
An Empirical Study of Work Fragmentation in
Software Evolution Tasks

Heider Sanchez⇤, Romain Robbes†
Computer Science Department (DCC)

University of Chile, Chile

Victor M. Gonzalez†
Department of Computer Science

Instituto Tecnologico Autonomo de Mexico, Mexico

Abstract—Information workers and software developers are
exposed to work fragmentation, an interleaving of activities
and interruptions during their normal work day. Small-scale
observational studies have shown that this can be detrimental
to their work. In this paper, we perform a large-scale study of
this phenomenon for the particular case of software developers
performing software evolution tasks. Our study is based on
several thousands interaction traces collected by Mylyn, for
dozens of developers. We observe that work fragmentation is
correlated to lower observed productivity at both the macro level
(for entire sessions), and at the micro level (around markers
of work fragmentation); further, longer activity switches seem to
strengthen the effect. These observations are basis for subsequent
studies investigating the phenomenon of work fragmentation.

Keywords—Work fragmentation, interruptions, interaction data

I. INTRODUCTION

Work fragmentation is a phenomenon that has been exten-
sively investigated in the literature. Several observational stud-
ies in company settings have shown that work fragmentation is
very common in the workplace. These studies have also shown
that work fragmentation is detrimental to the actual work
taking place: after such a context switch, time is necessary
for information workers to regain their bearings. A particularly
harmful kind of work fragmentation is interruptions, where an
external signal (email, chat, phone call, or direct conversation)
forces an information worker to switch activity at an unplanned
moment and for an unknown duration.

If the literature contains extensive studies of interaction
workers, it lacks in two aspects: (1) most studies target
information workers (fewer target the specific population of
software developers), and (2) the studies are usually field
studies, which are limited in the amount of data they contain.

Work fragmentation is indeed an important phenomenon
within the context of modern software development, and the
impact there may be even worse since developers build and
maintain complex mental models of the software they are
working on—these models may be more sensible to interrup-
tions, and costly to rebuild.

In this paper, we present a study addressing these issues by
(1) being focused on software developers, and (2) using MSR
techniques to base its conclusions on a much larger amount of
data (specifically, thousands of development sessions recorded

⇤ supported by a research grant from CONICYT-Chile
† supported by LACCIR Project RFP1212LAC004

by Mylyn). The downside is that the data exploited, being
operational data [1], is of lower quality than data extracted
from a full-fledged observational study. Trading quality for
quantity allows us to explore different aspects of the problem,
and to generate hypotheses for subsequent studies of work
fragmentation and interruptions in software development. We
address the following three research questions:

• RQ1: What is the relationship between the observed
interruptions and the observed developer productivity?

• RQ2: Is the observed relationship more pronounced
in the presence of prolonged interruptions?

• RQ3: What is the observed relationship in the vicinity
of interruptions?

A note on terminology: in this paper we (ab)use the word
interruption to refer to a gap of activity observed in IDE
activity. We do not presume that all of these activity gaps are
actual interruptions (our results lead us to believe otherwise);
rather, we assume they are indicators of work fragmentation in
general (that is, a programmer switching contexts to perform
other activities while developing, such as answering email,
looking for the solution of a problem on the Internet, etc). Of
note, work by Zou and Godfrey [2] found that interruptions
were a common cause for a lack of observed activity, and
classified periods of inactivity as interruptions.

Structure of the paper. We start with a literature review
of studies of work fragmentation in Section 2. This section
also contains a review of studies performed with the Mylyn
dataset that we use. In Section 3, we describe the Mylyn
dataset in further detail, highlighting potential issues in the
operational data that we use in the analysis. In Section 4, we
describe the measurements used in this study, and detail the
processing of the data that is applied to alleviate the issues
described in Section 3. The same section shows how we con-
vert interaction traces to multivariate time series representing
development sessions, and present the metrics in the analysis.
In Section 5, we answer our first research question: we find
an inverse relationship between number of interruptions and
our three productivity indicators. In Section 6, we answer our
second research question, finding that this relationship is more
pronounced for development sessions with at least one longer
interruption. Finally in Section 7 we answer our last research
question and find that our productivity indicators are indeed
lower in the vicinity of interruptions; we further find three
patterns of interruptions with different characteristics. We close
the paper by discussing the threats to validity of this study in
Section 8, before concluding in Section 9.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

251

II. RELATED WORK

A. Empirical Studies of Work Fragmentation

a) Studies of information workers: In the modern work-
place, people routinely multitask and shift their attention
to multiple areas, projects and activities. An observational
study by Gonzalez and Mark found that information workers
experience high level of multitasking, averaging 3 minutes
on a task before switching to another task [3]. This often
results in work fragmentation and interruptions which some
studies found has detrimental effects to knowledge workers,
such as stress and frustration [4]. Work fragmentation as result
of interruptions usually demands extra effort to recover and
resume pending activities: a study of 24 information workers
found that a worker needs on average 25 minutes to get back on
an interrupted task [5]. Similarly, Iqbal and Horvitz [6] found
that people experience disorientation and loss of context when
multitasking. Czerwinsky et al. found that after experiencing
work fragmentation people found it more difficult to perform
interrupted tasks and took longer to complete them [7].

While these studies already show the effect of work frag-
mentation is hurtful, they are mostly observational studies
over a limited time, and do not address specifically the sub-
population of programmers.

b) Studies specific to programmers: Zou and Godfrey
performed an analysis of interaction histories of 3 industrial
programmers for a month [2]. One of their findings was
the omnipresence of inactivity in the interaction data, that
they interpreted as interruptions. They corroborated this with
the programmers which agreed that many such periods of
inactivity were indeed interruptions.

