
The Small Project Observatory:

Visualizing Software Ecosystems

Mircea Lungua, Michele Lanzaa, Tudor Gı̂rbab

aREVEAL @ Faculty of Informatics - University of Lugano, Switzerland
bSoftware Composition Group - University of Bern, Switzerland

Abstract

Software evolution research has focused mostly on analyzing the evolution
of single software systems. However, it is rarely the case that a project
exists as standalone, independent of others. Rather, projects exist in parallel
within larger contexts in companies, research groups or even the open-source
communities. We call these contexts software ecosystems, and on this paper
we present The Small Project Observatory, a prototype tool which aims to
support the analysis of project ecosystems through interactive visualization
and exploration. We present a case-study of exploring an ecosystem using
our tool, we describe about the architecture of the tool, and we distill the
lessons learned during the tool-building experience.

Key words: software evolution, software visualization, software ecosystems

1. Introduction

Software visualization tools span a wide range of abstraction levels. One
of the first visualization tools was Eick’s SeeSoft [1] which summarizes changes
in the software at the level of lines of code. Increasing the level of abstrac-
tion, other tools present UML diagrams or other representations that work
at the class level [2, 3]. Others focus on visualizing higher level abstractions
such as modules and the interdependencies between them [4, 5]. At the next
higher abstraction level, Holt visualized architectural differences between two
versions of a system [6].

Email addresses: mircea.lungu@unisi.ch (Mircea Lungu),
michele.lanza@unisi.ch (Michele Lanza), girba@iam.unibe.ch (Tudor Gı̂rba)

Preprint submitted to Experimental Software Toolkits March 2, 2010



An underlying assumption of these approaches is that a project represents
one single, complex entity that can be analyzed independently. However,
we argue that this is often not the case. Instead, projects exist in larger
contexts such as companies, research groups or open-source communities and
corresponding versioning repositories exist in parallel. We call these context
ecosystems.

In this article we present The Small Project Observatory (SPO), a tool
that embodies our approach to analyze project ecosystems. Our first goal
for building SPO was to provide an interactive interface for the visualization
and exploration of project ecosystems. A few other research projects analyze
such groups of projects and treat them as whole, but none of them provides
an interactive tool to support the analysis. One such project is the FlossMole
project which provides a database compilation of open-source projects from
Source-Forge and several other repositories [7]. Weiss analyzed SourceForge
only from a pure statistical analysis point of view [8].

Groups of software projects have been also analyzed in various instances
by the members of the Libresoft research group from Spain. They are inter-
ested in analyzing open-source software and in this context they looked at
various collections of such systems to study their properties and evolution. In
one instance, they analyzed the Debian Linux distribution and estimated the
cost of implementing it from scratch [9]. The analysis of the Debian distribu-
tion was not focussed on the source code. In another article, they proposed
a quantitative methodology for analyzing how the developer turnover affects
open-source software projects [10]. In this work they took a few represen-
tative open-source projects and studied the information in the versioning
system repositories without looking at entire groups of projects that belong
together. A case where they indeed took entire collections of projects was
when they studied the behavior of the developers from a social networking
analysis point of view [11]. In this work they look at the social networks that
are build around the Gnome and Apache projects.

The Small Project Observatory is implemented as an online application.
There are several other examples of using the Web for software engineering.
Holt et al. have developed the Software Bookshelf, which is a web-based
paradigm for the presentation and navigation of information representing
large software systems [12]. Mancoridis et al. presented REportal which was
aimed to be an online reverse engineering portal [13]. Recently D’Ambros
et al. proposed an online framework for analysis and visualization in a soft-
ware maintenance context. Their tool, Churrasco emphasizes flexibility by

2



allowing easy model extension as well as collaboration [14]. Although they
support loading multiple models at the same time in Churrasco, they do
not consider a super-repository as a first-class entity in their analysis. In
Section 6 we talk about a possible future integration of the Small Project
Observatory with Churrasco.

The remainder of this article is organized as follows. In Section 2 we
introduce the concept of software ecosystems. In Section 3 we present the
Small Project Observatory, its user interface and an exploration example
using it. In Section 4 we talk about the architecture of the tool. In Section 5
we talk about validation, interaction, developing for the web and other lessons
learned during our tool-building experience. We conclude in Section 6 with
a discussion and we outline the directions of future work.

2. No Project Is an Island

Software systems are seldom developed in isolation [15, 16]. On the con-
trary, many companies, research institutions and open-source communities
deal with software projects developed in parallel and depending on one an-
other. Such collections of projects represent assets and analyzing them as a
whole can provide useful insights into the structure of the organization and
its projects.

