
Code Duplication in ROS Launchfiles

Pablo Estefó, Romain Robbes, Johan Fabry
PLEIAD and RyCh labs, Computer Science Department (DCC), University of Chile, Chile

{pestefo,rrobbes,jfabry}@dcc.uchile.cl

Abstract— The middleware for robotics ROS has
become the de-facto standard for developing robot
applications. Thanks to our experience using ROS
we conjectured that the quality of software of ROS
is low, yielding a poor user experience for ROS users
and posing important barriers to robot software
development. In this work we present a first quantifi-
cation of code quality of the ROS ecosystem through
an analysis of code duplication in launchfiles. Our
experience led us to believe that these configuration
files exhibit a large amount of code duplication, and
this study shows that it is indeed the case. We find
that 25% of packages with multiple launchfiles have
duplicated code, and that clones are highly similar.

I. INTRODUCTION

The Robot Operating System (ROS) is a mid-
dleware for robots [14]. It provides several li-
braries and tools for developing complex robotic
applications. It is open source licensed and com-
prehends various projects from different universi-
ties and companies all over the world. Developers
and Researchers can write packages that imple-
ment robot behaviour in a wide variety of pro-
gramming languages. ROS follows the publish-
subscribe model for flexible communications and
network scalability. In this model, nodes are
processes that perform computation on certain
machines. A node communicates data with other
nodes by passing messages, a typed data structure.
To achieve this, a node publishes them to a topic
that other nodes may be subscribed to.

ROS is however more than just a middleware:
as it is arguably the de-facto standard robotics
middleware, a significantly large development ef-
fort in robotics research happens on top of ROS.
As a result, there are many packages that offer
parts of robot behavior built on top of ROS,
and we can consider it as a software ecosystem.
A Software Ecosystem is often defined as “a
collection of software projects which are devel-

oped and which co-evolve together in the same
environment” [9]. Hence ROS represents a soft-
ware ecosystem for developing complex robotic
applications.

In our experience using ROS to develop behav-
iors on our robots, we suspected that the software
quality of ROS and the various packages in the
ROS ecosystem is low. As a result, ROS is hard
to install and use, and a significant amount of
time is lost using it, which could better be used to
perform research. We therefore set out to quantify
the code quality of the ROS ecosystem so as to
later be able to suggest improvements. We report
here on a first investigation on code duplication,
as code duplication is one criterion that can be
used for establishing code quality. To scope down
the investigation, we only consider one type of
configuration files in the ecosystem: launch files,
as in our experience we have seen many cases of
code duplication in these files.

II. THE ROS ECOSYSTEM

The ROS Ecosystem consists of its core stack
(e.g. roscore: the process that coordinates
nodes and topics, and catkin the build system),
dedicated tools (e.g. RViz for 3D visualization,
and rqt_graph for active nodes and topics
visualization) and third party ROS packages.

These ROS packages represent the bulk of
this ecosystem, each one representing a specific
feature that can be reused by other packages.
ROS packages can be developed in multiple
languages. The tutorials of ROS show C++ or
Python as the main alternatives but ROS also
provides bindings to others: Java (ROSJava) [6],
Lisp (ROSLisp) [11], and Smalltalk (PhaROS) [4].

On the 25th of March there were 1672 ROS
packages registered on the official ROS website

(http://www.ros.org/browse/list.php). 87% of the pack-
ages are hosted on Github, 8 packages on Bit-
bucket and 176 of them do not report any hosting
site. Our sample considers all of the 469 github
repositories, containing 1560 ROS packages with
47796 files totalling 1.73 GB.

Category Number %
of files

Source C++ 6238 13.1
Code C 5722 12.0

Python 3524 7.4
Lisp 1250 2.6
JavaScript 375 0.8
Bash 298 0.6
Java 257 0.5
Others (eg. ruby, qt) 889 1.8
Total 18553 38.8

ROS Launchfiles 2810 5.9
Related Others 2757 5.7

Package definition 1671 3.5
Message definition 1237 2.6
Xacro 668 1.4
Service definition 574 1.2
Robot Structure 530 1.1
Total 10258 21.46

Documentation 4538 9.5
Build files 3677 7.7
3D Modeling 2926 6.1
Pictures 2333 4.9
Project metadata 1073 2.2
Non-categorized 4438 9.28

TABLE I: Categorization of files per use

Special to the ROS ecosystem is that the types
of files in each ROS package are quite diverse.
They can be the source code of the nodes, build
files, message and service type definitions, docu-
mentation files, robot configuration files, xml files
for launching several nodes (called launchfiles)
and the mandatory package.xml definition file.
A semi-automatic categorization of all files was
done by mapping the extension to its kind and
for files without extension (2.8%) by mapping its
name.

