
Noname manuscript No.
(will be inserted by the editor)

Java Extensible dataset for Many ML4Code
Applications

Anjan Karmakar · Miltiadis Allamanis ·
Romain Robbes ·

Received: date / Accepted: date

Abstract Machine Learning for Source Code (ML4Code) is an active research
field in which extensive experimentation is needed to discover how to best use
source code’s richly structured information. With this in mind, we introduce
JEMMA—Java Extensible dataset for Many ML4Code Applications, which is a
large scale, diverse, and high-quality dataset targeted at ML4Code.

Our goal with JEMMA is to lower the barrier to entry in ML4Code by pro-
viding the building blocks to experiment with source code models and tasks.
JEMMA comes with a considerable amount of pre-processed information such
as metadata, representations (e.g., code tokens, ASTs), and several properties
(e.g., metrics, static analysis results) for 50,000 Java projects of the 50K-C

dataset, with over 1.2 million classes and over 8 million methods.
JEMMA is also extensible through an API that allows users to add new prop-

erties and representations to the dataset, and evaluate tasks on them. Thus,
JEMMA becomes a workbench that researchers can use to experiment with novel
representations and tasks operating on source code.

To demonstrate the utility of the dataset, we also report results from two
empirical studies of our data, showing that significant work lies ahead in the
design of context-aware source code models that can reason over a broader
network of source code entities in a software project—the very task that JEMMA
is designed to help with.

Keywords Software Engineering · Machine Learning · Empirical Datasets

A. Karmakar
Free University of Bozen-Bolzano, Italy
E-mail: akarmakar@unibz.it

M. Allamanis
Microsoft Research, UK
E-mail: miltiadis.allamanis@microsoft.com

R. Robbes
Free University of Bozen-Bolzano, Italy
E-mail: rrobbes@unibz.it

2 Karmakar et al.

1 Introduction

Software systems are complex networks of interacting entities. This makes
them extremely challenging to develop, understand, and modify—despite the
constant need to do so. In this context, appropriate tool support for source
code can make developers faster and more productive at doing their job. A
variety of such tools have been proposed over the years, ranging from In-
tegrated Development Environments (IDEs), testing tools, static analyzers,
version control systems and issue tracking systems, to name a few.

Machine learning for source code. In recent years, a significant research effort
has also been undertaken towards developing effective machine learning models
of source code (Allamanis et al 2018). This work started from the observation
that simple statistical models of source code, such as n-gram models, were
surprisingly effective at source code prediction tasks such as code completion
(Hindle et al 2016).

Since then such probabilistic models of source code have come a long
way. Large-scale machine learning models of source code, based on the Trans-
former architecture, e.g. CuBERT (Kanade et al 2020), PLBART (Ahmad et al
2021), CodeBERT (Feng et al 2020), and GraphCodeBERT (Guo et al 2020) have
achieved state-of-the-art performance on a number of software engineering
(SE) tasks such as code generation, code search, code summarization, clone
detection, code translation, and code refinement. Largely by increasing the ca-
pacity of models and training datasets, deep learning based code completion
has transitioned from the token level (Karampatsis et al 2020) to completing
entire snippets of code (Chen et al 2021), the latter being now available on
IDEs in the form of an extension called GitHub Copilot1.

In parallel, other works on modelling of source code have observed that
source code has a well-known structure compared to natural language. Source
code can be unambiguously parsed into structured representations, such as
Abstract Syntax Trees (ASTs); functions and methods can have control flows
and data flows; functions and methods can interact with each other via calls,
parameters and return values. Therefore, even though modelling source code
as a series of tokens—analogous to words in a sentence or a paragraph—has
proven to be effective, another view shows that accounting for the structure
of source code to be more effective.

A fair amount of research has addressed this issue in source code modelling,
by proposing the incorporation of the inherent structural information of source
code. Several works model source code as Abstract Syntax Trees (Mou et al
2016; Alon et al 2018; LeClair et al 2019). Allamanis et al. were among the
first to model source code snippets as graphs, including a wide variety of
structural information, from data flow information, control flow information,
lexical usage information, to call information (Allamanis et al 2017).

1 https://copilot.github.com

Java Extensible dataset for Many ML4Code Applications 3

The space of possibilities to model source code is vast, from text to tokens
to advanced graphs—although each comes with its own issues and challenges.
Thus, while being mindful of how we represent source code with as much
information as possible, we also need to make sure that the models trained
on such representations are scalable and reliable for a number of source code
tasks and corresponding applications.

From snippets to projects. An important limitation of the current breed of deep
learning models for source code is that the vast majority of the work has so
far focused much more on single code snippets, methods, or functions, rather
than the complex relationships between source code elements, particularly
when these relationships cross file boundaries. From this current stage, we
now need to gradually move towards building context-aware models that can
reason over larger neighborhoods of interacting entities.

A major reason for the lack of such work is that the necessary data is not
yet collected or organized, and is missing. The following section highlights the
absence of such datasets for code that have the right mix of source code gran-
ularity, size, scale, and detail of information to allow researchers to research
on models that go beyond single code snippets.

Datasets that are large focus either on individual code snippets at the
method-level, or at best, source files; while other datasets are either too small,
or lack significant preprocessing. Choosing good quality data in sufficient quan-
tity, downloading and storing the data, extracting valuable information from
the data or simply running tools to preprocess the data and gather additional
information, and then building an experimental infrastructure in place, re-
quires a large amount of time and effort—even before a single experiment
is run. This is all the more true when this has to be done for source code
models, where some of the pre-processing and analysis tools can be extremely
time-consuming and resource-intensive at scale. Therefore, in this paper, we
contribute such a dataset: JEMMA, which stands for Java Extensible dataset for
Many ML4Code Applications.

JEMMA as a dataset. JEMMA has multiple levels of granularity: from methods,
to classes, to packages, and entire projects. It consists of over 8 million Java
method snippets along with substantial metadata; pre-processed source code
representations—including graph representations that comes with control- and
data-flow information; call-graph information for all methods at the project-
level; and a variety of additional properties and metrics. JEMMA stands on the
shoulders of giants: it is built upon the 50K-C dataset of compilable projects2

(Martins et al 2018), but complements it with very significant pre-processing,
measured in years of compute time. Section 3 presents all the components of
the JEMMA datasets, and shows how it differs from the 50K-C dataset.

2 Researchers citing our work should also cite Martins et al (2018).

4 Karmakar et al.

JEMMA as a workbench. A discernible hurdle in building comprehensive large-
scale models for source code is that it is far from obvious how to scale models
to handle larger entities of input source code. For instance, in recent work,
we have observed that for datasets at the class level, significant truncation
occurred in Transformer models (Prenner and Robbes 2022). The models are
simply unable to process the entire input. We anticipate that thorough exper-
imentation will be needed to find how to make models able to process these
larger inputs. To this end, JEMMA is not a static dataset: we purposefully de-
signed it to be extensible in a variety of ways. Concretely, JEMMA comes with a
toolchain and has a set of APIs to: add metrics or labels to source code snippets
(e.g., by utilizing a source code analysis tool); define predictive tasks based
on metrics, labels, or the representation themselves; process the code snip-
pets and existing representations to generate new representations of source
code; and run supported models on a task. We describe how to extend the
dataset, along with several examples in Section 4. This extensibility is critical,
because it transforms JEMMA to a workbench with which users can experiment
with the design of ML models of code and tasks, while saving a lot of time in
pre-processing the data.

Empirical studies with JEMMA. In Sections 5 and 6, we show how JEMMA can
be used to gain insights via empirical studies. The first is a study on the
non-localness of software, and how it impacts the performance of models on a
variant of the code completion task. This study shows how JEMMA can be used
to gain insights on how the models perform on code samples, highlighting what
performance issues exist and what we can do to address such issues (Section 5).

The second is the study of the size of entities that constitute software
projects, and how it relates to the context size of popular machine-learning
(ML) models. The second study confirms that significant work lies ahead in
designing models that efficiently encode large contexts (Section 6).

While these examples are related to empirical analyses in the field of Ma-
chine Learning for Software Engineering, we can envision other uses for JEMMA
in empirical studies. Finally, we document the limitations of JEMMA in Sec-
tion 7, and then conclude with a summary of our work in Section 8.

2 Related Work

Traditional source code datasets have contributed immensely to the progress
made in the field of software engineering. Studies based on such datasets
have helped to uncover the truth behind myriad empirical hypotheses. Subse-
quently, with the gradual evolution of machine learning techniques suitable for
processing code—where data plays a central role—a multitude of efforts have
been made for collecting and organizing quality data. Such datasets have not
only contributed to the development of competent models of source code, but
also opened the avenues for empirical analysis of these models. In this section,
we outline some of the datasets from both genres.

Java Extensible dataset for Many ML4Code Applications 5

2.1 Datasets for machine learning on code

Since machine learning requires considerable amounts of data, multiple datasets
have been produced, usually as a means towards validating a specific machine
learning method, rather than as a principled standalone effort. This has re-
sulted in datasets that contain input data either not far from raw text, or that
contain a lossy view of the underlying analyzed software systems.

Code Datasets. Allamanis and Sutton (2013) collected a set of about 1 bil-
lion Java code tokens and provide the code text per file. Later, Karampatsis
et al (2020) extended this with additional datasets for C and Python; and a
different extension of the dataset was provided by Alon et al (2018). Raychev
et al (2016) released Py150 and JS150, two datasets of 150,000 Python and
Javascript functions parsed into ASTs.

Several datasets focus on specific tasks, such as the BigCloneBench (Sva-
jlenko and Roy 2015) dataset for large-scale clone detection in Java. Many-
Types4Py (Mir et al 2021) is a Python dataset aimed for evaluating type
inference in Python, and Devign (Zhou et al 2019), provide labeled code with
coarse-grained source code vulnerability detection in mind.

Datasets with specific representations of code have been common. CoCoGum
(Wang et al 2020) use class context represented as abstracted UML diagrams,
for code summarization, at the file-level. Allamanis et al (2017, 2020) extract
control, data flow graphs, along with syntax within a single file.