In this context we define a software ecosystem as follows:

A software ecosystem is a collection of software projects which are
developed and evolved together in the same environment.

The environment is usually a research group, a large company or an
open-source community. It is even possible for multiple organizations to
collaborate and develop software in a common ecosystem1.

One particular type of organization which owns ecosystems are telecom-
munications companies. They are supported by highly integrated IT systems
developed decades ago and extended over time. Telecommunications compa-
nies usually develop software products for variations of the phone hardware
and in these cases they usually have to manage the various versions which
are slightly different by introducing product line families. A product family

1For example, the Gnome family of systems is developed by an open-source community
to which various companies contribute, too

3



[17, 18] is a set of software intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a
prescribed way. A product family is indeed a special type of ecosystem, but
the ecosystem concept is much broader.

The large amounts of code that is developed in an ecosystem guarantees
that it is very hard, if not impossible for a single person to keep track of the
complete picture. Many times, even if there exists documentation to describe
the inter-dependencies between the projects and the way the developers and
teams are supposed to collaborate, it is out of date or inaccurate. Thus, the
only reliable source of information about the ecosystem is the data present
in the versioning repositories of the projects. In this context we define a
super-repository as follows:

A super-repository represents a collection of version control repos-
itories of the projects of an ecosystem.

Beside the information about the evolution of the projects in an ecosys-
tem, super-repositories also contain information about developers. Depend-
ing on the organization, developers might work on multiple projects simul-
taneously, move from one project to another and collaborate on multiple
projects at the same time. All this information can be recovered from the
information in the super-repository.

Some repositories are dedicated to a particular language such as Ruby-
Forge2 and SqueakSource3, while others are language agnostic such as Source-
Forge4 and GoogleCode5. Although most of the discourse can be generalized
to any of these repository types, this article is derived from our experience of
analyzing three open-source and one industrial super-repositories, each con-
taining the history of several dozens to hundreds of applications versioned in
Store (Smalltalk Open Repository Environment).

Store is a versioning control system for projects written in VisualWorks
Smalltalk [19]. A Store repository contains multiple projects. In fact it is
common for an organization to keep all its projects in a single Store repos-
itory. We have chosen to support the analysis of Store for two reasons: (1)

2http://rubyforge.org
3http://squeaksource.org
4http://sourceforge.org
5http://code.google.com

4



our own projects were versioned with it and we wanted to start the anal-
ysis with ourselves and, (2) it is a very powerful version control system.
Two of the most important characteristics of Store that we exploited are
the detailed change information, and the prerequisites dependencies. Store
captures detailed change information not at text level, but at the level of
reified programming concepts such as methods and classes. Furthermore,
prerequisite mechanism allows the developer to specify for each project the
other projects it depends on (i.e., its prerequisites).

Why Reverse Engineer Software Ecosystems?

Reverse Engineering a software ecosystem is recovering high-level, ab-
stracted views of the ecosystem from the low level facts that exist in the
super-repository associated with the ecosystem. Such facts can be relation-
ships between projects, relationships between developers or other evolution-
ary and structural views. Examples of questions that need to be answered in
this context are: “What are the old projects that everybody depends on?”,
“How stable is a dependency between two or more projects?”, “What are the
projects that have been modified recently?”, “What are the projects that
gain importance?”, “What are the projects which currently take the most
effort?”.

We identified at least three main categories of stakeholders that should
be interested in the information about the evolution of the code in a super-
repository, namely project managers, developers, and quality assessors.

Project Managers are interested in how teams work and how to allocate
resources to the projects. Moreover, since in general successful projects need
to continuously change [20, 21], a project manager needs to be up to date
with how projects change and what their current status is.

Developers need to know whom to ask questions about the source code
[22]. They care about both the details of a particular project and the inter-
project dependencies. In the open-source ecosystems developers are looking
for projects they can contribute to. Since not all of them have equal chances
of success, it is useful to gain insights about the evolution, activity and the
people involved regarding a particular project.

The Quality Assessment Team is interested in the continuous supervision
of the evolution of the projects in the ecosystem. The team could define alerts
bound to certain events in the evolution of the ecosystem. For example, when
a developer is adding a dependency between two projects, the dependency
should be added automatically to the next code review. Another type of

5



analysis which can benefit from the continuous monitoring of the system
is searching for code patterns that appear multiple times inside a project
or across projects. The detection of such code patterns can be a first step
towards reusing them.