Similar to other information workers, software developers
experience work fragmentation due to the nature of the activity.
Ko et al. [8] performed an observational study of 17 Microsoft
developers, where the average time before a switch was
five minutes. Some switches were due to necessary changes
between tasks, but others were due to interruptions.

Parning and Rugaber evidenced the presence of an edit
lag in the majority of a large sample of development session
spanning several datasets, hence showing that developers need
time to resume work after an interruption [9]. Parnin and
DeLine evaluated several cues to help programmers resume
work after interruptions forcing them to multitask [10].

Maalej et al. [11] performed a study on the program
comprehension strategies of software developers. They found
that developers often preferred direct interaction to consulting
documentation. As such, experts on a piece of code were often
interrupted in their work to answer questions from others.

Fritz et al. studied the perception developers have of their
productivity. They found that developers perceived they were
more productive on days where they accomplished significant
tasks, and when they were not significantly interrupted [12].

As above, most of these studies operate on small datasets.
The study of Parnin and Rugaber is the closest to ours in terms
of amount of data considered. However, the analysis performed
on large datasets in their study focused principally on the edit
lag metric, while we investigate metrics which are indicators
of productivity along the entire session.

B. Empirical Studies on Mylyn Data

Several studies mining interaction data have been pre-
sented. Kersten and Murphy evaluated the effectiveness of their
degree of interest (DOI) model by showing that in a field
study of developers, users of their tools had a significantly
higher edit to selection ratio [13]. Fritz et al. evaluated how
well DOI values reflected the developers knowledge of the
code, and encountered mixed results [14]. The lessons they
learned allowed them to develop a Degree of Knowledge
(DOK) model, an extension of the DOI containing authorship
information, and that was found useful in a variety of situations
[15]. The DOI has been implemented in Mylyn, and the data
it generated has been used in several studies. Based on the
data generated by an early version of Mylyn (which recorded
additional data, namely usage of commands), Murphy et al.
described how 41 Java developers used Eclipse, reporting on
the most commonly used views and commands [16]

The Mylyn data available in the Eclipse issue tracking
system was used in several studies. Ying and Robillard charac-
terized the edit strategies of developers in the Mylyn dataset,
finding three: edit-first, edit-last, and edit-throughout [17]. Lee
et al. developed Micro Interaction Metrics in order to enhance
defect prediction models [18]. We investigated whether the
duration of a task could be used to evaluate the accuracy of
expertise metrics, with promising early results [19]. Soh et al.
studied the exploration patterns in the developer sessions of
the Mylyn datasets, and classified their exploration strategies
as referenced or unreferenced exploration; they find that un-
referenced exploration were less time consuming [20]. Soh et
al. conducted another study of this dataset, finding that the
effort spent by a developer in a patch is not correlated with
the implementation complexity of the patch [21]. Bantelay et
al. improved the accuracy of evolutionary couplings metrics
for change prediction (usually computed with commit data);
by adding interaction data, recall increased by 13%, with a 2%
drop in precision [22]. Zanjani et al. integrated this approach
with information retrieval techniques to support impact analy-
sis based on textual descriptions of change requests [23].

III. DATA DESCRIPTION

A. Mylyn Data

For our analysis, we used the Mylyn dataset of develop-
ment data. Mylyn [13] is an Eclipe plugin that monitors the
program elements a programmer interacts with in order to build
a task context. A subset of Eclipse developers (principally
from the Mylyn and PDE Eclipse projects) use the Mylyn
Monitor tool to capture fine-grained usage data of their IDE
that they attach to the bug fixes as a task context they submit
to Eclipse. This allows reviewers of the bug fixes to use the
same task context when they review the changes. The task
context contains the entire interaction history since a developer
activated the task he or she was working on, and as such is a
rather reliable account of IDE usage over time (barring a few
issues explained below).

To collect the data, we crawled the bugzilla data of the
Eclipse project (http://bugs.eclipse.org), and downloaded all
the bugs that had as an attachment a Mylyn task context. In
total, there were 6182 bug reports which contained 8102 Mylyn
task contexts.

252

B. Interaction History Format

The interaction history is a sequence of ordered events
in time [17]. An event is associated to a direct action of
the programmer in program elements, for instance: edit and
selection events. Other interaction events are indirect [13]:
they are issued by Mylyn itself while it is maintaining its
DOI model of a programmer’s task context. However these
events are not edit or selection events. Each event captures
several pieces of information: the timestamp, the kind of event
and the signature of the code element that was interacted
with (package, class, attribute, or method signature—including
name and parameters).

In Table I we show the different kinds of events and their
description; in Table II we show an example of an interaction
history. However, certain characteristics in the data present
challenges around the data mining we plan to perform [24].
These cases must be detected and resolved in order to get a
representative time series model of programmer activity. We
describe these issues and our solutions below.

TABLE I. KINDS OF INTERACTION EVENTS [13].

kind mode description

selection direct Editor and view selections via
mouse

edit direct Textual and graphical edits
command direct Operations such as saving, build-

ing, preference setting
manipulation direct Direct manipulation of interest
propagation indirect Interaction propagates to struc-

turally related elements
prediction indirect Capture of potential future interac-

tion events

TABLE II. EXAMPLE OF INTERACTION HISTORY.