The result of this work is shown in Table I. In
it we see that the predominant programming lan-
guages in ROS packages are C/C++ and Python,
covering 32.5% of the files. The second big
category are ROS related files (27.6%) which
considers launchfiles (5.9%), package xml file
definitions (3.5%) and message definitions (2.6%).
This group is followed by Documentation (9.5%)
and 3D Modeling files (6.1%). The latter are re-
quired for simulation and robot object perception.

<launch>
<node pkg="turtlesim" type="turtlesim_node" name="sim" />
<param name="publish_frequency" type="double" value="10.0"

/>
<include file="\$(find other−pkg)/path/turtlebot−spec.xml" />

</launch>

Listing 1: ROS launchfile example taken from
ROS Tutorials and modified.

The amount of non-categorized files could not
be reduced because of the high variety of ex-
tensions (481), the most frequent extensions in
this category had no more than 20 files and 462
extensions had 10 files or less.

The table exposes a high diversity both in file
types and technologies involved for implementing
robot tasks with ROS. This implies that the ROS
middleware works with a wide variety of tools that
manage different types of files for different uses.
As a result we can say that the ROS Ecosystem
presents a high heterogeneity, which represents an
additional challenge for its study.

III. ROS LAUNCHFILES

ROS provides a way to launch several nodes
at once, locally or on several machines, and to
set global parameters. To do this, it reads a
launch configuration file (a file with the .launch
extension) that is in XML syntax. These files are
also called launchfiles.

For example the code in Listing 1 starts the
node turtlesim_node on the second line.
This node is defined in the turtlesim package
and it is given the name sim. The third line de-
fines the parameter publish_frequency with
type double and a value of 10.0. This param-
eter can be accessed by the turtlesim_node
and it is also available for any other node that is
launched afterwards. Finally, an external launch-
file is included into the current launchfile. All the
nodes, parameters and even other included files
declared in the file turtlebot-spec.xml
from the other-pkg package are included as
if they were defined in this code.

In the ROS ecosystem, from all 1560 packages,
1027 (65.83%) defined no launchfiles. The rest
(533) contained 2650 launchfiles (160 are for tem-
plating or testing purposes and were ignored), half

http://www.ros.org/browse/list.php

of these define only one. In terms of distribution,
the vast majority (80.39%) defines up to 5 launch-
files, 96 packages (18.01%) define between 6 and
20 launchfiles. There are two outliers (0.43%).
The first one, cob_bringup, collects all the
scripts, launchfiles and dependencies to boot the
Care-O-bot1 (59 launchfiles). The second outlier
is jsk_pcl_ros which provides programs for
object recognition, it contains 72 launchfiles.

IV. CLONE ANALYSIS OF LAUNCHFILES

Copying and then pasting a fragment of source
code for reuse is a common practice. [16]. The
code fragment could be left as is or might be
edited afterwards. In any case, this portion of
source code is called a clone [7] and consid-
ered a bad practice. Its consequences can be
enabling bug propagation [8] or design flaws [13],
which increases maintenance costs and impacts
negatively on evolution. Detecting code clones
is a recommended first step for reducing these
negative repercussions [5], [16].

A. Number of Clones and Their Similarity
We performed an clone analysis on ROS

launchfiles as a first investigation of the code
quality of the ROS ecosystem. Our strategy was to
detect the presence of clones between launchfiles
belonging to the same package. For all packages
we compared all pairs of launchfiles in the pack-
age. We set a threshold of what is considered a
clone in order to reduce noise: a pair of launchfiles
are considered as a clone pair if they have at
least 7 identical lines in common. We found that
from all 533 packages, 133 (24.95%) of them
have clones. 110 of those (82.7%) contain 6 or
less clones, almost a half of packages present one
clone (49.62%) and 21.23% of packages present
two or three clones among their launchfiles.