Case Studies

We have analyzed software ecosystems in various contexts: public open-
source communities, research groups and software companies. In Table 1 we
provide a brief quantitative overview of these ecosystems.

The oldest and largest of them is the Open Smalltalk Repository hosted
by Cincom Systems. The next two are maintained at the Universities of
Bern and Lugano, in Switzerland. The last one is a repository maintained
by Soops BV, a Dutch software development company. The data provided
in Table 1 needs to be considered with care as the numbers are the result
of a simple project counting. Super-repositories accumulate junk over time,
as certain projects fail, some die, short-time experiments are performed, etc.
This is inherent to the nature of super-repositories, and only supports the
claim that they need to be understood in more depth.

Ecosystem Projects Contributors Classes Since
Cincom 288 147 19.830 2000
SCG (Bern) 210 76 10.600 2002
REVEAL (Lugano) 55 11 2.088 2005
Soops 249 20 11.413 2002

Table 1: The analyzed ecosystems

All the examples and views presented in the remainder of this paper are
based on analyzing the SCG ecosystem.

3. The Small Project Observatory

The Small Project Observatory (SPO)6 is a highly interactive web appli-
cation. In this section we describe some of the interaction modes as well as
present an example exploration session.

6SPO is available at http://spo.inf.unisi.ch/

6



3

1 2

Figure 1: The user interface of The Small Project Observatory

Figure 1 presents a screenshot of SPO running inside the Opera web
browser during one of our ecosystem case studies. The central view (a
fragment of which is labeled 2) displays a specific perspective on a super-
repository. In this case it is a table that presents metrics about the projects
in the super-repository. The view is interactive in the sense that the user
can select and filter the available projects, sort the displayed projects, obtain
contextual menus for the projects or navigate between various perspectives.
This is true also for other graphical views - the elements can be individually
selected and manipulated.

SPO provides multiple views on a repository and it enables the user to

7



choose the ones which are appropriate for the type of analysis he needs. The
Views panel (labeled 1) presents the list of all the available views, some of
which we present later in this section.

Given the sheer amount of information residing in a super-repository,
filters need to be applied to the super-repository data. The bottom-left panel
lists the active filters (labeled 3). In the case of Figure 1 the only active filter
is “In-house projects”. The user can choose and combine existing filters.
A user can also apply filters through the interactive view, for example by
removing a project or focusing on a specific project using the contextual
menu.

3.1. Exploring the SCG Ecosystem with SPO

To illustrate how SPO is used in practice we present an example of an
exploration session. For the purpose of this study we look at the software
ecosystem that is hosted by the Software Composition Group from the Uni-
versity of Bern, Switzerland (hereafter referred to as SCG). Most of the
projects that belong to the ecosystem are typically research projects devel-
oped by PhD and master students. Some other projects are just libraries
replicated into this repository.

We start our exploration with an overview table of metrics (Figure 1) that
characterize both the structure and the evolution of all projects. Sorting the
elements of the table according to the various metrics on the columns reveal
the outliers and allows us to get an idea of about the size of the ecosystem
we are dealing with. In this case, there is a total of 210 projects. Some of
these projects are discontinued and some are still active. The oldest project
that is still active is MooseDevelopment. This project represents the core of
the Moose analysis platform [23], it has been worked on by more than 32
developers over 6 years. The largest project in terms of classes is Jun which
has 896 classes.

Project Timelines

The table based view is a useful tool for summarizing the status of the
repository at the time of analysis but it does not provide evolutionary infor-
mation about the ecosystem. To address this, SPO provides a set of timeline
views that present the evolution over time of chosen metrics. Since the time-
lines present a high-level overview of the evolution, they are primarily useful
for the project manager.

8



Figure 2: The evolution of size and activity for the projects in the SCG ecosystem

Timelines can be displayed individually or in parallel coordinates. The
evolution of each metric is presented as a stacked graph where the overall
shape presents the evolution of the metric at ecosystem level but the individ-
ual contributions of each project are also visible. Each project has a specific
color computed as a hash function applied to the name of the project.

Figure 2 presents two timelines displayed in parallel: the growth of the
size (top graph) and the fluctuation of the activity (bottom graph). The size
is measured in number of classes while the activity is measured in number
of commits. The figure shows that size is monotonously increasing while
the activity fluctuates over time with regularities and with a general trend
being visible. One of the regularities is the dip in activity towards the end
of every year and in the summer. This rhythm corresponds with the holiday
periods of students. The general trend shows increase in activity until the
peak of January 2007 when there are 700 commits. After that date, the
overall activity level seems to have fallen.