StartTime EndTime EventKind Method

1 10:30:00 - selection m1
2 10:30:40 - manipulation -
3 10:30:40 - edit m1
4 10:31:03.700 - selection m1
5 10:31:03.800 - selection m2
6 10:31:03.850 - selection m3
7 10:32:05 10:33:07 edit (5) m2
8 10:33:10 - prediction -

C. Special Characteristics of Mylyn Data

Below, we describe the characteristics of Mylyn data one
has to consider before processing them. This is especially
relevant in our case since our study needs a representation
of the activity as close to reality as possible. In Section IV-B
we describe the criteria used to process these characteristics.

Aggregate events. This type of event includes several
actions on the same program element. These actions usually
occur within an interval of short duration time. Whenever an
aggregation occurs, the event is expanded to include two times-
tamps defining a range of time, instead of a single timestamp,
and a number of events. Accordingly, these aggregate events
lose their specific time besides the range of time. The reason
of this is that for scalability—in terms of storage—Mylyn does
not register all the user events.

For example, Table II shows an aggregate edit event in row
7. We indicate in parenthesis the number of actions associated
and the field EndTime registers the timestamp of the last
occurrence. Clearly, too much aggregation in a given trace
severely compromises the detection of work fragmentation as
this relies on accurate timestamps.

Massive events. Such an event occurs when the same
action is executed on more than one program element in a very
short time. This massive action generates consecutive events
of the same kind and with a tiny gap between them.

For example, massive events are produced when we select
an entire group of classes from the navigation tree panel
in Eclipse. In Table II we show a massive selection on the
methods m1, m2 and m3 in rows 4, 5 and 6. This massive
selection produces three consecutive events with a time gap of
not more than 0.1 seconds. These events overstate the activity
of developers as each of these does not correspond to an
individual developer action; rather, the entire sequence is.

Very long events. These events have a duration time
(|EndTime� StartT ime|) much larger than the mean. This
mainly occurs in aggregate events. We believe that this issue
is due to factors related to Mylyn, since it can register the
end time of an event when the task is resumed after a long
downtime. Another cause of these events is when one selects
a code fragment and maintains this action for a long time.

After exploring a sample of traces, we noticed that a long
interruption of activity implicitly splits a trace into two sub-
traces. Moreover, we have realized that many long events
happen around this border. That is, they began before the
interruption and finished immediately after the interruption,
which confirms the observation above (resumption of a task
after a long downtime). However this has the side effect of
hiding the gaps of activity in the sequence of events if care
is not taken. Consequently, the duration of these events is
overstated; however, finding their actual duration is not trivial.

IV. PREVIEW PHASES FOR KNOWLEDGE DISCOVERY

We used the phases of the process Knowledge Discovery
in Databases (KDD [25]) to discover useful knowledge from
our collection of data: we first select data, then preprocess it,
before transforming it to time series. We close this section by
presenting the metrics we use in this study.

A. Selection

Our purpose is the analysis of work fragmentation and
interruptions in software development. Therefore, we focused
only in the interaction data of the user with the program
elements. The variables of interest for our study are [19]:

1) Duration: the time that a programmer took to perform
a programming task.

2) Edition: the amount of code changes that were nec-
essary to perform said task.

3) Navigation: how many program elements were con-
sulted in a task; represented by selection events.

4) Edit ratio: as in previous studies [13], the ratio of
edits over edits and selections is an indicator of more
efficient work since program exploration is reduced.

253

First, we have kept only the edit and selection events that
are associated to a program element. These type of events
are distributed in 8058 traces. On the other hand, edit-type
events also occur when the programmer double clicks on a
file. In these events the starting time and ending time are
the same [18]. We consider that the double-clicking actions
form part of the user navigation, therefore these events are
transformed into selection events.

Second, we have kept all traces without aggregate informa-
tion. Unfortunately, we cannot know the distribution in time of
the actions that have been aggregated in a single event: without
additional information, an aggregation of 15 events over one
hour is as likely to have an event every 4 minutes than to
have 10 events in the first 5 minutes and 5 more in the last 10
minutes. Therefore, designing a correct disaggregation task to
this traces is very difficult, if not impossible.

In order to keep as many traces as possible, we have also
kept a little group of traces with aggregate information where
the aggregate events have a maximum duration time of five
minutes (to minimize uncertainty) or have only two aggregate
actions (since the actual event timestamps are known in this
case). Thus, we were left with 6260 traces.

It could be possible that these traces we discarded were
biased in one way or another. In Figure 1, we note that in
our data the traces with aggregation information appear from
the year 2008 on, and slowly increase in frequency from then.
We would expect such a pattern from a change to the version
of Mylyn, rather than a change to the type of tasks being
performed. This is corroborated with our tests of a recent
version of Mylyn, which seems to be even more aggressive
in discarding information (it only keeps information at the
class level, discarding method level information). As such, our
assumption is that it is unlikely that this change is due to
anything else than the version of Mylyn that was in use (and
hence is not due to different tasks, people, etc). This leads us
to believe that it is unlikely that filtering these traces would
introduce other sources of bias.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Agg.
NonAgg.

0

500

1000

1500

2000

Fig. 1. Grouping by date all the traces, with aggregate information (light
gray) and without aggregate information (dark gray).

Finally, we found that 26% of traces had at least an
interruption over 8 hours, which is hence large enough to
represent the difference between two working days. In these
cases, we treated these long activity gaps as splitting points
in order to decompose a long trace in several development
sessions [26].

Fig. 2. Replacing five massive events with only two events.

After this, we considered a minimum duration time of 30
minutes in order to ensure a minimum of activity during a
session. In this way, we obtained a final total of 4284 useful
sessions to be processed in the next phase.