Datasets of code from student assignments, programming competitions,
and other smaller programs, have also been created. Among them, Google
Code Jam3 and POJ-104 (Mou et al 2016) are clone detection tasks (clone de-
tection in this case is formulated as a program classification task). COSET (Wang
and Christodorescu 2019), and CodeNet (Puri et al 2021) also feature smaller
programs, but complement them with additional metrics and labels. Although
these datasets have many desirable properties, they do not represent source
code used in real-life software systems and thus it is unclear if learning on these
datasets can generalize to general-purpose software. Semi-synthetic datasets,
such as NAPS (Zavershynskyi et al 2018), also fall into the same category.

Code Datasets with Natural Language. Natural language presents an interest-
ing, yet separate, modality from source code and is central to the NLP task
of semantic parsing (i.e., text-to-code). A few datasets have focused on this:
CodeNN (Iyer et al 2016), CoNaLa (Yin et al 2018), and StaQC (Yao et al
2018). Datasets such as NL2Bash (Lin et al 2018) provide data for seman-
tic parsing from natural language to Bash commands, while Spider (Yu et al
2018) is a dataset for the text-to-SQL semantic parsing task. Finally, Barone
and Sennrich (2017), CodeSearchNet (Husain et al 2019), and LeClair and
McMillan (2019) pair natural language documentation comments with code,
targeting code search and code summarization applications.

3 https://code.google.com/codejam/contests.html

6 Karmakar et al.

All these datasets provide dumps of source code text per-file, and while it
is possible to parse the code text and perform some intra-procedural analy-
ses for the few file-level datasets, information about external dependencies is
commonly lost rendering it impossible to extract relatively accurate semantic
data.

Code Datasets with Higher-level Representations While the above datasets
focus on code snippets or files, some work has extracted datasets aiming for
representations that capture information beyond a single file. However, com-
monly these datasets opt for an application-specific representation that loses
information that could be useful for other research. For example, DeFreez et al
(2018) extract path embeddings over functions in Linux. LambdaNet (Wei et al
2020) extracts type dependency graphs in TypeScript code but removes most
code text information; their dataset is also limited to 300 projects, which range
from 500 to 10,000 lines of code. The dataset by LeClair et al. was also refined
and used in a source code summarization approach that defined a project-level
encoder, that considers functions in up to 10 source code files in a project
(Bansal et al 2021).

Code Datasets with Changes Given the importance of software maintenance
in the development lifecycle, a few datasets have focused on edit operations in
code. The goal of these datasets is to foster research in Neural Program Repair.
ManySStubs4J (Karampatsis and Sutton 2020) and Bugs2Fix (Tufano et al
2019) both fall in this category: they are corpora of small bug fixes extracted
from GitHub commits. These datasets often focus on local changes (e.g., diffs)
and ignore the broader context.

2.2 Datasets for empirical studies

Several corpora of complete software systems have been built with the primary
goal to conduct traditional empirical studies, without direct considerations
necessary for machine learning research.

The Qualitas Corpus and its descendants. The Qualitas corpus (Tempero et al
2010), is an influential corpus of 111 large scale Java systems that was used
for a large number of empirical studies of the Java and the characteristics of
the systems implemented in it. While this dataset was source code only, it
was post-processed in various ways, producing several derived datasets. The
Qualitas.class corpus, (Terra et al 2013) is a version of the Qualitas corpus that
is also compiled in .class files. The QUAATLAS corpus (De Roover et al
2013), is a post-processed version of the Qualitas corpus that allows better
support for API usage analysis. XCorpus (Dietrich et al 2017), is a subset of
the Qualitas corpus (70 programs) complemented by 6 additional programs,
that can all be automatically executed via test cases (natural, or generated).

Java Extensible dataset for Many ML4Code Applications 7

Java Datasets. Lämmel et al (2011) gathered a dataset of Java software from
Sourceforge, that had 1,000 projects that were parsed into ASTs. The BOA
dataset and infrastructure, by Dyer et al (2013), provides an API for pre-
processing software repositories, such as providing and analyzing ASTs, for
32,000 Java projects. The 50K-C dataset of Martins et al (2018) contains
50,000 Java projects that were selected because they could be automatically
compiled. A follow-up effort is the Normalized Java Resource (Palsberg and
Lopes 2018) (NJR). A first release, NJR-1, provides 293 programs on which
12 different static analyzers can run (Utture et al 2020), but has a stated goal
of gathering 100,000 runnable Java projects, but is still a work in progress.

Other datasets. Spinellis (2017) released a dataset that contains the entire his-
tory of Unix as a single Git repository. The entire Maven software ecosystem
was released as a dataset with higher-level metrics, such as changes and de-
pendencies (Raemaekers et al 2013). Fine-GRAPE is a dataset of fine-grained
API usage across the Maven software ecosystem (Sawant and Bacchelli 2017).
Finally, both Software Heritage (Pietri et al 2019) and World of Code (Ma
et al 2021) are very large-scale efforts that aim to gather the entirety of open-
source software as complete and up-to-date datasets. The main goal of World
of Code is to enable analytics, while the main goal of Software Heritage is
preservation (although it also supports analytics).

2.3 The 50K-C Dataset

Having surveyed the landscape of existing datasets, we conclude that most ma-
chine learning datasets focus on small-scale entities such as functions, methods,
or sing;e classes. The ones that offer higher-level representations are specific
and too small in scale. The corpora of systems used for empirical studies pro-
vide a better starting point, as they can be pre-processed to extract additional
information. Of the existing datasets, the most suitable option that is large
enough and that allows the most pre-processing is the 50K-C dataset of 50,000
compilable projects.

Since JEMMA builds upon 50K-C, we provide detailed background informa-
tion on it in this section. The 50K-C dataset is a collection of 50,000 compilable
Java projects, with a total of almost 1.2m Java class files, its compiled byte-
code, dependent jar files, and build scripts. It is divided into three subsets:

◦ projects: It contains the 50,000 java projects, as zipped files. The projects
are organized into 115 subfolders each with about 435 projects.

◦ jars: It contains the 5,362 external jar dependencies, which are required
for successful project builds. This is important as missing dependencies is
the common cause for failing to compile code at scale.

◦ build results: It contains the build outputs for the 50,000 projects, in-
cluding compiled bytecode, build metadata, and original build scripts. In
addition to the above data, a mapping between each project and its GitHub
URL is also provided. The bytecode is readily available for a variety of tasks,

8 Karmakar et al.

such as running static analysis tools, or, if the projects can also be executed,
as input for testing, and dynamic analysis tools.

Beyond the size of the dataset, the fact that the projects are compilable is
the main reason we chose to build upon 50K-C. The extensive pre-processing
that we perform on top of 50K-C requires the use of static analysis tools, to do
things such as call graph extraction, and to extract valuable metrics about the
systems. Since the vast majority of static analysis tools operate on bytecode,
50K-C was the most suitable option that combines both scale and the ability
to automate the analysis at such scale.

Selection Criteria. The dataset authors downloaded close to 500,000 Java
projects, attempted to compile all of them, and selected 50,000 projects among
the ones that could be compiled. Two filters were applied: projects that were
Android application were excluded, and projects that were clones were also
excluded—using the DéjàVu clone repository (Lopes et al 2017), and the
Sourcerer CC tool (Sajnani et al 2016). Based on our own assessment, we
find that the projects have a diverse set of domains (e.g., games, websites,
standalone applications, etc), and of development settings (ranging from stu-
dent projects to industry-grade open-source projects).

The 50K-C dataset consists of both large-scale projects with as many as
5000 classes, and smaller projects with as low as 5 classes. While the larger
projects are good representatives of real-world projects, the smaller projects
are valuable too. Machine learning models of code still need to make signifi-
cant headway before scaling up interprocedural machine learning models (see
Section 6): these smaller projects are good intermediate targets towards that
goal, allowing the field to make progress.

3 The JEMMA Datasets

Our goal with the JEMMA project is to provide the research community with
a large, comprehensive, and extensible dataset for Java that can be used to
advance the field of source code modelling. The JEMMA datasets consists of a
large collection of code samples in varying granularities, with wide-ranging
and diverse metadata, a range of supported source code representations, and
several properties. In addition, it also includes source code information related
to code structure, data-flow, control-flow, and caller-callee relationships for
code entities.

For every project in the JEMMA dataset, we gather data at the project-level,
and provide information on all the packages and classes of the project along
with its corresponding metadata, representations, and selected properties. Fur-
thermore, for every class, we provide data on all the methods - including re-
spective metadata, several representations and properties. The detail of data
provided for every method entity is comprehensive, with data at the level of
AST with data-flow, control-flow, lexical-usage, and call-graph edges among
others. In addition to other necessary information such as line numbers and

Java Extensible dataset for Many ML4Code Applications 9

position numbers of every source code token, supplementary information such
as token types, node types, etc, are also provided. More details are presented
in the following sections.

JEMMA also comes equipped with a toolchain and a corresponding API that
allows a variety of tasks, such as: transforming code samples into intermediate
source code representations, making tailored selections of entities to define
tasks and forming custom datasets, or to run supported models (Section 4).

Statistics. The original 50K-C dataset contains a total of 50,000 projects. It
has 85 projects with over 500 classes (with a maximum of 5549 classes in a
project), 1264 projects with 101–500 classes, 2751 projects with over 51–100
classes, 10693 projects with over 21–50 classes, 14322 projects with more than
11–20 classes, and 20885 projects with 10 or fewer classes (with a minimum
of 5 classes in a project). We have collected metadata for all of these projects.
Overall, the data consists of 1.2 million Java classes, which together define
over 8 million unique methods.

Granularity. The primary entity-of-interest in our datasets is a method, as it
is the most basic unit of behaviour in an object-oriented program. Coarser
granularity entities are available, since the data has been collected at the level
of projects. For instance, method snippets can be extracted from the datasets
and used independently to run code-analysis tools, or along with their parent
Java class file, depending on the tool used. In addition, information at finer-
grained levels (e.g., AST nodes) is also available since the representations that
we post-processed contain this level of detail.

Compilability. Successful compilation ensures that the source code snippets
from the projects have been type-checked and parsed successfully, and are
valid Java code. Having full-scale compilable projects gives us the assurance
that the source code is complete and self-contained; and thus, all the inter-
relationships among code entities can be captured and studied. Additionally,
static and dynamic analysis tools can be run to generate information for new
code tasks.

Some of the tools that we use to post-process the data require the ability
to compile the code, rather than just analyzing compiled code. These tools
insert themselves in the compilation process (for instance, Infer (Calcagno
et al 2015)). Therefore, we also have to be able to compile the code on de-
mand. Practically, we found that recompilation was not 100% replicable. Of
the 50,000 projects, we were able to compile about 90% of the projects; a failed
compilation is usually linked to a missing or inaccessible dependency.