The rightmost end of the activity evolution chart reveals that only a sub-
set of the projects in the ecosystem is active. To learn about these projects
we filter out those not active in the last month. The evolution of the remain-

9



Figure 3: Evolution of the activity for the projects which are currently active in the SCG
ecosystem

ing 22 projects is presented in Figure 3. We see that two of the projects that
are still active are also the oldest: MooseDevelopment and Smallwiki.

Project Dependency Map

The timeline views do not present the relationships between the projects
in the ecosystem. To address this, SPO provides the Project Dependency
Map, a view which presents static dependency relationships between the
projects in the ecosystem.

Figure 4: The static dependencies between the projects in the SCG ecosystem (the darker
a node, the older the corresponding project)

Figure 4 shows the view applied to the recent projects in the SCG ecosys-
tem. The intensity of the gray is proportional to the age of the project. We

10



can see that the projects which are currently active in the repository are
related. Many of them depend on the dark (old) project at the bottom. To
find details about that project we select the element in the graph, open a
pop-up menu and select the option Project Details. We are led to a page
which presents details about the project, in this case MooseDevelopment.

Visualizing the inter-project relationships highlights the critical projects
in an organization because it pinpoints the projects that all the others depend
on. As a result, it is a tool for the project manager. However, visualizing the
dependencies between projects is also useful for a developer who is trying to
understand the way his code fits into the big picture or a developer who is
new to the ecosystem.

Project Vocabulary Map

There are multiple views that present various details of a project. We
briefly present one such view, the vocabulary map. The Vocabulary Map
presents the summary of the terms used in the source code of the project.
The code is analyzed, the identifiers split in component words, these words
are stemmed and then the final statistics on the frequency of occurrence of
the words is presented as a tag cloud. The vocabulary map is a tool for the
developer who wants to obtain a general overview of the domain language of
a project.

Figure 5: The result of a lexical analysis of the vocabulary used in Moose

Figure 5 presents a vocabulary map of a given project. We can see that
some of the most important terms used in the project are FAMIX, model,

11



and entity. Indeed, MooseDevelopment contains an implementation of the
FAMIX meta-model [23] which describes object-oriented software systems.

Developer Collaboration Map

Besides the source code of the projects, we also want to learn about
the activity of developers. From the palette of views that are available for
developers in SPO we choose the Collaboration Map.

The Collaboration Map is mainly a tool for managers, and it shows how
developers collaborate with each other within an ecosystem, across project
boundaries. We say that two developers collaborate on a certain project if
they both make modifications to the project for at least a certain number of
times. Based on this information we construct a collaboration graph where
the nodes are developers and the edges between them represent projects on
which they collaborated.

Figure 6: The collaboration between the developers in the Bern ecosystem

To identify clusters of collaborating developers, we represent the collab-
oration graph using a force-based layout [24]. Thus, developers which col-
laborate will be positioned closer together. As an arc between two nodes
represents the project on which the two nodes collaborate, the arc has the
color of the respective project.

12



Figure 6 shows that the SCG ecosystem is a moderately coupled commu-
nity in which about half of the contributors collaborate on multiple projects
while the rest of the contributors work individually. From this view, the
exploration can continue by selecting a project edge and navigating to the
details of the project, or selecting a developer node and navigating to the
details of the developer.

4. The architecture of SPO

At the core of the SPO platform stands an ecosystem meta-model which
is independent of the actual super-repository that stores the versioning in-
formation of the projects. Figure 7 presents the diagram of the ecosystem
meta-model used in SPO.

1 *

*

1*

1
*2

1*

super-repositories
Ecosystem

name
versions
developers

Projectprojects
projectVersions
collaborators
changes

Developer

target
type (m, c, d)

Change

filename
FileChange

changedElements
ASTChange

comment
date
author
changes

Project 
Version

textualDiff
DiffChange

from
to

Version 
Relationship from

to

Relationship
projects
Super-Repository

*

1

1*

Figure 7: The ecosystem metamodel used in SPO

The ecosystem contains super-repositories which in turn contain projects.

13



Every project has a history which is formed by an ordered list of Project Ver-
sions. Between the project versions there can be dependency relationships.

The relationships between two projects can be diverse. In some cases, a
project may require that the source code of another be present at compile
time. In other cases, a project may require that a given library is present
in the memory at runtime. In the case of web-services, the dependencies
between projects can be discovered only when run. When the only available
information about the projects is their source code, the type of dependen-
cies that can be recovered the easiest are the static dependencies between
projects.