B. Preprocessing

After filtering out traces, we describe the final processing
steps that yield the final development sessions that we study:

Sorting. We sort chronologically all the events by their
starting time. Before that, we normalize the timezone of each
trace. We found 156 traces (3%) with more than one timezone.

Massive events. We use a short spacing interval to join
consecutive massive events in only two, the first and the last
event (Figure 2). We have considered a spacing size of 0.1
seconds (100 milliseconds). All the massive events we found
were of type “selection”, which concurs which our observation
above (multiple selection of several entities at the same time).
The total number of selection events was reduced by 45%.

Disaggregation. We disaggregate all the actions associ-
ated with each remaining aggregate event with equidistant
separation, as was done by Ying and Robillard [17]. Due to
the filtering above, this was only applied on traces that had
aggregate events of short duration (5 minutes).

Event splitting. Finally, we split all the long duration
events. A normal event does not generally have duration
(EndTime is null). However, 12% of normal events had a
duration > 0 seconds and 3% � 1 hour, these events are
outliers. Therefore, we split each long event in two events:
one at the start and the other at the end of the interval. This
is the same criteria applied for massive and aggregate events.

Table III shows the ratio of variation of the number of
events after preprocessing.

TABLE III. NUMBER OF EVENTS AFTER PREPROCESSING.

type event before after % variation
edit 452236 475554 +5%
selection 658768 527652 -20%
total 1111004 1003206 -10%

C. Transformation

Our goal is to build compact and representative models
from each session. In this sense, we used aggregation of events

254

to generate a multivariate time series (MTS). An MTS is a
sequence of multivariate observations taken at continuous time
intervals coming from a same phenomenon. We build the MTS
with edit and navigation variables; the time unit is the minute,
and the amplitude is the sum of all the events that occurred
in this minute. We selected the minute as unit time because it
seemed to be an appropriate and minimal representation of the
user interaction in a programming task—obviously a subjective
decision.

Mylyn data has another characteristic which is unusual for
time series: the time of occurrence of the events is not periodic
(see column StartTime in Table II). That is to say, events
occur with non-equidistant separation gaps between them.
However, in a time series, the values must be evenly spaced
and chronologically sorted. For this reason, we compressed
the size of the multivariate time series, pulling apart all the
interruptions as a new time series variable. Then, each time
series value represents the interruption duration in this minute
(Figure 3).

Consequently, the temporal component represents the real
working time of a programming task, excluding inactivity. This
allows us to compute our activity indicators (number of edits,
selections, edit ratio) independently of the amount of inactivity
in a session.

We define empirically an interruption as a pause of pro-
gramming of duration � 3 minutes. This is based on previous
work where we observed that short interruptions lasted usually
this long [3]. Based on additional observations from this work,
we defined a prolonged interruption as one lasting for more
than 12 minutes.

We identified that 98% of sessions had at least one gap
of activity. Moreover, we observe that the short interruptions
predominate over the prolonged interruptions (Table IV). This
first result tells us that work fragmentation is extremely preva-
lent in our dataset.

TABLE IV. PREVALENCE OF INTERRUPTIONS ACCORDING TO THEIR
DURATION TIME.

duration ratio examples
[3 � 12mini 69% short pause, answer a question,

thinking, looking for interruption
[12 � 30mini 18% coffee break, short meeting, ex-

tended interruption
[30min � 2hri 9% lunch break, a meeting
[2hr � 8hri 4% extended meeting

D. Metrics Used in This Study

We use the following six metrics to measure interruptions
and productivity, while controlling for the unproductive time
in a session, the length of time of the session itself, and
the efficiency of the development that took place during the
session:

Metrics characterizing interruptions:

• Number of interruptions: counts all the interruptions
that occur in a development session.

• Duration of interruption: it is the time duration in
minutes of the each interruption.

Fig. 3. Example of how to compress a time series.

Metrics characterizing productivity and activity:

• Productive work time: the duration of a development
session, substracting the duration of all the interrup-
tions present in the session, to control for inactivity.

• Number of edits per minute: the total number of edits
events, divided by the productive work time to control
for length of the session. This is an indicator of user
activity during the session.

• Number of selections per minute: is the total number
of selection events, divided by the productive work
time. Also an indicator of activity.

• Edit ratio: the number of edits divided by the sum of
edits and selections, as used by Kersten and Murphy
[13]; an efficient developer spends less time exploring
code and more time editing it.

V. RQ1: RELATIONSHIP BETWEEN INTERRUPTIONS AND
PRODUCTIVITY

A. Relation between Interruptions, and Edits and Selections

As mentioned above, we use the metrics of edit, selection,
and edit ratio as indicators of productivity. We first examine
the number of edits and selections, and how their distribution
varies in function of the number and type of interruptions.

We split the data in five groups: The first group contain
all the sessions without interruptions (none). For the others
groups, we have considered four ranges of number of inter-
ruptions delimited by their quartiles (Table V). Then, for each
group, we display the distribution of events per minute and edit
ratio via boxplots (Figure 4). We observe a large difference
between the sessions without interruptions and the ones who
do. Further, we observe that the rate of events per minute
decreases slightly when the session has more interruptions.
Therefore, we can intuit that the relationship between number
of interruptions and the productivity indicators that are edits
and selections, tends to be inversely proportional.