Runtime considerations. The post-processing that we apply to the projects is
very computationally intensive for some of the tools. For instance, the analyses
run just by a single tool—the Infer static analyzer (Calcagno et al 2015)—can
take on the order of half an hour for a single medium-sized project. Analyzing
50,000 projects with a number of tools and then post-processing the outputs
is thus both time-consuming and resource-intensive.

10 Karmakar et al.

Table 1 JEMMA dataset artifacts, locations, and sizes

Artifact DOI Size

Metadata: Projects https://doi.org/10.5281/zenodo.5807578 4.7 MB
Metadata: Packages https://doi.org/10.5281/zenodo.5807586 42.2 MB
Metadata: Classes https://doi.org/10.5281/zenodo.5808902 269.7 MB
Metadata: Methods https://doi.org/10.5281/zenodo.5813089 2.8 GB

Properties: [TLOC] https://doi.org/10.5281/zenodo.5813102 335.5 MB
Properties: [SLOC] https://doi.org/10.5281/zenodo.5813094 335.0 MB
Properties: [NUID] https://doi.org/10.5281/zenodo.5813028 335.6 MB
Properties: [NTID] https://doi.org/10.5281/zenodo.5813029 336.7 MB
Properties: [NMTK] https://doi.org/10.5281/zenodo.5813032 342.5 MB
Properties: [NMRT] https://doi.org/10.5281/zenodo.5813034 333.3 MB
Properties: [NMPR] https://doi.org/10.5281/zenodo.5813053 333.3 MB
Properties: [NMOP] https://doi.org/10.5281/zenodo.5813055 334.5 MB
Properties: [NMLT] https://doi.org/10.5281/zenodo.5813054 333.4 MB
Properties: [NAME] https://doi.org/10.5281/zenodo.5813308 432.0 MB
Properties: [MXIN] https://doi.org/10.5281/zenodo.5813081 267.0 MB
Properties: [CMPX] https://doi.org/10.5281/zenodo.5813084 267.1 MB

Represent.: (TEXT) https://doi.org/10.5281/zenodo.5813705 3.8 GB
Represent.: (TKNA) https://doi.org/10.5281/zenodo.5813717 3.3 GB
Represent.: (TKNB) https://doi.org/10.5281/zenodo.5813730 4.6 GB
Represent.: (ASTS)* https://doi.org/10.5281/zenodo.5813880 4.1 GB
Represent.: (FTGR)* https://doi.org/10.5281/zenodo.5813933 5.2 GB
Represent.: (C2VC)* https://doi.org/10.5281/zenodo.5813993 6.1 GB
Represent.: (C2SQ)* https://doi.org/10.5281/zenodo.5814059 10.9 GB

Storage and sharing considerations. The amount of data produced is consid-
erable. To maximize accessibility, we provide it as a set of Comma Separated
Values (CSV) files, so that users can choose and download the data that they
need. Some of the representations that are highly structured are stored in
JSON files. Note that only the metadata and the original source data are ab-
solutely necessary; other data can be downloaded on a per-need basis. The
JEMMA toolchain and API allows the recomputation of the other properties, if,
for some properties, it is more efficient to recompute them than to download
them. The data is uploaded on Zenodo; due to its size, it is provided as multi-
ple artifacts. Table 1 presents the components of the dataset, along with their
DOIs (links to the download page), and sizes.

Interacting with the data. Most of the data from the JEMMA are organized
in Comma-Separated-Values (CSV) files, consequently basic analyses can be
run with tools such as csvstat. Furthermore, our API can be used to gather
extensive statistics of the projects, classes, methods, bytecode, and data and
control-flow information.

The JEMMA datasets are grouped into three major parts: data at the metadata
level (Section 3.1), data at the property level (Section 3.2), and at the represen-
tation level (Section 3.3). In addition, we also provide project-wide callgraph
information for the 50,000 projects, uniquely identifying and associating source

Java Extensible dataset for Many ML4Code Applications 11

Fig. 1 Overview of data-level contributions

and destination nodes in the callgraph with the help of the metadata defined
by JEMMA (Section 3.4). This allows for accessing project-wide data on the
whole, for different granularities of code entities.

Fig. 1 gives a glimpse of the extent and detail of data contribution made
by JEMMA. The top-left corner represents the raw data from 50K-C, which
we extend by adding UUIDs (symbolized by colored squares). The rest of the
figures depicts the additional pre-processing we performed: the gears on colored
background represent external tools that we run to collect additional data
(properties and representations), while the red dots represent further post-
processing that we perform on the tool outputs to integrate it in our dataset.

3.1 JEMMA: Metadata

In this section we present the metadata for the JEMMA datasets. The metadata
is made available in comma-separated value (CSV) files. This allows for easy
processing, even with simple command-line tools. The metadata are organized
in four parts, following the largest units of interest: projects, packages, classes,
and methods. The units of interest can then be inter-related systematically.
The metadata serves two major purposes:

12 Karmakar et al.

Fig. 2 Meta-structure of project entities and their inter-relationships

1. Uniquely identify a source code entity with an UUID.
2. Gather basic and often-used information on each source code entity.

Taken together, these two allow users to extend the dataset with additional
properties. The UUID allows to uniquely identify an entity in the dataset, and
the supplementary metadata helps disambiguate entities (file paths, parent re-
lationships, location information in the file, etc). In Section 4 we show how this
metadata can be used to add an additional property to source code entities.

Since the metadata formalizes the organization of the data, and establishes
the relationship between projects, packages, classes, and methods, JEMMA users
can leverage it to construct custom data queries and make selections from the
large collection of data at different granularities. The overall organization of
the metadata and their inter-relationships is shown in Figure 2.

3.1.1 Projects

For the project-level metadata, we provide a single CSV file that lists all
the projects in the 50K-C dataset along with their corresponding metadata—
project id, project path, project name. The UUID is referenced by the entities
contained in the project. The project path is relative to the root directory
of the 50K-C dataset4, and can be used to access the raw source code of the
project. Table 2 details the metadata for projects.

4 http://mondego.ics.uci.edu/projects/jbf/downloads/50K-C_projects.tgz

Java Extensible dataset for Many ML4Code Applications 13

Table 2 JEMMA projects metadata csv

column name data type description

project id str UUID assigned to project
project path str Relative path of the project
project name str Name of the project

Table 3 JEMMA packages metadata csv

column name data type description

project id str project id of parent project
package id str UUID assigned to package
package path str Relative path of the package
package name str Name of the package

Table 4 JEMMA classes metadata csv

column name data type description

project id str project id of parent project
package id str package id of the parent package
class id str UUID assigned to class
class path str Relative path of the class
class name str Name of the class

3.1.2 Packages

For the package-level metadata, a single CSV file lists all the packages present
in the projects. The metadata comprises of the UUID of the parent project as
project id, the UUID assigned to the package as package id, the relative path
of the package as package path, and the name of the package directory as
package name. Table 3 details the metadata we provide for packages.

3.1.3 Classes

For the class-level metadata, we provide a single CSV file that lists all the
classes in the 50K-C dataset along with their corresponding metadata: project id,
package id, class id, class path, class name. Table 4 details the metadata we
provide for classes. Similarly to the projects, the class path is a relative path
starting from the 50K-C dataset’s root directory, that allows to access the raw
source code of the class.

3.1.4 Methods

At the method-level, the metadata is more extensive. Just having the name
of a method might not be enough to disambiguate methods, due to the fact
that several methods in the same class can have the same name but differ-
ent arguments. Thus, the metadata is a CSV file lists all the methods in

14 Karmakar et al.

Table 5 JEMMA methods metadata csv

column name data type description

project id str project id of parent project
class id str package id of parent package
class id str class id of parent class
method id str UUID assigned to the method
method path str Relative path of the parent class
method name str Name of the method
start line int Method start line in the parent class
end line int Method end line in the parent class
method signature str Method signature of the method

the 50K-C dataset along with their corresponding metadata: project id, pack-
age id, class id, method id, method path, method name, start line, end line,
method signature. Table 5 details the method metadata.

3.2 JEMMA: Properties

JEMMA leverages the UUIDs assigned to projects, classes, and methods as a way
to attach additional properties to these entities. Thus, a property can be an
arbitrary value that is associated to an entity, such as a metric. Even though we
have gathered several properties associated with code entities comprehensively,
it should be noted that a particular property may not be available or may not
apply for a given code entity. Users can add new properties associated with
code entities as contributions to the dataset, where the property should be
given a unique name and be stored in the correct location for it to be visible
to JEMMA API (Section 4 provides more details).

We have run several static analysis tools to define properties associated with
source code entities:

◦ The Infer static analyser (Calcagno et al 2015) is a tool that provides
advanced abstract interpretation-based analyses for several languages, in-
cluding Java. Examples of the analyses that Infer can run include an in-
terprocedural analysis to detect possible null pointer dereferences. Infer
can also perform additional analyses such as taint analysis, resource leak
detection, and estimate the run-time cost of methods.

◦ Metrix++ is a tool that can compute a variety of basic metrics on source
code entities, such as lines of code, code complexity, and several others5.

◦ PMD is a static code analysis tool6 that can compute a variety of static
analysis warnings and metrics, such as the npath complexity metric, among
many, many others.

5 https://metrixplusplus.github.io/metrixplusplus/
6 https://pmd.github.io

Java Extensible dataset for Many ML4Code Applications 15

The following is the list of properties that are currently defined at the
method level in JEMMA, and made available as CSV datasets. The properties
marked with * are not yet available for all the samples, but computations are
in progress for the remaining, since some of the analyses are compute-heavy.
For instance, to determine that a null dereference is possible at a given point of
the program, Infer performs an analysis based on abstract interpretation of the
source code. Infer’s output includes an execution path that the program can
take that could lead to a null dereference. Such analyses can take significant
amounts of time (on the order of tens of minutes even for small projects).