Every project version is modelled as having a developer that commited
that change and a set of changes. The changes are the lowest level of detail
to which the ecosystem meta-model can go regarding the modelling of an
individual version of a project, without going into detailed and expensive
static analysis. A change can be represented by different types of information,
depending on the capacities of the extractor and the amount of resources
one is willing to use. The three possible change types are: File Change, Diff
Change and AST Change. The File Changes are used for keeping track of
files that are changed without going into the details of the change - such as
binary files that belong to the project. The Diff Changes keep track of the
text that is added or deleted from a file. AST Changes keep track of the
changes that happen to the actual programming language constructs. An
ecosystem model can use any of the three types of changes, depending on the
possibilities of the module that imports the data from the super-repository
and builds the model.

Conceptual Architecture

Figure 8 presents a conceptual diagram of the architecture of SPO. The
main components are the import module, the ecosystem models, the analysis
and cache modules, and the visualization engine. We briefly present each one
of the modules.

The import module is responsible for interfacing with the super-repository
and pulling data from it. Currently the only type of super-repository that
we support is the one for Store . We chose Store because it keeps track of
a rich palette of information about the projects it versions. In the current
implementation, importing the data about a few hundred projects can be
done in a matter of minutes.

14



At a given time, SPO can contain several models of ecosystems, each
of them conforming to the ecosystem metamodel that we presented at the
begining of this section.

The analysis module is computing metrics and any other information that
can be derived by analyzing the information in the ecosystem model. One
such type of information is the developer collaboration graph.

Due to the highly interactive and exploratory nature of the tool, SPO
generates dynamically all the web pages and all the visualizations they con-
tain. The Cache module caches all the information that is needed in order to
speed-up the view generation process. Even so, the first time a certain type
of analysis is invoked the user experiences a delay.

Internal Representation
Projects, Developers, HistoriesInternal Representation
Projects, Developers, Histories

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Seaside
Web 

Development 
Framework

Ecosystem Evolution Model 
Projects, Developers, Histories

Analysis
Metrics, 

Aggregation

Visualization
Layout Engine, 

JS/SVG 
Generator

Import and Automatic Update

SVN

CVS

Store
SVG Enabled

Super-
Repository

Web 
Browser

Cache

Figure 8: The architecture of SPO

The visualization module takes as input information from the internal
representation, analysis and cache modules and generates views from it. The
module contains the layout engine and the SVG generator. The JavaScript
interaction code is generated dynamically for every view. Some of the graph
based views (e.g., project dependency) use the hierarchical layout algorithm
provided by dot [25], which arranges the nodes from top to bottom based on
edges and then attempts to avoid edge crossings and reduce edge length.

15



Seaside is a web application framework which emphasizes a component
based approach to web application development. We use seaside because it
offers a unique way to have multiple control flows on a page, one for each
component [26].

5. Tool Building Experience

This section describes our approaches to validating the usefulness of SPO
for understanding software project ecosystems as well as some of the issues
that we encountered during the development of SPO, in particular related to
SPO being a web-based application.

5.1. Validation

We validated SPO in several ways. First we used it ourselves during
the analysis of multiple open-source case studies. We listed the case stud-
ies in Section 1. We found that the tool enabled us to reason about the
project structure and the developer collaboration in the studied ecosystems.
Section 3 presented examples of visualizations that were generated by SPO
during the aforementioned case studies.

The second way of validating the usefulness of SPO for ecosystem un-
derstanding was to use the tool in an industrial context. In our search for
an industrial partner interested in analyzing its own project ecosystem we
approached Soops BV, an Amsterdam-based software company specialized
in Smalltalk development. Soops has experience with creating software for a
wide variety of medium sized and major sized organisations such as ministry
departments, financial institutions and power exchanges. We asked them if
they would allow us to analyze the history of the projects in their ecosystem.
They politely denied due to privacy reasons. Instead, they offered to install
the tool themselves, perform analysis on their own and then report back on
their experience.

The experiment with Soops was the first time we handed over one of our
tools to be tested without our presence. Although we did not have control
over the experiment we were satisfied to see that the developers were in-
terested in using the tool and reporting on its usage. However, as soon as
they tried to apply it, they discovered that the way they were defining their
projects was different than the one recommended by Store. They were using
an ingenious way of defining projects that although was using the Store facil-
ities, was circumventing the traditional Store conventions in order to obtain

16



increased control and customizability. In order to adapt to their peculiar
approach, we had to modify our Store importer to take into account their
convention. While we modified the importer, the meta-model needed no
modifications. The lesson learned is that we needs to be ready to adapt the
tools to the peculiarities of the case studies. We present several visual per-
spectives on the Soops ecosystem together with the report that we received
from them elsewhere [16].