TABLE V. THRESHOLDS USED TO GROUP SESSIONS BASED ON THEIR
NUMBER OF INTERRUPTIONS

25% 50% 75%

quartile 3 5 10

Beyond visual inspection, we also quantify the statistical
and the practical significance of these observations. First, all
the differences observed are statistically significant with very

255

none [1−3] [4−5] [6−10] >=11

0
2

4
6

8
12

Interruptions

Ed
its

 /
m

in
ut

e

none [1−3] [4−5] [6−10] >=11

0
2

4
6

8
12

Interruptions

Se
le

ct
io

ns
 /

m
in

ut
e

none [1−3] [4−5] [6−10] >=11

0.
0

0.
4

0.
8

Interruptions

ed
it

ra
tio

Fig. 4. Boxplots showing the relation between the number of edits and
selection events per minute, the edit ratio, and the number of interruptions.

low p-values (see Table VI) according to the Mann-Whitney
U-test. This is not surprising, given the shape of the boxplots
and the size of the samples.

More importantly, we used Cohen’s d to measure the
practical significance of these results in term of effect size
[27]. Cohen’s thresholds are defined as follows: trivial (< 0.2),
small (h0.2 � 0.5]), moderate (h0.5 � 0.8]) and large effect
(> 0.8). As shown in Table VI, we note that the effect size of
the interruptions over the number of edits by minute is (very)
large. In selections, the effect is moderate for sessions having
up three interruptions, and large to very large for sessions with
over four interruptions. This reinforces our impressions that
interruptions and user activity follow inverse relationships, and
that they are quite pronounced.

B. Effect on the Edit Ratio

Finally, we want to know the effect the interruptions over
the ratio of edits in each session, as this is the often seen as
a better indicator of productivity than raw activity, since the
programmer spends less time navigating the source code in
search of information, and more time actively editing it [13].

We first analyze the relationship between edit ratio and
number of interruptions (Figure 4, bottom). We observe that the
edit ratio decreases when the session has more interruptions:
the effect is pronounced between session that do not have
interruptions and ones that do, and is more subtle as the

TABLE VI. EFFECT SIZE AND SIGNIFICANCE OF THE RELATIONSHIP
BETWEEN NUMBER OF EDIT PER MINUTE, SELECTION PER MINUTE, EDIT

RATIO, AND NUMBER OF INTERRUPTIONS

none 3 [4 � 5] [6�10] � 11

Edits
mean 6.29 2.59 1.55 1.29 0.91
U-test ,! < 2.2e-16
Cohen’s d ,! 1.23 2.02 2.37 3.31

Selections
mean 4.73 2.93 2.26 1.79 1.54
U-test ,! 8.1e-13 < 2.2e-16
Cohen’s d ,! 0.66 1.17 1.93 1.78

Edit ratio
mean 0.55 0.39 0.33 0.34 0.33
U-test ,! 4.2e-14 < 2.2e-16
Cohen’s d ,! 0.84 1.33 1.48 2.12

number of interruption grows. A look at the practical and
statistical significance of these results (Table VI, bottom) show
that the results are (unsurprisingly) statistically significant, and
that the observed effect sizes are large to very large.

Adding this to our previous result, we observe that both
the user activity (in terms of raw quantity of edits and
selections per minute) and the user productivity (in terms of
edit ratio), both follow an inverse relationship with the number
of interruptions. This finding agrees with the previous literature
on the harmfulness of multitasking, work fragmentation, and
interruptions. Furthermore, the effect sizes are very large.

VI. RQ2: RELATIONSHIP BETWEEN DURATION OF
INTERRUPTIONS AND PRODUCTIVITY

In this section we analyze whether or not the interruption
duration is a factor in the relationship between interruptions
and developer productivity. To substantiate this claim, we have
built two groups of sessions with interruptions:

• short: the first group consists of sessions that only
have short interruptions (< 12 minutes of duration).
These sessions constitute 18% of the total.

• prolonged: the second group consists of the remaining
sessions, which have at least one prolonged inter-
ruption (� 12 minutes of duration). These session
constitute 80% of the total.

We then displayed the distribution of events by minutes
and edit ratio of these two groups and compared them with
the sessions without interruptions (Figure 5). We observe that
the number of events per minute is lower in sessions with at
least one prolonged interruption.

As in the previous case, the differences are significant, and
we used Cohen’s d to measure the practical significance of the
means (Table VII). We note that the effect size of the interrup-
tion duration over the number of edits per minute is very large.
In selections, the effect is moderate for short interruptions,
and large for prolonged interruptions. We conclude that the
relationship between user activity and interruptions could be
adversely affected by interruptions of longer duration.

Similar results occurs when we look at the edit ratio (Figure
5, bottom): the edit ratio is smaller in sessions that have

256

none short prolonged

0
2

4
6

8
12

Ed
its

 /
m

in
ut

e

none short prolonged

0
2

4
6

8
12

Se
le

ct
io

ns
 /

m
in

ut
e

none short prolonged

0.
0

0.
4

0.
8

ed
it

ra
tio

Fig. 5. Boxplots showing the relation between the number of edits and
selections per minute, the edit ratio and interruption duration

TABLE VII. EFFECT SIZE AND STATISTICAL SIGNIFICANCE OF THE
RELATIONSHIPS BETWEEN EDITS AND SELECTION PER MINUTE, EDIT

RATIO, AND DURATION OF INTERRUPTIONS

none short prolonged
Edits

mean 6.96 2.98 1.76
U-test ,! < 2.2e-16
Cohen’s d ,! 1.23 2.11

Selections
mean 5.20 3.33 2.47
U-test ,! 6.197e-13 < 2.2e-16
Cohen’s d ,! 0.63 1.24

Edit ratio
mean 0.55 0.40 0.34
U-test ,! 3.72e-14 < 2.2e-16
Cohen’s d ,! 0.86 1.32

prolonged interruptions, compared to the ones that only have
short interruptions. At the bottom of Table VII, we show the
statistical and practical significance of these results. As before,
we observe large effect sizes when comparing sessions who do
not have interruptions with ones that do have, and larger effect
sizes for sessions with at least one longer interruption.