1. [TLOC] Total Lines of Code
2. [SLOC] Source Lines of Code
3. [NMTK] Number of Code Tokens
4. [CMPX] McCabe or Cyclomatic Complexity
5. [NPTH] Npath Complexity
6. [MXIN] Maximum indent depth of nesting7

7. [NMPR] Number of parameters
8. [NUID] Number of unique identifiers
9. [NMOP] Number of operators

10. [NMLT] Number of literals
11. [NMRT] Number of return statements
12. [NAME] Name of source code entity
13. [NMOC] Number of calls outside class*

14. [NUPC] Number of unique parent callers*

15. [NUCC] Number of unique child callees*

16. [NLDF] Presence of Null Dereference*

17. [RSLK] Presence of Resource Leak*

18. [MCST] Method Runtime Cost* [runtime complexity estimation]

Other tools that could be run to extend the dataset include static analysis
tools, such as FindBugs (Hovemeyer and Pugh 2004), PMD, or similar tools
such as Error Prone and NullAway. The warnings and outputs from these
tools can serve as metrics for code entities. Bespoke static analyses from Soot
or another static analysis research frameworks, or clone detection (Cordy and
Roy 2011) tools could be run as well. These properties could be useful to
conduct studies similar to the ones from Habib and Pradel (2018).

3.3 JEMMA: Representations

Machine learning models are trained on a collection of feature vectors derived
from the input data. For source code machine learning models the input data
can be the raw text of a source code entity. For example, for the Java method
shown in Figure 3a, a corresponding source code representation could be its
raw tokens as shown in Figure 3b.

7 A measure of indentation of the source code, a proxy for complexity (Hindle et al 2008)

16 Karmakar et al.

(a) Java method as original text representation

(b) Java method represented as tokens

Fig. 3 A Java method and its possible token representation

Since source code is highly structured, the design space for representations is
vast and diverse. This has been been explored to some extent, with approaches
that model source code as sequences of tokens or subtokens via RNNs (Pradel
and Sen 2018), LSTMs (Karampatsis et al 2020), or Transformers (Feng et al
2020). Other approaches have leveraged the structure of code either via ASTs
(Mou et al 2016) or linearized ASTs (Alon et al 2019). Yet other approaches
use more expressive structures incorporating, for instance, data flow, and use
Graph Neural Networks (GNNs) to represent code (Allamanis et al 2017).

Our goal with JEMMA is to provide the building blocks to experiment with
the design space of representations. Since extracting the relevant information
is costly in terms of computational resources, a significant effort went into
adding several basic representations at the method level, ranging from the
raw source code to the information behind a very complete graph representa-
tion. At the representation level, we provide several ready-to-use source code
representations (compatible for different models) for over 8 million method
snippets. The method level representations that we provide are:

Java Extensible dataset for Many ML4Code Applications 17

1. (TEXT) Raw source code.
2. (TKNA, TKNB) Source code tokens parsed with an ANTLR4 grammar.
3. (ASTS) Abstract Syntax Tree representation
4. (C2VC, C2SQ) Linearized AST representations as Bags of AST paths
5. (FTGR) Feature graph representation, which are basic ASTs enriched with a

significant number of additional edges, depicting various inter-relationships
between the AST nodes (e.g., data-flow, lexical-usage etc.).

3.3.1 Raw text (TEXT)

First and foremost, the original code for each method is provided by default,
with no preprocessing. This allows approaches that need to operate on the raw
text to do so directly (e.g., a model that implements its own tokenization).
The default method text includes its annotations and also comments within
the code snippet, if any. The whitespace for each method text is also preserved
intentionally (it can be easily stripped off at any point). The raw text can also
be used to re-generate the other representations as needed.

3.3.2 Tokens (TKNA, TKNB)

Each Java method snippet is tokenized with an ANTLR4 grammar (Parr 2013)
and made available to the user preprocessed. The tokenized code includes
method annotations, if any, but does not include natural language comments.
However, with the entire raw text of method snippets made available by de-
fault, users are free to include comments in their custom tokenized represen-
tations.

For every method snippet in our dataset, we provide the corresponding
string of tokens. In fact, we provide two types of tokenized strings. First, a
simple space-separated string of tokens. This representation is meant to be
directly passed to an existing ML model that has its own tokenizer, without
any further processing. The downside is that some literals that include spaces
may be treated as more than one token, or symbols and special characters may
be ignored while using certain tokenizers. Should this be an issue, users may
use the second representation.

In the second type of tokenized representation the tokens are made avail-
able as a comma-separated string with the symbols and operators replaced
with suitable string tokens (commas in literals are replaced suitably with
<LITCOMMA> tokens). This representation is recommended for users who would
tokenize the code themselves, or would want to avoid literals being split into
several tokens, or avoid ambiguities with symbols and special characters when
using NLP tokenizers.

18 Karmakar et al.

3.3.3 Abstract Syntax Tree (ASTS)

The AST representations are a subset of the information from the feature
graphs (detailed below). Specifically, for the AST we keep all the nodes from
the parse tree, and all edges that represent parent/child relationships.

Nodes can either be terminal nodes (leaf nodes), which are the tokens of
the grammar, or inner non-terminal nodes, representing the higher-level units
such as method calls, code blocks, etc. This information is represented for each
method as a set of nodes, followed by a set of node pairs representing child
edges.

3.3.4 code2vec (C2VC) and code2seq (C2SQ)

The code2vec (Alon et al 2019) and code2seq (Alon et al 2018) representations
are derivatives of the AST representation. The goal of these approaches is to
linearize ASTs by sampling a fixed number of AST paths (i.e., selecting 2
AST nodes at random and finding the path between them). The difference
between the approaches are that code2vec represents each identifier and each
path as unique symbols leading to large vocabularies, and consequently Out-
Of-Vocabulary (OOV) issues, while code2seq models identifiers and paths as
sequences of symbols from smaller vocabularies, which alleviates the issues.
The downside is that the code2seq representation is significantly larger. Both
kinds of inputs are fed to models that use the attention mechanism to select
a set of AST paths that are relevant to the model’s training objective (by
default, method naming).

We have generated the code2vec and code2seq representations of every
method in the dataset, which can serve as a ready-to-use input to the code2vec
and code2seq path-attention models. Furthermore, if alterations to the code
snippets are needed, our toolchain and API enables the users to easily trans-
form a valid code snippet into its corresponding representation(s) using the
original code2vec and code2seq preprocessors.

3.3.5 Feature Graph (FTGR)

The feature graph representation is obtained from Andrew Rice’s feature graph
extraction tool8. This tool is a plugin for the Java compiler—hence we need to
be able to compile the source code data ourselves—which extracts information
at par with the one used to build the feature graphs in the work of Allamanis
et al (2017) for C# code. The Feature Graph representations are represented
as a set of nodes, and then node pairs representing different edge types; the
nodes are also presented in a sequence to capture the order of code tokens.
Specific edge types can be filtered out as needed (such as to produce the AST
representations, or to reduce the size of the graph (Hellendoorn et al 2019b)).
The full list of included edges are:

8 https://github.com/acr31/features-javac

Java Extensible dataset for Many ML4Code Applications 19

◦ Child edges encoding the AST.
◦ NextToken edges, encoding the sequential information of code tokens.
◦ LastRead, LastWrite, and ComputedFrom edges that link variables to-

gether, and provide data flow information.
◦ LastLexicalUse edges link lexical usage of variables (independent of data

flow).
◦ GuardedBy and GuardedByNegation edges connecting a variable used in a

block to conditions of a control flow.
◦ ReturnTo edges link return tokens to the method declaration.
◦ FormalArgName edges connect arguments in method calls to the formal

parameters.

Note that this representation is computed at the granularity of files (entire
classes). We keep this file-level representation for completeness, but also ex-
tract the representations of individual methods from it. This representation
is extremely complete, as it includes, for instance, all the source code tokens
and their precise locations in the original source code, the signatures of all the
methods called in the class, the source code comments, if any, including a vari-
ety of data-flow, control-flow, lexical-usage, and hierarchical edges. Derivative
representations such as AST with dataflow information, a subset of the feature
graph representation, which corresponds to the data used by models such as
GraphCodeBERT can also be produced from the feature graph representations.

3.3.6 Extended utility

While the above representations can be used as-is as input for various machine
learning models, they can be further pre-processed to tailor them to specific
use cases. For example:

(a) The definition of variants of the existing representations, such as the AST
with dataflow representation above, which is a simplification of the fea-
ture graph. Experimenting with these variants is important, to obtain a
better understanding of the trade-offs between the kinds of information
available, what they can bring to a model, and the difficulty of obtaining
the information. See Section 4.1.2 for further examples.

(b) The definition of tasks that operate on altered versions of the input, such
as tasks where part of the input is masked (e.g., MethodNaming task),
or modified (e.g., VarMisuse task). Section 4.2.2 provides an example of
this. This could also serve as the basis for data augmentation approaches,
where semantically equivalent variations of the source code could be pro-
grammatically generated.

(c) Finally, the representations can also be combined to form the basis for rep-
resentations of higher-level entities, such as classes, packages, or projects.
This is key to provide machine learning models of code that can reason
at these higher level. This is also a further incentive to explore variations
of representations, since, as shown in Section 6, scaling machine learning
models to larger code snippets comes with significant challenges.

20 Karmakar et al.

Fig. 4 Project-level callgraph edges connecting method-entities

3.4 Project-wide call graph (CG)

Since many relationships among source code entities are not simply hierarchi-
cal containment relationships, we also provide a very useful additional data:
the project’s call graph (CG), in which methods calling each other are explicitly
linked. Thanks to our metadata, these method call information (Figure 4) can
then be used to combine representations to create interesting global contexts
for large-scale source code models.

Previous techniques are useful to design representations at the level of
methods. However, designing models that reason about larger entities require
more data. Hierarchical relationships can be already inferred from the meta-
data. In addition, since software systems are composed of modules that interact
with each other, caller-callee relationships are crucial to model systems accu-
rately. For this, we use the Java callgraph extractor tool by Georgios Gousios9,
to extract project-wide call graphs, from which callers and callees are iden-
tified and linked to their respective UUIDs through post-processing (links to
external calls are still recorded but we do not assign UUIDs to them).

Method signatures are used to disambiguate method with similar names.
Note that for polymorphic calls, the call graph provides links to the statically
identified type, not to all possible types. Additional post-processing would be
possible to add these links to the call graph. In previous work, we have seen
that the use of polymorphism in Java is significant (Milojkovic et al 2015), so
this would be a useful addition.

9 https://github.com/gousiosg/java-callgraph

Java Extensible dataset for Many ML4Code Applications 21

4 Extending and Using JEMMA

When building JEMMA, we intended it to be both extensible and flexible. In
this way, researchers could use JEMMA as a workbench to experiment with
variants of datasets, models, and tasks while minimizing the preprocessing
that is involved. In this section, we show how JEMMA can be extended and then
describe various scenarios in which it can be used.

