the regular IDE, allowing a more direct interaction between the source code and its
dynamic aspects.

Acknowledgment. We gracefully thank Dave Ungar for his comments and feedback of
our paper.

References

[1] M. Marré, A. Bertolino, Reducing and estimating the cost of test coverage crite-
ria, in: ICSE ’96: Proceedings of the 18th international conference on Software
engineering, IEEE Computer Society, Washington, DC, USA, 1996, pp. 486–494.

[2] W. Binder, Portable and accurate sampling profiling for java, Softw. Pract. Exper.
36 (6) (2006) 615–650.

[3] O. Agesen, U. Holzle, Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages, Tech. rep., Department
of Computer Science, University of California, Santa Barbara, Santa Barbara,
CA, USA (1995).

[4] M. Haupt, R. Hirschfeld, M. Denker, Type feedback for bytecode inter-
preters, in: Proceedings of the Second Workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS’2007), ECOOP Workshop, TU Berlin, 2007, pp. 17–22.
URL http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf

[5] M. Arnold, Online profiling and feedback-directed optimization of java, Ph.D.
thesis, Rutgers University (Oct. 2002).

[6] D. Röthlisberger, M. Denker, É. Tanter, Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime, Journal of Computer Languages, Systems
and Structures 34 (2-3) (2008) 46–65.

14http://www.adrian-lienhard.ch/blog?dialog=smalltak-meets-dtrace

16

http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf
http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf
http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf
http://scg.unibe.ch/archive/papers/Roet08aUPBReflectionJournal.pdf
http://scg.unibe.ch/archive/papers/Roet08aUPBReflectionJournal.pdf
http://www.adrian-lienhard.ch/blog?dialog=smalltak-meets-dtrace

[7] D. Holten, B. Cornelissen, J. J. van Wijk, Trace visualization using hierarchi-
cal edge bundles and massive sequence views, in: Proceedings of Visualizing
Software for Understanding and Analysis, 2007 (VISSOFT’07), IEEE Computer
Society, 2007, pp. 47 – 54.

[8] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by
Example, Square Bracket Associates, 2009.

[9] Eclipse, Eclipse platform: Technical overview, http://www.eclipse.org/white-
papers/eclipse-overview.pdf (2003).

[10] B. Meyer, Object-Oriented Software Construction, 2nd Edition, Prentice-Hall,
1997.

[11] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future: The
story of Squeak, a practical Smalltalk written in itself, in: Proceedings of the
12th ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications (OOPSLA’97), ACM Press, 1997, pp. 318–326.

[12] VisualWorks, Cincom Smalltalk, http://www.cincomsmalltalk.com/, archived at
http://www.webcitation.org/5p1rRxls5 (2010).

[13] G. Bracha, D. Ungar, Mirrors: design principles for meta-level facilities of object-
oriented programming languages, in: Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’04), ACM SIGPLAN Notices, ACM Press, New York, NY, USA, 2004, pp.
331–344.

[14] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: An agile visualization framework,
in: ACM Symposium on Software Visualization (SoftVis’06), ACM Press, New
York, NY, USA, 2006, pp. 135–144.

[15] A. Bergel, R. Robbes, W. Binder, Visualizing dynamic metrics with profiling
blueprints, in: Proceedings of the 48th International Conference on Objects, Mod-
els, Components, Patterns (TOOLS EUROPE’10), LNCS Springer Verlag, 2010,
to appear.

[16] D. Röthlisberger, O. Greevy, O. Nierstrasz, Exploiting runtime information in the
IDE, in: Proceedings of the 16th International Conference on Program Compre-
hension (ICPC 2008), IEEE Computer Society, Los Alamitos, CA, USA, 2008,
pp. 63–72.

[17] T. Gı̂rba, M. Lanza, S. Ducasse, Characterizing the evolution of class hierar-
chies, in: Proceedings of 9th European Conference on Software Maintenance and
Reengineering (CSMR’05), IEEE Computer Society, Los Alamitos CA, 2005,
pp. 2–11.

[18] A. Bergel, S. Ducasse, C. Putney, R. Wuyts, Creating sophisticated development
tools with OmniBrowser, Journal of Computer Languages, Systems and Struc-
tures 34 (2-3) (2008) 109–129.

17

http://pharobyexample.org
http://pharobyexample.org
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://www.cincomsmalltalk.com/
http://bracha.org/mirrors.pdf
http://bracha.org/mirrors.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Roet08bDynamicInfoIDE.pdf
http://scg.unibe.ch/archive/papers/Roet08bDynamicInfoIDE.pdf
http://scg.unibe.ch/archive/papers/Girb05aHierarchiesEvolution.pdf
http://scg.unibe.ch/archive/papers/Girb05aHierarchiesEvolution.pdf

[19] M. Denker, S. Ducasse, É. Tanter, Runtime bytecode transformation for
Smalltalk, Journal of Computer Languages, Systems and Structures 32 (2-3)
(2006) 125–139.

18

http://scg.unibe.ch/archive/papers/Denk06aRuntimeByteCodeESUGJournal.pdf
http://scg.unibe.ch/archive/papers/Denk06aRuntimeByteCodeESUGJournal.pdf

	Introduction
	Current Profiler Implementations
	The Spy Framework
	Spy in a nutshell
	Instantiating Spy
	Running Spy
	Visualizing Runtime Information
	Call graph and execution time
	Summary

	Applications
	Extracting types from unit tests
	Time profiling blueprints
	Profiling differentiation
	IDE integration

	Conclusion