A third way of validating SPO was, given that currently it supports the
analysis and visualization of Store ecosystems, to present it to the Smalltalk
community. The community was enthusiastic and awarded SPO the first
prize in the annual Innovation Awards competition organized together with
the 15th International Smalltalk Conference7.

As a final way of validating SPO we conducted an experimental setting
in the context of the Software Evolution course at the University of Lugano.
The course is a master level course. During one of the labs we introduced
the students to the concept of a software ecosystem and then presented the
Project Observatory. Then, we gave the students one hour of time to answer
questions about SPO.

We asked the students to solve several tasks that were testing their under-
standing of the projects and developers inside an ecosystem. Table 2 presents
six of the questions that we asked. All of the students answered the first five
questions, however, several of them reported that they had not enough time
to finish answering the last question. The questions did not have unique
answers, but in most of the cases the students agreed on the solutions. In
general they had to support their answers with arguments. For example, in
the case of question 4 all students considered that a project on which many
other projects were depending on, was more important than another project
that was isolated.

After answering the questions, the students had to rate on a Likert scale
[27] their own understanding of the various aspects of the ecosystem. Table
3 presents a summary of the answers.

5.2. Usability

At the end of the experiment with the students, we asked them to fill a
survey on the usability of the tool. Table 4 shows that in general the users

715th International Smalltalk Conference - http://www.esug.org

17



On Developers
1. Who is more important for the ecosystem - developer X or developer Y? Why?
2. Which three developers would you nominate for distinctions for their overall activity in
the ecosystem? Why?
3. How important is the contribution of Wettel and Lanza and Lungu in the SCG ecosystem?

On Projects
4. Which project is more important for the ecosystem - X or Y? Why?
5. Which is the most critical project in the ecosystem? Why?
6. If you were to decide which seven of the active projects to continue funding, which ones
would you choose? Why?

Table 2: Questions testing the understanding of the SCG ecosystem

Assertion SA (%) A (%) N(%) D(%) SD(%)
I succeeded in forming a general idea
of the activity in the ecosystem

14 72 14

I succeeded in developing an un-
derstanding of the overall relations
between the developers inside the
ecosystem

14 72 14

I succeeded in forming an under-
standing of the relations between
the projects in the ecosystem

72 28

Table 3: Evaluating the understanding of the ecosystem in the case study (SA=strongly
agree, A=agree, D=disagree, SD=strongly disagree)

were happy with the usability of the tool.
We also asked the students a series of open-ended questions which in-

cluded what were the most and least useful features of the tool as well as
the missing features. The general agreement was that the inter-project de-
pendencies and the developer collaboration views were the most useful. The
main complaint was the slowness of the tool and the lack of scalability when
presenting large graphs. We used the feedback to improve the Project Ob-
servatory.

Interaction. One thing that we observed was that some of the interaction
modes which to us seemed intuitive, were not such for the users. For example,
when clicking on the name of a developer in any of the views, the users
expected to see a new view with details about the author, but the action

18



Assertion SA (%) A (%) N(%) D(%) SD(%)
Application was easy to use 20 70 10
Application was responsive enough 10 30 40 20
Interaction features were satisfying 30 60 10

Table 4: Evaluating the usability of SPO (SA=strongly agree, A=agree, D=disagree,
SD=strongly disagree)

that was carried out was to keep the same view and add a filter to remove
all the projects that did not belong to that author. Students also mentioned
that the filtering capacities were very important and the current filtering
offer of SPO needs to be improved.

Flexibility. Each time we presented the tool to a colleague, sooner or later,
we got the question: but could you represent that differently? or could you
visualize that other type of information too?. This is an instance of a more
general type of problem: our users are smart. In Section 2 where we present
the potential users of our tool it is evident that most of them are technically
savvy. For such users we need to provide more flexibility in view building and
customization. Currently, the only way in which one can implement a new
view is by writing a new view class. One possible approach is to let the views
be declaratively defined, such as in our work on the Mondrian visualization
engine [28].