These findings seem to indicate that the inverse relationship
between productivity and time of duration is more pronounced
in session with at least one longer interruption. This agrees
with the literature for information workers.

VII. RQ3: LOCAL RELATIONSHIPS BETWEEN
INTERRUPTIONS AND PRODUCTIVITY

A. Generic Sessions

In order to better understand the relationship between work
fragmentation and productivity, we need to delve deeper and
perform local analyses of the development sessions. In the
first step, we wanted to summarize how the activity of users is
distributed over time in sessions which have no interruptions,
short interruptions, and prolonged interruptions.

To summarize the development sessions, we have resized
each time series to a single size, using local means. We have
used size = 10, that is, dividing each session in 10 chunks of
equal time, since because it yielded better global visualization
(better uniformity) of the user interaction along a session. For
each chunk, we choose the median value of edits and selections
for each group, and compose one summary time series for each
group; these are the time series displayed in Figure 6.

We observe that the median activity in sessions with inter-
ruptions is less than in sessions without interruptions, mainly
in the edit frequency. Moreover, the edit frequency exceeds
the selection frequency in sessions without interruptions. The
opposite occurs in sessions with at least one interruption—
and is more pronounced when there is at least one prolonged
interruption—, where the code navigation tends to exceed the
frequency of edits. These results agree with our earlier results.

We also notice that the time series without interruptions
have much more edits in the middle of the session than the
others. This observation matches the hypothesis that developers
need time to build their mental model for their task, and are
less productive early in a session. This is similar to the edit lag
in Parnin’s study [9]: in sessions without interruptions, the edit
lag is clearly visible at the start of the session. This behavior is
not visible in sessions with interruptions; indeed, each session
may have several edit lags (after each interruptions), and those
would be equally distributed over the entire duration of the
session, resulting in the “flat lines” that we see for these
sessions.

These results support our previous observations at a finer
level, an corroborate the literature saying that time is needed
to start or get back on task.

B. Local Analysis

Having presented the global effect of the interruptions over
the user productivity, we now focus on the local activity before
and after interruptions. We take a maximum real time interval
of 30 minutes around each detected interruption, obtaining a
set of 26988 time series subsequences. Then, we compute
the median of all these subsequences as a generic local
representation (Figure 7). We also plot with dashed lines the
median values of edits and selections per minute in the sessions
with interruptions in order to give more context to the observed
values. Below we describe some observations:

• In the center, we find the interruption point. There
is clearly a negative effect on the time series, as
the area before and after the interruption is the area
with the lowest activity. The activity is well below
the median activity of time series with interruptions,

257

2 4 6 8 10

0
2

4
6

8

Sessions without interruptions

Productive Time

Fr
ec

ue
nc

y

Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with short interruptions

Productive Time

Fr
eq

ue
nc

y

Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with prolonged interruptions

Productive Time

Fr
eq

ue
nc

y

Edit
Selection

Fig. 6. Global representation of a session with: no interruptions (top); only
short interruptions (middle); and at least one prolonged interruption (bottom).

showing that the effect is indeed more pronounced
near interruptions.

• On the right, the trend of the time series increases
steadily. We hypothesize that the programmer is im-
mersing again into the programming task, increasing
progressively the activity as represented by the number
of edits and selections. We see that in the average case,
it reaches the median activity 12 to 18 minutes after
the interruption. It then rises further than the session
median, which is not surprising, as we expect higher
than median activity further away from interruptions.

• On the left, we observe that the number of events near
the interruption also goes down well below the median
value. This is because work fragmentation is not only
due to interruptions: programmers may for instance
switch away from the IDE to look up information on
the web or request it from other programmers. They
are likely to do so because they are stuck, which would
manifest itself by lower activity before the activity
gap. We investigate this further below.

We investigated whether the drop in activity local to
interruptions was also accompanied by a drop in the edit ratio.
We computed the edit ratio over slices of 5 minutes before and
after each interruption (smaller intervals would be too sensitive
to noise). The boxplots in Figure 8 show that the edit ratio
drops slightly the closer we are to an interruption. The effect
is small, but significant (see Table VIII). As a reference, the
mean edit ratio for sessions with short interruptions is 0.4, so

0.
5

1.
5

2.
5

All interruptions

Time (min)

Fr
eq

ue
nc

y

before after

−30 −23 −16 −9 −3 3 7 12 18 24 30

Edit
Selection

Fig. 7. Local effect of an interruption in the user activity.

the edit ratio close to the interruptions are clearly lower in
the 5 to 10 minutes around an interruption. This matches the
observations Parnin made with the edit lag [9].

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Fig. 8. Ratio of edits around the interruption.

TABLE VIII. EFFECT SIZE OF THE RATIO OF EDITS AROUND THE
INTERRUPTION.

[1-5] [5-10] [11-15]
before

mean 0.34 0.37 0.39
U-test ,! < 2.2e-16
Cohen’s d ,! 0.16 0.24

after
mean 0.34 0.37 0.39
U-test ,! 5.67E-16 < 2.2e-16
Cohen’s d ,! 0.14 0.22

C. Patterns of Interruptions

Given the overall activity pattern we noticed in the local
analysis, we hypothesize that there are several kinds of in-
terruptions, matching the scenarios observed in the literature:
actual interruptions distracting the programmer from the task at
hand, and switching tasks in case of being stuck in the current
task.