4.1 Extending JEMMA

In Section 4.1.1 we principally describe how JEMMA can be extended with a new
property (e.g., a metric or a tool warning associated with a code entity), and
in Section 4.1.2 we describe how it can be extended with a new representation.

4.1.1 Adding a new property

The simplest way to extend JEMMA is to add a new property. This could be any
property of interest that can be computed for a source code entity. Examples
include defining a new source code metric, such as source code complexity, or
the result of a static analysis tool indicating the presence (or absence) of a
specific source code characteristic.

To extend JEMMA with a new property, the workflow has three main steps:
a) accessing a set of source code entities, b) generating associated properties,
and c) merging the associated property values to the dataset. JEMMA facilitates
accessing the correct code input by providing the location metadata for code
entities, and several initial representations (raw text, ASTs, etc.), and further
allowing the source code to be compiled, if necessary. An associated property
could then be obtained either directly (e.g. method name) or by means of a
code analysis tool (e.g. cyclomatic complexity).

These tools may be run on different granularities of source code as in-
put (e.g. classes, entire projects), and may output results based on the whole
projects rather than finer code entities. Therefore, once a property is com-
puted, the user must post-process the output of the tool to find to which
entity it should be associated.

Fortunately, JEMMA provides the most common ways to reference an en-
tity, and from there, to find the entity’s UUID. For instance, for method-level
code entities, JEMMA not only provides the method name but also additional
information such as start-end line numbers and positions in the original source
file (useful for tools that pinpoint a specific line, or to disambiguate identical
method names in the same class).

Snippet A.1 in the appendix gives us an example of how output metrics
from the Metrix++ tool can be associated with the methods defined in JEMMA,
and how easily it can be added to the JEMMA datasets as properties.

22 Karmakar et al.

4.1.2 Adding a new representation

Different machine learning models of code require different source code rep-
resentations as input. Some models reason over tokenized source code, while
other models reason over more complex structures such as ASTs. Each repre-
sentation comes with its own set of advantages and drawbacks, while one is
extremely feature-rich the other is simple, scalable, and practical. Therefore,
the work on representations is still an active area of research—as researchers
are continuing to develop new source code representations, or improving the
present ones, e.g., by augmenting them with further information.

JEMMA makes is quite simple to do both: create new representations, and
modify existing ones. There are three main steps to extend JEMMA with a
representation: a) accessing a set source code entities, b) generating associated
representations, and c) merging the representations to JEMMA.

The raw source text, or even representations such as the AST, could be
accessed directly to produce new representations for associated code entities.
And with an array of source code representations readily made available for
over 8 million code enities, simplifying or augmenting such representations to
create others would save a lot of pre-processing time for the users. In addition,
newer representations could also be derived from existing representations based
on specific model architectures and needs.

The feature graph representation which we include in our dataset (see Sec-
tion 3.3.5) is built upon the code AST, and is extended with a number of
additional edges, depicting various inter-relationships between the AST nodes
(e.g., data-flow, control-flow, lexical-usage, call-edges among others). In addi-
tion to other necessary information such as line numbers and position numbers
of every source code token, supplementary information such as token types,
node types, are also provided. Thus, with this representation, the detail of
data provided for every code entity is comprehensive.

Several derivative representations can be created directly from this one
representation by choosing the necessary edge types from the feature graph.
For example, for models that require the AST representation as input, choosing
just the Child edges of the feature graph representation would result in the
AST representation. Yet for models that reason over the dataflow information,
choosing the LastRead and LastWrite edges of the feature graph would result
in a new dataflow-based representation.

Beyond deriving descendant representations, adding further edge types to
the feature graph is always possible making it even more feature-rich, and
JEMMA facilitates such extensions by providing the base representations for
several million code entities. In a similar manner, the other representations
included with JEMMA could also be simplified, modified, augmented to create
new representations.

Once new representations are created, they are associated with correspond-
ing source code entities by means of UUIDs. The representations can then be
added to JEMMA using the underlying toolchain and API—quite similar to that
of adding new properties as demonstrated in Snippet A.1.

Java Extensible dataset for Many ML4Code Applications 23

4.2 Using JEMMA

In this section, we describe various scenarios in which JEMMA can be put to use.
In Section 4.2.1 we describe how a property can be used to define a prediction
task, while discussing ways in which JEMMA can help avoid common pitfalls
and biases. In Section 4.2.2 we explain how source code representations can be
used to define a prediction task. Then in Section 4.2.3 we describe how models
can be trained and evaluated on prediction tasks using the JEMMA API, and
finally, in Section 4.2.4 we describe how new and extended representations can
be formulated with a greater context.

4.2.1 Defining tasks based on properties

Once a property is defined, it can be used in a variety of ways. One such way
is to define a property prediction task. While this can appear trivial—taking
a random sample of entities that have that property defined, and splitting it
into training, validation, and test sets—in practice this is often more complex.

The reason why this can be more complex, is that care must be taken that
the data does not contain biases that provide an inaccurate estimate of model
performance. In this context, there are several groups of issues that JEMMA

helps contend with while defining the task datasets.

Rare data. The first is that some properties may be very rare, making them
hard to learn at all. Examples of this would be uncommon bugs and errors
such as, e.g., resource leaks. Since JEMMA is large to start with (over 8 million
method entities), it makes it much more likely that there is enough data to
learn in the first place, compared to other alternatives.

Defining task prediction labels. Once a property is defined, JEMMA allows flex-
ibility in the definition of the task prediction labels. For instance, for classi-
fication tasks, JEMMA allows for the definition of a balanced set of prediction
labels, including, for numerical values, binning close values together to define
a single label. A subset of the data can also be selected, if one wants to define
a task for which data is more scarce, in order to incentivize sample-efficient
models.

Investigating and mitigating biases. When defining a task, care must be taken
that the models learn from the right signal, and not from correlated signal
that may be easier to learn from, but is not actually predictive.

A well-known example in computer vision is a model that learns to classify
cows and camels, but does it by focusing on the background of an image
(grass vs sand), instead of the animal’s shape; some models have been found
to underperform when animals are in unusual settings, such as a cow on the
beach (Beery et al 2018). Similar issues have been observed in NLP as well
(McCoy et al 2019), (Gururangan et al 2018).

24 Karmakar et al.

Fig. 5 Hexbin plot of cyclomatic complexity (y-axis) vs. source lines of code (x-axis)

In source code, other issues might be present, e.g., a random sample of
methods may contain a lot of small methods (including many easy to learn
getters and setters), which may inflate performance. For instance, the perfor-
mance of method naming models is much higher on very short methods (3
lines), than it is for longer methods (Alon et al 2018). To mitigate this, JEMMA
can be used to leverage the already existing properties to empirically inves-
tigate the performance of models on the tasks and get insights. In the case
of the code complexity example, Figure 5 shows the relationship between the
size of methods and their complexity as a hexbin plot. From it, we observe
that there is an overall tendency for shorter methods to be less complex, and
longer methods to be more complex. On the other hand, there also methods
that are very long, but have a very low complexity (along the bottom axis).
This information can be used to properly balance the data, for instance, by
making sure that examples that are short and complex, and examples that are
long and simple, are also included in the training and evaluation datasets.

Avoiding data leakage. A specific source of bias that has been found in source
code data is data leakage. Multiple studies have shown that code duplication
is prevalent in large source code corpora (Schwarz et al 2012), (Lopes et al
2017), and that it impacts machine learning models (Allamanis 2019). Since
JEMMA is built on top of 50K-C, we benefit from its selection of projects, which
intentionally limited duplication.

Furthermore, since source code is more repetitive within project than across
projects it could also be a potential source of data leakage. Models that are
trained and tested with files from the same project can see their performance
affected (LeClair and McMillan 2019). Since JEMMA keeps the metadata of
which project a method belongs to, it is easy to define training, validation and
test splits that all contain code from different projects, if necessary.

Java Extensible dataset for Many ML4Code Applications 25

4.2.2 Defining tasks based on representations

JEMMA can also be used to define tasks that operate on the source code rep-
resentations themselves, rather than predicting a source code property. These
tasks are usually of two forms: a) masked code prediction tasks, and b) muta-
tion detection tasks.

(a) Masked code prediction tasks. In a masking task, one or more parts of
the representation are masked with a special token (e.g., ”<MASK>”), and
the model is tasked with predicting the masked parts of the representa-
tions. Examples of this would include the method naming task, where the
name of the method is masked, or a method call completion task, where
a method call is masked in the method’s body. A simpler variant of this
would be to use a multiple-choice format, where the model has to recognize
which of several possibilities is the token that was masked (e.g., an opera-
tor is masked in the representation, and the model should choose whether
the <= or the >= operator was masked).

(b) Mutation detection tasks. In a mutation detection task, the represen-
tation is altered with a fixed probability, presumably in a way that would
cause a bug (for instance, two arguments in a method call can be swapped
(Pradel and Sen 2018)). The task is to detect that the representation has
been altered. This can either be formulated as a binary classification task
(altered vs not altered), or, as a “pointing” task, where the model should
learn to highlight which specific portion of the given input was altered
(Vasic et al 2019).

For both of these tasks, the input representation needs to be modified in
some way. JEMMA can help in this. For simple modifications (e.g., masking the
first occurrence of an operator), it is enough to directly change the default tex-
tual representation, and then use the JEMMA toolchain and API to re-generate
the other representations.

For more complex changes, the feature graph representation and the call
graph representation can be used to perform queries on the program struc-
ture and determine which parts of the input should be masked. It is then
possible to navigate back to the raw textual representation (since the feature
graph representation contains the information of where the token is located),
perform the masking operation, and then re-generate the derived representa-
tions. Snippet A.2, in the appendix, shows an example of how to generate new
representations for a simple masking task—method call completion.

When doing these kinds of changes, particular care has to be given to
data leakage issues. For instance, for a method naming task, the name of the
method should be masked in the method’s body if it occurs there. Other bias
issues can affect these tasks as well, such as a method naming task that over-
emphasizes performance on getters and setters. JEMMA can be used to analyse
the performance of the models on the task and extract insights that may affect
the design of the task (Section 5.2 provides such an example).