Moreover, the packages with less than 6 clones
present a high similarity (in average) between the
launchfiles involved in clone pairs. The measure
of similarity in a clone pair is called overlap [2]:
let La be the set with lines of a launchfile and the
operator |La| the number of lines in a launchfile,
then the overlap operator is defined as follows:

overlap(La, Lb) =
|La ∩ Lb|
|La ∪ Lb|

∈ [0, 1]

1http://wiki.ros.org/Robots/Care-O-bot

The more lines two launchfiles have in common,
the greater their overlap mesure is and as a con-
sequence, the more similar those launchfiles are.
Figure 1 depicts the frequency of packages with
a certain similarity (on average) between their
launchfiles (that belong to a clone pair). We con-
sider that the average per package is reasonable
because for each package there are few clones.
A big portion of those packages have similarity
of 45% or more. This implies that it is not rare
that developers do reuse relevant code fragments
in launchfiles by copy-and-pasting.

Similarity of Launchfiles in Packages with less than 7 clones

Overlap (AVG)

Fr
eq
ue
nc
y

0 20 40 60 80 100

0
5

10
15

Fig. 1: How similar are the launchfiles in packages
with few clones.

B. In-depth Study

In order to better understand how are launchfile
code fragments we studied in depth a subset of
packages with 7 or more clone pairs. To prioritize
which packages to study we used three metrics:
the average overlap between clone pairs, the pro-
portion of launchfiles in clone pairs versus all the
clones defined in that package (included those
which does not belong to any clone pair), and
clone cohesion. The last metric refers to groups
of launchfiles that have many clone relationship
between them, and it is calculated as the ratio
between the number of clones and number of
launchfiles involved in clone pairs. The bigger this
ratio is, there is more chance to find shared clone
fragments between launchfiles.

http://wiki.ros.org/Robots/Care-O-bot

TABLE II: Packages with more intersting clone cases

Package Files Launchfiles Launchfiles
with Clones Clones Average

Overlap
Clone

Cohesion
(a) hector_quadrotor_gazebo 20 10 8 28 68.86 3.5
(b) jsk_interactive_marker 128 24 11 31 51 2.82
(c) fanuc_lrmate200ic_support 65 21 10 45 50.29 4.5
(d) ueye_cam 22 5 5 10 49.76 2
(e) amcl 43 13 13 78 46.3 6
(f) openni_launch 15 11 7 21 30.66 3
(g) cob_bringup 77 72 19 71 30.4 3.74
(h) cob_controller_configuration_gazebo 18 11 11 55 30.17 5
(i) jsk_teleop_joy 70 12 8 25 25.32 3.13
(j) rtabmap_ros 214 36 31 112 21.59 3.61

6420

80

60

40

20

Package priorization

Clone cohesion

O
ve

rla
p

(A
V

G
)

Proportion of
launchfiles with
clones [%]

100

50

Fig. 2: Packages with more than 7 clones

Those three metrics are visualized (see Fig-
ure 2) on packages with at least 7 clones, which is
an amount that ensures the presence of at least 5
launchfiles in clone pairs. The big circles represent
packages with big portion of their launchfiles
involved in copy-and-paste activities. Also, the
packages located away from the origin and rel-
atively equidistant from both axes are interesting
as they represent cases of several launchfiles that
share big portions of code and moreover this
fragment is repeated in all of them with minor
differences.

We made a manual revision and priorization
of packages considering all metrics previously
described and selected the 10 most relevant cases.
These packages are presented in Table II.

Figure 3 shows how many launchfiles in the
packages are involved in clone pairs. (h) and

0	 10	 20	 30	 40	 50	 60	 70	

(g)	

(b)	

(c)	

(f)	

(i)	

(a)	

(j)	

(e)	

(h)	

(d)	

Number of launchfiles

P
ac

ka
ge

s

Proportion of launchfiles with clones

With Clones

All Launchfiles

Fig. 3: Proportion of Lauchfiles with clones per
package, ordered by proportion of number of
launchfiles with clones.