We hence looked for patterns in the interruptions. After
applying clustering techniques over all the subsequences, we
always found the formation of three recurrent patterns that
show different effects of the interruption: neutral, positive
and negative. The clustering was performed with the K-
Mediods [28] technique, the Silhouette metric [29] to interpret
and evaluate the results, the Dynamic Time Warping [30] as
distance measure, and feature extraction techniques to reduce
the dimensionality. For this reason, we classified empirically
each interruption by its local effect.

258

We did so by computing Cohen’s d on the quantity of edits
before and after the interruption. To obtain a significant effect,
we need the presence of activity both before and after. Not all
the interruptions meet this criteria however: some are located
close to the start or the end of a session, or too close to another
interruption. In total, 53% of the interruptions had enough data
before and after the interruption and were selected for the
analysis. Table IX shows the applied thresholds and the results,
accompanied with a typical example of an interruption in each
category. This local analysis shows that there are indeed three
well-defined groups of interruptions, with the two largest of
them having clear effects on the activity in the session.

Finally, we briefly report on the edit ratios for positive
and negative interruptions (see Figure 9). We see distinct
patterns as well: positive interruptions have a higher edit
ratio after the interruption (in accordance with the hypothesis
of a more efficient activity after having looked for missing
information), while negative interruptions have a lower edit
ratio after the interruption (in accordance with the hypothesis
that the programmer may be rebuilding his context after an
unwanted task switch).

TABLE IX. LOCAL EFFECT OF INTERRUPTION.

effect pattern

negative (45%): when the frequency of
edit events decreases after the interrup-
tion (Cohen’s d < �0.2) 0

1
2

3
4 before after

−30 −21 −12 −4 3 8 14 21 28

positive (44%): when the frequency of
edit events increases after the interrup-
tion (Cohen’s d > 0.2) 0

1
2

3
4 before after

−30 −21 −12 −4 3 8 14 21 28

neutral (11%): when there is no well
defined effect before or after the inter-
ruption (abs(d) <= 0.2) 0.

5
1.
5

2.
5

before after

−30 −21 −12 −4 3 8 14 21 28

VIII. THREATS TO VALIDITY

The main threats to the validity of our study are construct
validity threats due to the operational nature of the data
recorded by Mylyn [1]. Most of them are mentioned above
but recalled here for convenience.

The main threat to validity of the study is due to the
exclusion of development session with aggregated information.
We deemed that disaggregating the data as was done in
other work [17] was not appropriate as we do not know the
exact distribution of aggregated events in time, which is very
important for this study. We thus elected to filter out part of
the data. We have not found evidence of bias due to this but
it may still be present.

Another threat comes from the metrics we use. Our choices
are limited by the data recorded by Mylyn. We believe our
three indicator (edits per minute, selections per minute, and
edit ratio) provide a reasonable measure of productivity (es-
pecially with the addition of edit ratio, used in other work
[13]). However we can not exclude that other indicators of

Positive Effect

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Negative Effect

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Fig. 9. Ratio of edits for positive and negative local effect.

productivity (such as actual changes [31]) may yield different
results.

We defined several thresholds empirically: 8 hours of
inactivity to split a session in sub-sessions, 30 minutes as the
minimum duration for a session, 3 minutes for the minimum
duration of a interruption and � 12 minutes for prolonged
interruptions. We also tested with other close values and
obtained similar results. However, a large variation of these
thresholds might significantly alter the results.

We acknowledge that our separation of sessions in short
and long interruptions is not perfect, as it is based on the
presence of at least one long interruption, and nothing more.
Other factors present in the group of sessions with at least
one long interruption may contribute to the observed effect
(for instance, these sessions may also have more interruptions
overall).

The study has threats to its statistical conclusion. In particu-
lar, correlation does not necessarily implies causation: the drop
in productivity may not be due to work fragmentation but to
other factors (such as task difficulty). The fact that our results
agree with the existing literature does help in this respect.
We note that our local analysis uncovered two well-defined
patterns around gaps of inactivity: ones that we hypothesize are
actual interruptions (negative effect post-interruptions), and the
ones that we hypothesize are more likely information-seeking
activities (positive effect post-interruption). This result points
to two different effects and is in need of further study. As stated
in the introduction, we were careful not to conclude that every
gap of activity is an actual interruption.

We used Cohen’s d, a parametric effect size measure,
as it has defined thresholds allowing easier interpretation of
the results. Other effect size measures such as the common

259

language effect size [32] or A12 [33] may slightly alter the
discussion.

This study also has threats to external validity. The gathered
data corresponds to a limited group of programmers, which
use both Mylyn and Eclipse regularly. The set of evolution
tasks considered is a subset of the ones present on the Eclipse
bug report website. It may be biased one way or another. One
source of bias is the impact of Mylyn itself: Mylyn has been
shown to facilitate task switching and to increase the edit ratio
of its users compared to non-users. In the context of this study,
we hypothesize that Mylyn could reduce the effect of work
fragmentation: in other words, the observed effects may be
larger for non-users. Additional studies may alleviate these
threats and confirm or infirm the previous hypothesis.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented an empirical study on the prevalence
of work fragmentation in software evolution tasks, and its
relationship to developer productivity. The study was based
on the Mylyn dataset of software evolution tasks, where work
fragmentation is indicated by gaps of activity (interruptions) in
the IDE, and productivity is measured in terms of the number
of edits, selections, and the edit ratio.