26 Karmakar et al.

4.2.3 Running models

Once a task is defined, the JEMMA API eases the running of models on the
task. Several basic baselines are implemented and can be easily run on a task.
These include: Multi Layer Perceptrons (MLPs); Convolutional Neural Net-
works (CNNs); uni-directional and bi-directional Long Short-Term Memory
(LSTM) Recurrent Neural Networks, among others.

The JEMMA API also facilitates the interaction with other libraries, in par-
ticular to run models using the code2vec and code2seq architectures, as well as
Graph Neural Network (GNN) models implemented with the ptgnn10 library.

Finally, since models based on the transformer architecture, currently, have
been the state of the art for a variety of tasks, JEMMA allows to easily interface
with HuggingFace’s Transformer library (Wolf et al 2019b). This allows a
variety of pre-trained models to be fine-tuned on the tasks defined with JEMMA

(such as CodeBERT (Feng et al 2020), GraphCodeBERT (Guo et al 2020) etc.).
Snippet A.3 in the appendix shows how to run a Transformer model on the
method complexity task using the JEMMA API.

4.2.4 Defining representations with larger contexts

One of our goals with JEMMA is to allow experimentation with novel source
code representations. In particular, we want users to be able to define repre-
sentations that can take into account a larger context than a single method,
or a single file, as is done with the vast majority of work today.

The key to building such extended representations is to have access to
the necessary contextual information. The extensive pre-processing we did to
create JEMMA gives us all the relevant tools to gather that information. The
metadata of JEMMA documents the containment hierarchies (e.g., which files
belong to which project, and which classes belong to which package etc.) and
provides the ability to uniquely and unambiguously identify source code enti-
ties at different granularities. In addition, the call graph data documents which
are the immediate callers and callees of each individual method. Since the call
graphs link to each method identified by their UUID, all the properties of the
methods, including their representations, can be accessed easily and system-
atically. Thus, from navigating the call graph and the containment hierarchy,
various types of global contexts can be defined at the class-, package-, or even
project-level. We present two simple examples in the appendix.

Snippet A.4 shows how to combine representations of a given method with
the representations of its direct callees to include greater context. We encour-
age users to experiment with more complex representations adding context
information that go beyond a single method. The extensive pre-processing of
data, at the scale of tens of thousands of projects, combined with the JEMMA

toolchain and API makes it possible to do so easily.

10 https://github.com/microsoft/ptgnn

Java Extensible dataset for Many ML4Code Applications 27

5 On the extent of non-localness of software

Having presented the structure of the JEMMA dataset and its capabilities in the
previous two sections, we now turn our focus on the need for this dataset (and
workbench) through empirical studies.

We first study the extent to which software is made up of interacting func-
tions and methods in a sample of projects contained in JEMMA by analysing
their call graphs. We observe how often method calls are local to a file, cross file
boundaries, or are calls to external APIs. Then, we analyze the performance
of the method call code completion task through the lens of call types.

Each time a method call is executed, control flow jumps from the original
method to another method. Relative to the source code location of the calling
entity, the called entity can be located: a) in the same file; b) in the same
module or package; c) in a different module or package of the same project; or
d) in an external library. We study the prevalence of these categories of calls
on a subset of our data, showing that, indeed, software is strongly non-local
according to this definition.

Based on this, we use the JEMMA API to analyze the performance of some
source code models on a code task. Specifically, the method call completion
task—in which the a random method call in the source code is masked and
the model must predict the correct method call token to succeed. We observe
that all of our baselines perform significantly better on calls to external APIs
than local calls (Section 5.2).

5.1 Characteristics of method calls in Java

To study the non-localness of method calls, we take a sample of projects from
JEMMA, and measure the frequency of the various types of calls in these projects.
To account for possible differences due to project sizes, we select our sample
projects equitably: 100 small projects with less than 20 classes, 100 medium-
sized projects with 21-50 classes, 100 projects with 51-100 classes, and 100
projects with 100+ classes.

For each method defined in a project, we first count the number of callers
and number of callees in the call graph. Figure 6 shows the percentage of
methods and their direct caller/callee counts. We observe that significantly
high percentage of methods are not explicitly called, meaning, they have no
callers defined the project. There can be several reasons for this. Some methods
are called by frameworks, such as unit tests or event handlers. Other methods
rely on the same base mechanism (polymorphism) but the base class is defined
in the project. Since our call graphs only have links to the method that can
be statically determined, there are no links to the overridden methods in the
subclasses. We are currently investigating how to enrich our model to add
additional links to these methods. Finally, some methods may be called by
reflection; others are really never called, constituting dead code.

28 Karmakar et al.

Fig. 6 Number of callers and callees of a sample of the dataset

Regardless, from the count of the number of callers in Figure 6, we notice
that the greater majority of the methods have at least one or two unique caller
entities: indicating that a significant number of caller methods rely on these
callee methods for their functional tasks. Adding context from callee methods
could help models reason on a broader context of information.

From the count of the number of callees in Figure 6, we observe that a
little more than a quarter of methods have no callees in the project, thus
being either purely local or relying only on external calls beyond the project.
We intentionally exclude external api or library calls in the caller-callee counts,
since we want to study the calls defined in the context of the project.

The figure shows that the greater majority of methods indeed do have calls
to other methods defined in the project. Thus, models that wish to reason on
software at a more detailed level must take this into account.

Java Extensible dataset for Many ML4Code Applications 29

Fig. 7 Distribution of calls by type

To study the non-localness of method calls in the context of the project, we
classify all calls into four categories:

– Local calls. The entity is defined in the same file; thus, a machine learning
model that has a file context would be likely to see it.

– Package calls. The entity is defined in the same Java package (i.e., the
classes as in the same file directory).

– Project calls. The called entity is defined in the project, but in a different
package than the caller.

– API calls. The called entity is not defined in the project, but is a call to
an imported library.

Figure 7 shows the distribution of the calls. We can see that 20% of calls
are local calls; these are the calls whose callees are visible to the models that
learn from the entire file context, such as CoCoGum (Wang et al 2020); the
remaining 80% of calls are non-local and are not visible to models that learn
from the file context only. Of these, 12% are package calls; thus a model that
builds a context of the classes in the same directory to absorb a larger context
than the file would have visibility into these callees. On the other hand, 28%
of calls are project calls, thus models would need either a larger context, or the
ability to select from this larger context in order to have visibility in the callees.
Finally, API calls constitute 40% of all calls (inflated by the vast majority of
standard library calls). While these are out of reach for most models, a silver
lining is that, in practice, it is often possible to learn from their usage in other
projects, as modern large-scale source code models do.

30 Karmakar et al.

Table 6 Performance of the method call completion task according to method call type

Models Local Package Project API
MLP 0.259 0.111 0.143 0.330
CNN 0.236 0.140 0.203 0.462
LSTM 0.299 0.154 0.228 0.524
codeBERTa 0.530 0.265 0.388 0.857

5.2 Impact of non-localness on code completion

Having some insight on the characteristics of method calls in Java, we turn to
the issue of whether this can have an impact on the performance of models.
The study of Hellendoorn et al (2019a) investigated the differences between
code completions from synthetic benchmarks and real world completions. It
found that synthetic benchmarks that evaluate models on all the tokens in a
corpus underweighted the frequencies of method completions relative to real-
world completion, and that those were the most difficult. They also observed
that among method completions, the hardest ones were the ones from project
internal identifiers.

Hellendoorn’s study offers valuable insights but has limitations. It moti-
vates our choice to design a code completion task with much more data-points
that focuses exclusively on methods. Since the data for the real world comple-
tions was obtained by monitoring developers, it is extremely rich and of very
high quality, but relatively small (15,000 completions from 66 developers).
Second, the study evaluated RNNs with a closed vocabulary, which were thus
unable to learn new identifiers. Since then, open-vocabulary RNNs (Karam-
patsis et al 2020) and Transformers (Ciniselli et al 2021) have considerably
improved the state of the art.

We thus use JEMMA to analyse the performance of recent models on a variant
of the code completion task, specifically method call completion task. Informed
by the results of the previous section, we analyse separately the performance
of models on different strata of the test set, according to the categories defined
above: local calls, package calls, project calls and API calls.

Task definition: We define the method call completion task as follows. We
extract 1,000,000 methods from JEMMA, keeping 800,000 as training set, 100,000
as validation set, and 100,000 as test set. We define a masking task: for each
method, we mask one single method call at random. These methods can be
present in the same class (18% of the dataset), in another class in the same
package (10%), in another package in the system (26%), or imported from a
dependency (46%). The goal of the task is for a source code model to predict
the exact method name that was masked.

We then analyze the performance of three (very simple) baselines: an MLP,
a CNN, and a Bidirectional LSTM. Each of these model is of a small size, and has
a closed vocabulary of the 10,000 most common tokens in the training set. We
also include a model close to the state of the art: CodeBERTa , fine-tuned on

Java Extensible dataset for Many ML4Code Applications 31

our dataset. The accuracy on the test set is shown in Table 6. We can clearly
see that the performance of the various models are much higher on the API
calls than the other categories, with the second highest being the local calls;
the project calls and the package calls having the lowest performance. While
we can expect that different models would perform differently, the margin
between API calls and the other types of calls is clear enough to show that
the models perform much better at predicting API calls that can be learned
from other projects, than calls defined in the project.

5.3 Implications

Thus, drawing from the study on the characteristics of calls in Section 5.1,
specifically from the caller/callee numbers, and concluding from the analysis
results in Section 5.2, we see that: a) a large number of method contexts are
non-local, and b) source code models struggle to predict call completions of
methods defined in the same project. This nudges us to explore the notion
of designing and training source code models in a way that it can reason
over a larger context of information, at least at the project-level. It becomes
necessary to determine ways in which models could be made aware of the
inter-relationships that exist among code entities by providing a feature-rich
representation with as much context information that we can possibly fit.

6 OOW is the next OOV

The studies in the previous section show that software entities have complex
relationships that can affect the performance of models. This section provides
data to inform the design of possible architectures that can absorb a larger
context beyond source code entities at the method-level granularity. In par-
ticular, we focus on the size of this context, as deep learning models can be
strongly affected by the input size.

Machine learning models of code once struggled with Out-Of-Vocabulary
(OOV) issues (Hellendoorn and Devanbu 2017), until more recent models intro-
duced and adopted an open vocabulary (Karampatsis et al 2020). We argue
that the next problem to address is the Out-Of-Window (OOW) issue: all mod-
ern state-of-the-art models tend to have a fixed input size, which may not be
enough to fit the context needed. How to best use this limited resource is thus,
an open question.