(e) are two packages that have more than 10
launchfiles and all of them present clones. (j) con-
tains a vast amount of launchfiles and over 86% of
them present clones. (g) presents less proportion
of launchfiles with clones, but as mentioned in
Section III, its amount of launchfiles is far over
the average and the amount of launchfiles involved
in clones and their cohesion are both high.

Figure 4 illustrates what portion of the launch-
files with clones is the code that is shared between
launchfiles, on average. In (a), (b), (c) (d) and
(e) nearly 50% of the size of the launchfiles is
covered by clone fragments. This means that a
big portion of the whole launchfile is identical to
another launchfile. For (d), (e) and (a), which are
packages with high code cohesion of the clones,
the duplicated code fragment may be shared with
minor changes between several launchfiles. The

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

(h)	

(j)	

(i)	

(g)	

(f)	

(d)	

(b)	

(c)	

(a)	

(e)	

LOC

P
ac

ka
ge

s

Average Size of Clones vs Average Size of Launchfiles

Clones

Launchfiles

Fig. 4: Size of all clones and its launchfiles,
ordered by proportion of cloned code.

other packages vary from 21% to 35% of cloned
code, which is clearly a non-negligible portion.

C. What is Cloned?

After having detected and described the above,
it is interesting to go deeper to know what kind
of code is actually more often cloned. The ROS
Launchfile XML format defines several tags, ar-
guably the most common of which are:

• Node: Specifies a node to be launched and
the package where it is defined.

• Include: Specifies the path to another launch-
file whose tags will be imported.

• Remap: Allows to remap names, binding
internal arguments defined in a node with
others defined in the current launchfile.

• Env: Set values for environment variables
that are valid under the scope of a node,
launchfile or certain machine.

• Param: Defines a single parameter to be set
in the pool of global parameters (available
for all running nodes).

• Rosparam: Allows massive parameter defi-
nition by importing them from an external
YAML-formatted file or export current pa-
rameters to a file.

• Arg: Permits to abstact certain variables,
delegating the concrete value to be set af-
terwards. This tag makes launchfiles more
abstract favoring reusability through include.

We counted all instances when the above tags
were cloned for each clone pair belonging to our

10 prioritized packages, as shown in Figure 5.

Frequency of Tags Cloned in LaunchFiles per Package

(e)

(a)

(h)

(c)

(b)

(j)

(d)

(f)

(g)

(i)
Remap Node Rosparam Include ParamArg

2507

1014

2397

710

1413

888

6131541

2607

1206

461

430

461

Fig. 5: Which tags are cloned more often per
package

Among packages there is no clear pattern of
tag clone frequency. For instance package (j) has
many Param and Remap tag clones, however for
(g), Include and Arg are usually cloned. Package
(h) presents a regular amount of clones in all tags
but Remap and Rosparam

V. RELATED WORK

This work is essentially a Software Ecosystems
investigation on Code Duplication so we discuss
related work in this order.

Software Ecosystems is an emerging area of
Empirical Software Engineering that aims to un-
derstand how software projects interact and evolve
with other projects in the same ecosystem. Us-
ing this point of view certain software devel-
opment process aspects are studied in a group
of related software projects. Studies cover as-
pects from revealing implicit dependencies be-
tween projects [10], [3] and reviewing explicit
dependencies [12], [1] to analyzing developers’
behaviour due to evolution in the ecosystem [15].

Code duplication is a more mature area com-
pared to the two previously discussed. A large
body of work exists that is focused on the analysis
of a single project in terms of code duplication and
its consequences on its development [16]. Many
tools have been implemented for clone detection,
and there is even work on comparative evaluation

of these tools [2], as well as the creation of a
clone detection benchmark suite [7].

VI. CONCLUSION AND FUTURE WORK

In this work, we have performed a first analysis
of the ecosystem around the ROS robotics middle-
ware, with a focus on the presence of code clones
in ROS launchfiles; configuration files that allow
the setup of different robot processes at once.

We first provided a global overview of the
ROS ecosystem: 1560 ROS packages with 47796
files totalling 1.73 GB. Notably, in this ecosystem
code files only consist 39% of all files and the
ecosystem has a high heterogeneity of files.