5.3. Developing for the web

One of the reasons for implementing SPO as an online tool was to ex-
periment with the possibilities that web applications offer when it comes to
visualization and interaction. In our opinion, the benefits of availability and
ease of update compensate for the limitations of doing visualization in the
browser. We present here a few of the issues related to providing interactive
visualization with SVG and JavaScript.

Scalable Vector Graphics (SVG) is an XML specification and file format
for describing two-dimensional vector graphics, both static and animated.
SVG offers anti-aliased rendering, pattern and gradient fills, sophisticated
filter-effects, clipping to arbitrary paths, text and animations.

SVG is a W3C specification and most of the recent versions of the major
browsers of today support it. However, not all the browsers have the same
speed in rendering it and this makes the user experience hard to predict.

19



To illustrate this, we wrote a simple JavaScript script which calculates the
rendering speed of various browsers. We run the script in OS X on a Power-
Book G4 running at 1.5GHz with 1G of RAM. The differences between the
browsers are very large. For example, in a second, Opera 9.50 renders 595
polygons while Safari only renders 77 elements.

This simple benchmark shows two of the greatest limitations of SVG: the
amount of visual elements that one can count on rendering is limited (at
least currently) and the user experience is hard to predict as the timings will
be different for different users using different system configurations. More-
over, we did encounter problems with the same pop-up menu being rendered
different in two different browsers. These limitations are probably part of
reasons for which, at the time of writing this article, the trend for interactive
visualization applications is biased towards using Adobe’s Flash platform.

The interaction part (mouse-over effects, selection, pop-up menus) were
implemented using JavaScript. In terms of expressively and flexibility, JavaScript
is a very powerful programming language. However, we found that there was
a dearth of good integrated development environments and debugging tools.
Still, the Firebug plugin for Firefox proved very useful with debugging.

6. Conclusions and Future Work

In this paper we have presented the Small Project Observatory, an online
visualization tool aimed at the visualization and analysis of super-repositories.
We believe that super-repository visualization and analysis is a promising re-
search direction and we plan to continue working on it. Some of the directions
in which we would like to focus our efforts are improving the flexibility of
the tool as well as providing finer-grained information and supporting other
types of super-repositories besides Store.

Extensibility. SPO was initially developed for analyzing Store repositories.
However, we realized that with several generalizations, our ecosystem meta-
model can become independent of the super-repository that keeps track of
the project versions. In order to examine and validate this independence
we are currently working on a new importer that extracts information from
ecosystems that are hosted in SVN repositories.

Integration With Other Tools. A platform which is complementary to
SPO is the online visualization framework called Churrasco [14]. D’Ambros
et al. visualize information from CVS, SVN and Bugzilla repositories. The

20



focus of the Churrasco platform is on supporting collaboration between the
users during the reverse engineering of individual systems. In the future we
plan to investigate whether it is possible to link the two platforms in such a
way that when a user needs to analyze bug information about an individual
system he could be directed to Churrasco.

Analyzing Fine-grained Information. The visual perspectives that we
presented show information only about the elements that are relevant at the
abstraction level of an entire super-repository: projects, developers, inter-
project relationships. However, there are cases in which the application
should support navigating to a lower-level of abstraction such as an inter-
module dependency perspective inside a project or the individual method
calls that are responsible for an inter-project dependency. Our current super-
repository model currently does not support such fine-grained information.
We are currently working to extend it and allow the navigation down to the
code level.

One final direction for the future is to study more real-world ecosystems
as well as apply new types of analysis to the ecosystems that we have already
studied.

Acknowledgements. The authors would like to thank Romain Robbes and the anony-
mous reviewers of the Experimental Software Toolkits journal for providing valuable feed-
back on the writing of this paper.

References

[1] S. Eick, J. Steffen, E. S. Jr., Seesoft - a tool for visualizing line oriented software
statistics, IEEE Transactions on Software Engineering 18 (11) (1992) 957–968.

[2] A. Marcus, L. Feng, J. I. Maletic, 3d representations for software visualization, in:
SoftVis ’03: Proceedings of the 2003 ACM symposium on Software visualization,
ACM, New York, NY, USA, 2003, pp. 27–36.

[3] M.-A. D. Storey, H. A. Müller, Manipulating and documenting software structures
using SHriMP Views, in: Proceedings of ICSM ’95 (International Conference on
Software Maintenance), IEEE Computer Society Press, 1995, pp. 275–284.

[4] H. Muller, K. Klashinsky, Rigi: a system for programming-in-the-large, Software
Engineering, 1988., Proceedings of the 10th International Conference on (1988) 80–
86.