6.1 Transformers, window sizes, and tokenizations

For many machine learning tasks, Transformers (Vaswani et al 2017) are now
the state of the art. Some transformer models that have achieved state-of-
the-art performance on source code tasks include include CodeBERT (Feng
et al 2020), CodeBERTa (Wolf et al 2019a), PLBART (Ahmad et al 2021) and

32 Karmakar et al.

GraphCodeBERT (Guo et al 2020). Codex (Chen et al 2021) is yet another of
these large pre-trained Transformer models, that has demonstrated compelling
competence on a variety of tasks without necessarily needing fine-tuning, rang-
ing from program synthesis and program summarization (Chen et al 2021) to
program repair (Prenner and Robbes 2021).

However, all Transformers that follow the classic architecture have a fixed
window sizes: for CodeBERT, it is 512 tokens, while for the largest Codex model
(codex-davinci), it is 4,096 tokens (a smaller version, codex-cushman, has a
window of 2,048 tokens). If an input is longer than the window, it is truncated.
Furthermore, the size of the window has a major impact on the performance
of the model. Transformers rely on self-attention, where the attention heads
attend to each pair of tokens: the complexity is hence quadratic, which renders
very large windows prohibitive in terms of training time and inference time.
This raises the question: for a given window size, how much code can we expect
to fit?

Since Transformers are open-vocabulary models, the tokens that they take
as input are actually subtokens, common subsequences of characters learned
from a corpus, rather than entire tokens. A word that would be unrecognized
by a closed-vocabulary model will, instead, be split up in several more common
subtokens. This means that the number of lexical tokens in a method does
not match the length of the method in terms of subtokens, and depends on
the corpus that was used to train the subword tokenizer. It is important to
note that both CodeBERT and Codex are not models trained from scratch on
source code: given the amount of time needed to train such a model from
scratch, previous models trained on English (RoBERTa for CodeBERT, a version
of GPT-3 for Codex) were fine-tuned on source code instead. This means that
both CodeBERT and Codex use a subword tokenizer that was not learned for
source code, but for English, which might lead to a sub-optimal tokenization.

To estimate the number of tokens that a method will take in the model’s in-
put window, we first selected a sample of 200,000 Java methods, and used sev-
eral subword tokenizers to estimate the ratio of subtokens that each subword
tokenizer will produce. We first noticed that the choice of subword tokenizer
has a significant impact on the produced tokenization, and consequently the
amount of code that can fit in a model’s input window. We used the following
tokenizers for our analyses.

◦ RoBERTa tokenizer. A byte-level BPE tokenizer, trained on a large En-
glish corpus, with a vocabulary of slightly more than 50,000 tokens. A
similar tokenizer is used by CodeBERT and Codex.

◦ CodeBERTa tokenizer. The tokenizer used by CodeBERTa. This tokenizer
was trained on source code from the CodeSearchNet corpus, which com-
prises of 2 million methods in 6 programming languages, including Java.

◦ Java BPE tokenizer. A tokenizer similar to CodeBERTa tokenizer, trained
on 200,000 Java methods from Maven, instead of several languages.

◦ Java Parser. A standard tokenizer from a Java Parser, that does not
perform sub-tokenizations. We use this as a baseline for our analyses.

Java Extensible dataset for Many ML4Code Applications 33

By comparing the average size of the tokenizations to the actual number of to-
kens, we find that the source-code specific tokenizations are considerably more
efficient than the English one. The CodeBERTa tokenizer learned on multi-
ple programming languages is, on average, slightly better, using 98% of the
tokens than the Java Parser tokenization. This is possible since some com-
mon token sequences can be merged in a single token (e.g, (); can be counted
as one token instead of three tokens). The learned Java BPE tokenizer is
even more efficient, using on average 85% of the tokens. This is possible since,
for instance, specific class names will be common enough that they can be
represented by a single token (e.g., ArrayIndexOutOfBoundsException). On
the other hand, the RoBERTa tokenizer is considerably less efficient, needing
126% of the lexical Java tokens.

Thus, the tokenization used can have a significant impact on the effective
window size of the models. With an equal vocabulary size, the most efficient,
language-specific encoding can fit close to 50% more effective tokens in the
same window size. For a window size of 512, a Java-specific tokenizer will, on
average, be able to effectively fit 602 actual tokens, while the English-specific
tokenizer—used by both CodeBERT and Codex—will be able to fit only 409
actual tokens.

6.2 Fitting code entities

Taking the same 400 projects as in the code completion study, we tokenize
the methods and the classes in these projects with the four tokenizers above.
We then estimate the size of higher-level entities (packages and projects) by
summing the token sizes of the classes in them. We compare these sizes with
various Transformer window size thresholds.

� Small . A window size of 256 tokens, representing a small transformer model

� Base. A window size of 512 tokens, representing a model with the same
size as CodeBERT (Feng et al 2020).

� Large. A window size of 1,024 tokens, which is the context size used by the
largest GPT-2 model (Radford et al 2019).

� XL. A window size of 2,048 tokens, which is the context size used by the
largest GPT-3 model (Brown et al 2020).

� XXL. A window size of 4,096, which is the context size used by the largest
Codex model (Chen et al 2021).

It is important to note that these models are very expensive to train. In prac-
tice, training a model with a Base window size of 512 tokens, from scratch,
is a significant endeavour inaccessible for most academic groups, leaving fine-
tuning as the only practical option. Only industry research groups or large
consortium of academics may have the resources necessary to train such large-
scale models. The largest models reach sizes for which even doing inference
becomes impractical.

34 Karmakar et al.

6.2.1 Methods

Figure 8 (a) shows the percentage of methods that fit within different window
size thresholds. We can see that even the Small model is able to comfortably
fit the vast majority of methods (over 94%). The choice of tokenization still
matters, as a more efficient tokenization can make up to 97% of methods fit
in the Small model. Overall, a Base model with a window size of 512 tokens
can fit 99% of the methods in our sample, while only extreme outliers do not
fit even in the XXL models with a limit of 4096 tokens.

6.2.2 Classes

We tokenize the entire source file to compute the context size needed for
classes. Figure 8 (b) shows the percentage of classes that fit within different
window size thresholds. We can see that models with the smaller window sizes
are beginning to struggle. A Small model with a token limit of only 256 tokens
will be able to process between 47-59% of the classes. A Base model would,
instead be able to process between 68 and 78% of the classes, while a Large
model would fit up to 90% of the classes. XL models can fit almost more than
95% of the classes on average, but some outliers (2-3%) will remain even for a
Codex-sized model.

Fig. 8 Percentage of context-fit for: (a) methods; (b) classes; (c) packages; (d) projects.

Java Extensible dataset for Many ML4Code Applications 35

6.2.3 Packages

Figure 8 (c) shows the percentage of packages that fit within different window
size thresholds. Models with smaller window sizes struggle significantly, with a
Small model able to fit only a 30 to 35% of the packages, and a Base model 42
to 50%, depending on the tokenization. A Large model succeeds in 55 to 65%
of the cases. We can clearly see that even the models with largest token limits
start to struggle while fitting packages into context: 69-76% fit in a window
size of 2048 tokens, and 81-86% fit in a window-size of 4096 tokens.

6.2.4 Projects

On average only half the projects can fit in the window sizes (Figure 8 (d)).
But since we expect that larger projects would behave differently, we present a
context-fit graph for projects based on size (Figure 9). We observe that while
models with large window sizes are able to fit 66-81% of small-sized projects
that have 20 or less classes, the rate drops drastically as project size increases—
falling to 14-28% for medium-sized projects. Beyond this, very few (less than
6%) of the larger projects can fit for any window-size. Of note, the largest
projects that do not fit the model window sizes, being the most complex, are
likely the ones for which the source code models might be the most useful.

Fig. 9 Percentage of context-fit for full projects by project sizes. A: up to 20 classes; B:
21-50 classes; C: 51-100 classes, D: more than 100 classes.

36 Karmakar et al.

6.3 Implications

Clearly, significant work is needed to find architectures that can fit contexts
at the project-level, especially if the model size is to be kept small enough to
be manageable. We also observe that while large-scale models can comfortably
fit most methods and classes, they still struggle with fitting larger contexts.

Furthermore, we find that a model that efficiently encodes its code input
using a code-specific tokenizer, is able to encode the same data in somewhat
less space. This leads to a greater amount of context-fitting. Therefore, we need
to encourage researchers and model architects to adopt such changes, instead
of relying on sub-tokenizations from tokenizers trained on English text.

It’s worth noting that classical Transformer models exhibit a quadratic
complexity in terms of the input size due to the attention layers. This con-
tributes to their issues in scaling beyond a threshold limit. Thus, reasoning at
the scale of packages or projects would require a rethink of the architecture,
such as using a Transformer variant which better handles longer sequences
such as a Reformer (Kitaev et al 2020), or another efficient Transformer (Tay
et al 2020b) which exhibits lower complexities as input size increases. Whether
this is sufficient is uncertain: efficient transformers can struggle with very long
sequences, as exhibited in specialized benchmarks (Tay et al 2020a).

While we focused specifically on Transformers as they have a fixed context
size window, other models will also be challenged by large input sizes. The
ASTs and graph representations of classes, packages, and projects will also
have scaling issues as the number of nodes to consider will grow very quickly.
Furthermore, Graph Neural Networks can also struggle with long-distance
relationships in the graph (Alon and Yahav 2020).

On the other hand, we see promise in an approach that is able to select
the input relevant to the task. Of note, recent work has started to go in this
direction for code summarization, both at the file level (Clement et al 2021)
and multiple files (Bansal et al 2021). Significant work lies ahead in devising
techniques that truly take into account a larger global context (Figure 10),
thus addressing the “Out-Of-Window” (OOW) problem; at a minimum, JEMMA
provides the tools to investigate this.

Fig. 10 Step-wise inclusion of greater context information

Java Extensible dataset for Many ML4Code Applications 37

7 Limitations

JEMMA is the only effort we are aware of in gathering enough data that is pre-
processed sufficiently to enable empirical research of machine learning models
that can reason on a more global context than the file or method level. Nev-
ertheless, it has several limitations. Some of these issues are inherited from
our use of 50K-C, while others are due to limitations in our pre-processing;
while the former will be hard to overcome (barring extensive additional data
collection), the latter could be mitigated by further processing from our side.