Considering the presence of launchfiles in this
ecosystem, we see that only 34% of ROS pack-
ages (133) define launchfiles. Of these packages,
half define only one and 30% define between
2 and 5 launchfiles. Considering all packages
that contain more than one launchfile, 25% of
these contain code clones. Focussing on these
packages, almost half present one clone, 21% two
or three clones, and 12% four to six. Focussing on
packages with up to six clones, we find that there
is a high similarity between the different clones:
more than 45% on average. This shows that that
developers simply reuse relevant code fragments
in launchfiles by copy-and-pasting.

We performed an in-depth study of 10 repre-
sentative packages according to their overlap and
clone cohesion, i.e. having several launchfiles that
share big portions of code where moreover this
fragment is repeated in all of them with minor
differences. It reveals that in these cases in general
there is an excessively high amount of launchfiles
with clones. Moreover there are two kinds of
clones: either one big portion of a launchfile is a
clone or one small clone fragment will be present
in many launchfiles. And lastly, we do not find a
clear pattern in the XML tags of the launchfiles
that are typically cloned.

Our future work will consist of investigating
the commit histories of these 10 representative
packages to establish the processes that yielded
the code clones to further understand the devel-
opment scenarios that resulted in this situation.
We will then investigate the creation of tools to
detect code clones in launchfiles and propose the

refactoring of them to reduce the amount of clones
through the use of the include tag.

REFERENCES

[1] P. Abate, R. Di Cosmo, L. Gesbert, F. Le Fessant,
R. Treinen, and S. Zacchiroli. Mining component repos-
itories for installability issues.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detection
tools. Software Engineering, IEEE Transactions on,
33(9):577–591, 2007.

[3] K. Blincoe, F. Harrison, and D. Damian. Ecosystems in
github and a method for ecosystem identification using
reference coupling.

[4] S. Bragagnolo, L. Fabresse, J. Laval, P. Estefó, and
N. Bouraqadi. Pharos: a ros client for the pharo language.
http://car.mines-douai.fr/category/pharos/, 2014.

[5] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In Proceedings of the 1993 conference
of the Centre for Advanced Studies on Collaborative
research: software engineering-Volume 1, pages 171–
183. IBM Press, 1993.

[6] D. Kohler. Rosjava. http://www.ros.org/wiki/rosjava,
may 2012.

[7] A. Lakhotia, J. Li, A. Walenstein, and Y. Yang. Towards
a clone detection benchmark suite and results archive. In
Program Comprehension, 2003. 11th IEEE International
Workshop on, pages 285–286. IEEE, 2003.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale soft-
ware code. Software Engineering, IEEE Transactions on,
32(3):176–192, 2006.

[9] M. Lungu, R. Robbes, and M. Lanza. Recovering inter-
project dependencies in software ecosystems. Conference
on Automated Software Engineering, pages 309–312,
2010.

[10] M. Lungu, R. Robbes, and M. Lanza. Recovering inter-
project dependencies in software ecosystems. In Pro-
ceedings of the IEEE/ACM international conference on
Automated software engineering, pages 309–312. ACM,
2010.

[11] B. Marthi. Roslisp. http://wiki.ros.org/roslisp, june 2015.
[12] C. Mëlick, M. Tom, D. C. Roberto, and V. Jerome. A

historical analysis of debian package incompatibilities. In
Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015.

[13] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i.
Matsumoto. Software quality analysis by code clones in
industrial legacy software. In Software Metrics, 2002.
Proceedings. Eighth IEEE Symposium on, pages 87–94.
IEEE, 2002.

[14] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open
Source Software, 2009.

[15] R. Robbes, M. Lungu, and D. Röthlisberger. How do de-
velopers react to api deprecation?: the case of a smalltalk
ecosystem. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, page 56. ACM, 2012.

[16] C. K. Roy and J. R. Cordy. A Survey on Software Clone
Detection Research. Queen’s School of Computing TR,
115:115, 2007.

http://www.ros.org/wiki/rosjava
http://wiki.ros.org/roslisp

	Introduction
	The ROS Ecosystem
	ROS Launchfiles
	Clone Analysis of Launchfiles
	Number of Clones and Their Similarity
	In-depth Study
	What is Cloned?

	Related Work
	Conclusion and Future Work
	References