We analyzed several thousands software evolution tasks,
originating from several dozens of developers. Our global
analysis found an inverse relationship between number and
duration of interruptions and all three of our productivity indi-
cators. These findings agree with the literature on information
workers and software developers.

A subsequent local analysis around interruptions comforted
these results as the activity around interruptions was found
to be lower than average. This analysis also found two well-
defined patterns around interruptions: interruptions yielding
a negative effects (consistent with a real-life interruption
involving an expensive context switch), and interruptions with
positive effects (consistent with information-seeking behavior).
Further studies are necessary to expand on these findings.

REFERENCES

[1] A. Mockus, “Is mining software repositories data science? (keynote),”
in Proceedings of MSR 2014, 2014, p. 1.

[2] L. Zou and M. W. Godfrey, “An industrial case study of program
artifacts viewed during maintenance tasks,” in Proceedings of WCRE
2006, 2006, pp. 71–82.

[3] V. M. González and G. Mark, “”constant, constant, multi-tasking
craziness”: managing multiple working spheres,” in Proceedings of CHI
2004, 2004, pp. 113–120.

[4] G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work:
more speed and stress,” in Proceedings of CHI 2008, 2008, pp. 107–
110.

[5] G. Mark, V. M. González, and J. Harris, “No task left behind?:
examining the nature of fragmented work,” in Proceedings of CHI 2005,
2005, pp. 321–330.

[6] S. T. Iqbal and E. Horvitz, “Disruption and recovery of computing tasks:
field study, analysis, and directions,” in Proceedings of CHI 2007, 2007,
pp. 677–686.

[7] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in Proceedings of CHI 2004, 2004, pp.
175–182.

[8] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of ICSE 2007, 2007, pp.
344–353.

[9] C. Parnin and S. Rugaber, “Resumption strategies for interrupted
programming tasks,” Software Quality Journal, vol. 19, no. 1, pp. 5–34,
2011.

[10] C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted
programming tasks,” in Proceedings of CHI 2010, 2010, pp. 93–102.

[11] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehen-
sion of program comprehension,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, p. 31, 2014.

[12] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of FSE 2014,
2014.

[13] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of FSE 2006, 2006, pp. 1–11.

[14] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity
indicate knowledge of code?” in Proceedings of ESEC/FSE 2007, 2007,
pp. 341–350.

[15] T. Fritz, J. Ou, G. C. Murphy, and E. R. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings
of ICSE 2010, 2010, pp. 385–394.

[16] G. C. Murphy, M. Kersten, and L. Findlater, “How Are Java Software
Developers Using the Eclipse IDE?” IEEE Software, vol. 23, pp. 76–83,
2006.

[17] A. T. T. Ying and M. P. Robillard, “The Influence of the Task on
Programmer Behaviour,” in Proceedings of ICPC 2011, 2011, pp. 31–
40.

[18] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics
for defect prediction,” in Proceedings of ESEC/FSE 2011. ACM, 2011,
pp. 311–321.

[19] R. Robbes and D. Röthlisberger, “Using developer interaction data to
compare expertise metrics,” in Proceedings of MSR 2013, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 297–300.

[20] Z. Soh, F. Khomh, Y. Guéhéneuc, G. Antoniol, and B. Adams, “On the
effect of program exploration on maintenance tasks,” in Proceedings of
WCRE 2013, 2013, pp. 391–400.

[21] Z. Soh, F. Khomh, Y. Guéhéneuc, and G. Antoniol, “Towards un-
derstanding how developers spend their effort during maintenance
activities,” in Proceedings of WCRE 2013, 2013, pp. 152–161.

[22] F. Bantelay, M. B. Zanjani, and H. H. Kagdi, “Comparing and
combining evolutionary couplings from interactions and commits,” in
Proceedings of WCRE 2013, 2013, pp. 311–320.

[23] M. B. Zanjani, G. Swartzendruber, and H. H. Kagdi, “Impact analysis
of change requests on source code based on interaction and commit
histories,” in Proceedings of MSR 2014, 2014, pp. 162–171.

[24] W. Maalej, T. Fritz, and R. Robbes, “Collecting and processing inter-
action data for recommendation systems,” in Recommendation Systems
in Software Engineering, 2014, pp. 173–197.

[25] U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From Data Mining
to Knowledge Discovery in Databases,” Ai Magazine, vol. 17, pp. 37–
54, 1996.

[26] R. Robbes and M. Lanza, “Characterizing and understanding develop-
ment sessions,” in Proceedings of ICPC 2007, 2007, pp. 155–166.

[27] J. Cohen, “The earth is round (p < 0.5),” American Psychologist,
vol. 49, no. 12, pp. 997–1003, 1994.

[28] A. Struyf, M. Hubert, and P. Rousseeuw, “Clustering in an object-
oriented environment,” Journal of Statistical Software, vol. 1, no. 4,
pp. 1–30, 2 1997.

[29] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[30] E. J. Keogh, “Exact indexing of dynamic time warping,” Knowledge
and Information Systems, vol. 7, pp. 358–386, 2005.

[31] R. Robbes and M. Lanza, “Improving code completion with program
history,” Autom. Softw. Eng., vol. 17, no. 2, pp. 181–212, 2010.

[32] K. O. McGraw and S. P. Wong, “A Common Language Effect Size
Statistic,” Psychological Bulletin, vol. 111, pp. 361–365, 1992.

[33] R. Robbes, D. Röthlisberger, and É. Tanter, “Extensions during software
evolution: Do objects meet their promise?” in Proceedings of ECOOP
2012, 2012, pp. 28–52.

260