21



[5] M. Lungu, A. Kuhn, T. Gı̂rba, M. Lanza, Interactive exploration of semantic clus-
ters, in: 3rd International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2005), 2005, pp. 95–100.

[6] R. Holt, J. Y. Pak, Gase: visualizing software evolution-in-the-large, in: WCRE ’96:
Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE ’96),
IEEE Computer Society, Washington, DC, USA, 1996, p. 163.

[7] M. Conklin, J. Howison, K. Crowston, Collaboration using ossmole: a repository of
floss data and analyses, SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–5.

[8] D. A. Weiss, A large crawl and quantitative analysis of open source
projects hosted on sourceforge., in: Research Report ra-001/05, Institute
of Computing Science, Pozna University of Technology, Poland, 2005. At
http://www.cs.put.poznan.pl/dweiss/xml/publications/index.xml, 2005.

[9] J. J. Amor, G. Robles, J. M. González-Barahona, I. Herraiz, Measuring libre software
using debian 3.1 (sarge) as a case study: Preliminary results, Upgrade Magazine.

[10] G. Robles, J. Gonzalez-Barahona, Contributor turnover in libre software projects, in:
IFIP International Federation for Information Processing, Vol. 203, Springer Boston,
2006, pp. 273–286.

[11] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona, I. Herraiz, Applying social
network analysis to community-driven libre software projects, International Journal
of Information Technology and Web Engineering 1 (3) (2006) 27–48.

[12] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Müller, J. My-
lopoulos, S. G. Perelgut, M. Stanley, K. Wong, The software bookshelf, IBM Syst. J.
36 (4) (1997) 564–593.

[13] S. Mancoridis, T. Souder, Y.-F. Chen, E. Gansner, J. Korn, Reportal: a web-based
portal site for reverse engineering, Reverse Engineering, 2001. Proceedings. Eighth
Working Conference on (2001) 221–230.

[14] M. D’Ambros, M. Lanza, A flexible framework to support collaborative software
evolution analysis, in: Proceedings of CSMR 2008 (12th European Conference on
Software Maintenance and Reengineering), IEEE Computer Society, 2008, pp. 3–12.

[15] M. Lungu, T. Gı̂rba, A small observatory for super-repositories, in: Proceedings of
International Workshop on Principles of Software Evolution (IWPSE 2007), 2007, pp.
106–109.

[16] M. Lungu, M. Lanza, T. Girba, R. Heeck, Reverse engineering super-repositories, in:
WCRE ’07: Proceedings of the 14th Working Conference on Reverse Engineering,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 120–129.

22



[17] M. Jazayeri, A. Ran, F. van der Linden, Software architecture for product families:
principles and practice, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[18] P. Clements, L. Northrop, Software Product Lines : Practices and Patterns, Addison-
Wesley Professional, 2001.

[19] Cincom, Team Development with VisualWorks. Cincom Technical Whitepaper
(2000).

[20] M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of the
IEEE 68 (9) (Sept. 1980) 1060–1076.

[21] M. Lehman, D. Perry, J. Ramil, W. Turski, P. Wernick, Metrics and Laws of Software
Evolution - The Nineties View, in: METRICS ’97: Proceedings of the 4th Interna-
tional Symposium on Software Metrics, IEEE Computer Society, Washington, DC,
USA, 1997.

[22] D. Cubranic, G. Murphy, J. Singer, K. Booth, Hipikat: a project memory for software
development, Software Engineering, IEEE Transactions on 31 (6) (2005) 446–465.

[23] O. Nierstrasz, S. Ducasse, T. Gı̌rba, The story of moose: an agile reengineering
environment, SIGSOFT Softw. Eng. Notes 30 (5) (2005) 1–10.

[24] T. M. J. Fruchterman, E. M. Reingold, Graph drawing by force-directed placement,
Software Practive and Experience 2 (1991) 1129–1164.

[25] E. R. Gansner, S. C. North, An open graph visualization system and its applications
to software engineering, Softw. Pract. Exper. 30 (11) (2000) 1203–1233.

[26] S. Ducasse, A. Lienhard, L. Renggli, Seaside: A flexible environment for building
dynamic web applications, IEEE Software 24 (5) (2007) 56–63.

[27] R. Likert, A technique for the measurement of attitudes., Archives of Psychology
22 (140) (1932) 1–55.

[28] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: an agile information visualization frame-
work, in: SoftVis ’06: Proceedings of the 2006 ACM symposium on Software visual-
ization, ACM, New York, NY, USA, 2006, pp. 135–144.

23