7.1 Limitations stemming from the use of 50K-C

Monolingual. JEMMA is comprised of projects in the Java programming lan-
guage only. This poses issues as to whether models that work well for Java
would also work well for other languages. The reason for this limitation is
twofold: 1) adding other languages at a similar scale would drastically in-
crease the already extremely significant time we invested in pre-processing
data, and 2) restricting to one language frees us from tooling issues: we don’t
need to settle on a “common denominator” in tool support (e.g., Infer sup-
ports few programming languages, and many of its analyses are limited to a
single programming language).

Monoversion. JEMMA is comprised of snapshots of projects, rather than multi-
ple project versions. This prevents us from using it for tasks that would rely
on multiple versions, or commit data, such as some program repair tasks. On
the other hand, this frees us from issues related to the evolution of software
systems, such as performing origin analysis (Godfrey and Zou 2005), which is
essential as refactorings are very common in software evolution, and can lead
to discontinuities in the history of entities, particularly for the most changed
ones (Hora et al 2018). Omitting versions also considerably reduces the size of
the dataset, which is already rather large as it is.

Static data only. While the projects included in 50K-C were selected because
they could be compiled, 50K-C provide no guarantees that they can be run.
Indeed, it is hard to know if a project can run, even if it can be compiled.
In case it can run, the project likely expects some input of some sort. This
leaves running test cases as the only option to reliably gather runtime data.
In our previous work in Smalltalk, where we performed an empirical study of
1,000 Smalltalk projects, we could run tests for only 16% of them (Callaú et al
2014). Thus, JEMMA makes no attempt at gathering properties that comes from
dynamic analysis tools at this time. In the future, JEMMA’s property mechanism
could be used to document whether a project has runnable test cases, as a first
step towards gathering runtime information. We could also expand the dataset
with the 76 projects coming from XCorpus, which were selected because they
are runnable (Dietrich et al 2017).

38 Karmakar et al.

7.2 Limitations stemming from our pre-processing

Incomplete compilation. While the projects in 50K-C were selected because
they were successfully compiled, we were not able to successfully recompile
all of them. Roughly 18% of the largest projects could not be compiled; this
number trends down for smaller projects. We are not always sure of the reasons
for this, although we suspect that issues related to dependencies might come
into play. This may add a bias to our data, in case the projects that we are
unable to compile are markedly different from the ones that we could compile.

Imprecisions in call graphs. The call graph extraction tool that we use has
some limitations that we inherit. In particular, handling methods called via
reflection is a known problem for static analysis (Bodden et al 2011); the call
graph extraction tool does not handle these cases. A second issue is related
to polymorphism, where it is impossible to know, in the absence of runtime
information, which of the implementations can be called. In this case, our call
graph has an edge to the most generic method declaration.

Inner classes. Our handling of inner classes is limited. Since inner classes are
contained in methods, the models can have access to their definitions. However,
we do not assign UUIDs to them or to the methods defined in them, as this
would significantly increase the complexity of our model (in terms of levels of
nesting in the hierarchy), while these cases are overall rare. Additional pre-
processing could handle these cases, but we do not expect this to become
necessary.

Class-level data. Since most machine learning models of code take methods as
inputs, we gave priority to this representation in our dataset. As a consequence,
our modeling of classes and packages is limited. While information about, for
instance, the class attributes is not explicitly modelled at this time, it is easily
accessible in the file-level feature graph representation, so that models that
wish to use this information can access it.

Incomplete preprocessing. At the time of writing, not all the representation
data is present for all the projects, due to the very computationally expensive
pre-processing that is needed. We started with the largest projects, and worked
our way down to the smaller ones. All of the basic metadata is present for all
of the projects. However, some of the smaller projects (the ones with less than
20 classes) will have their feature graph representation computed and added
to JEMMA in the coming weeks. A second category of incomplete pre-processing
is that some tools will very occasionally fail on some very specific input (e.g.,
the parser used by an analysis tool may handle some edge cases differently
than the official parser).

Java Extensible dataset for Many ML4Code Applications 39

8 Conclusion

In this article, we presented JEMMA, a dataset and workbench to support re-
search in the design and evaluation of source code machine learning models.
Seen as a dataset, JEMMA is built upon the 50K-C dataset of 50,000 compilable
Java projects, which we extend in several ways. We add multiple source code
representations at the method level, to allow researchers to experiment on the
effectiveness of these, and their variations. We add a project-level call graph, so
the researchers can experiments with models that consider multiple methods,
rather than a single method or a single file. Finally, we add multiple source
code properties, obtained by running source code static analyzers—ranging
from basic metrics to advanced analyses characteristics based on abstract in-
terpretation.

Seen as a workbench, JEMMA APIs help achieve a variety of objectives. JEMMA
can extend itself with new properties and representations. It can be used to
define machine learning tasks, using the properties and the representations
themselves as basis for prediction tasks. The properties defined in JEMMA can
be used to get insight on the performance of tasks and pinpoint possible sources
of bias. Finally, JEMMA provides all the tools to experiment with new represen-
tations that combine the existing ones, allowing the definition of models that
can learn from larger contexts than a single method snippet.

Alongside, we have provided examples of usage of JEMMA. We have shown
how JEMMA can be used to define a metric prediction and a method call comple-
tion task. We have also shown how JEMMA can be used for empirical studies. In
particular, we investigated how the performance of our code completion task
was impacted by the type of identifier to predict, showing that models per-
formed much better on API methods than on methods defined in the project,
indicating the need for models that take into account the project’s context.
Finally, we have shown that taking into account this global context will be
challenging, by studying its size. While state of the art transformer models
such as CodeBERT can fit most methods in the dataset, fitting package-level
or higher context is much more challenging, even for the largest models such
as OpenAI’s Codex model. This indicates that significant effort lies ahead in
defining models able to process this amount of data, a task that we hope JEMMA
will support the community in achieving.

References

Ahmad W, Chakraborty S, Ray B, Chang KW (2021) Unified pre-training for program un-
derstanding and generation. In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Association for Computational Linguistics, DOI 10.18653/v1/2021.naacl-main.
211

Allamanis M (2019) The adverse effects of code duplication in machine learning models of
code. In: Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, pp 143–153

40 Karmakar et al.

Allamanis M, Sutton C (2013) Mining source code repositories at massive scale using lan-
guage modeling. In: 2013 10th Working Conference on Mining Software Repositories
(MSR), IEEE, pp 207–216

Allamanis M, Brockschmidt M, Khademi M (2017) Learning to represent programs with
graphs. arXiv preprint arXiv:171100740

Allamanis M, Barr ET, Devanbu P, Sutton C (2018) A survey of machine learning for big
code and naturalness. ACM Computing Surveys (CSUR) 51(4):1–37

Allamanis M, Barr ET, Ducousso S, Gao Z (2020) Typilus: Neural type hints. In: Proceedings
of the 41st acm sigplan conference on programming language design and implementation,
pp 91–105

Alon U, Yahav E (2020) On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:200605205

Alon U, Brody S, Levy O, Yahav E (2018) code2seq: Generating sequences from structured
representations of code. arXiv preprint arXiv:180801400

Alon U, Zilberstein M, Levy O, Yahav E (2019) code2vec: Learning distributed representa-
tions of code. Proceedings of the ACM on Programming Languages 3(POPL):1–29

Bansal A, Haque S, McMillan C (2021) Project-level encoding for neural source code sum-
marization of subroutines. arXiv preprint arXiv:210311599

Barone AVM, Sennrich R (2017) A parallel corpus of Python functions and documenta-
tion strings for automated code documentation and code generation. arXiv preprint
arXiv:170702275

Beery S, Van Horn G, Perona P (2018) Recognition in terra incognita. In: Proceedings of
the European conference on computer vision (ECCV), pp 456–473

Bodden E, Sewe A, Sinschek J, Oueslati H, Mezini M (2011) Taming reflection: Aiding
static analysis in the presence of reflection and custom class loaders. In: 2011 33rd
International Conference on Software Engineering (ICSE), IEEE, pp 241–250

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P,
Sastry G, Askell A, et al (2020) Language models are few-shot learners. arXiv preprint
arXiv:200514165

Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M, O’Hearn P, Papakon-
stantinou I, Purbrick J, Rodriguez D (2015) Moving fast with software verification. In:
NASA Formal Methods Symposium, Springer, pp 3–11

Callaú O, Robbes R, Tanter E, Röthlisberger D, Bergel A (2014) On the use of type pred-
icates in object-oriented software: The case of smalltalk. In: Proceedings of the 10th
ACM Symposium on Dynamic languages, pp 135–146

Chen M, Tworek J, Jun H, Yuan Q, Pinto HPdO, Kaplan J, Edwards H, Burda Y, Joseph
N, Brockman G, et al (2021) Evaluating large language models trained on code. arXiv
preprint arXiv:210703374

Ciniselli M, Cooper N, Pascarella L, Poshyvanyk D, Di Penta M, Bavota G (2021) An
empirical study on the usage of bert models for code completion. arXiv preprint
arXiv:210307115

Clement CB, Lu S, Liu X, Tufano M, Drain D, Duan N, Sundaresan N, Svyatkovskiy A
(2021) Long-range modeling of source code files with ewash: Extended window access
by syntax hierarchy. arXiv preprint arXiv:210908780

Cordy JR, Roy CK (2011) The nicad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension, IEEE, pp 219–220

De Roover C, Lämmel R, Pek E (2013) Multi-dimensional exploration of api usage. In: 2013
21st International Conference on Program Comprehension (ICPC), IEEE, pp 152–161

DeFreez D, Thakur AV, Rubio-González C (2018) Path-based function embedding and its
application to error-handling specification mining. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp 423–433

Dietrich J, Schole H, Sui L, Tempero E (2017) Xcorpus–an executable corpus of java pro-
grams

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for
analyzing ultra-large-scale software repositories. In: 2013 35th International Conference
on Software Engineering (ICSE), IEEE, pp 422–431

Java Extensible dataset for Many ML4Code Applications 41

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D, et al
(2020) Codebert: A pre-trained model for programming and natural languages. arXiv
preprint arXiv:200208155

Godfrey MW, Zou L (2005) Using origin analysis to detect merging and splitting of source
code entities. IEEE Transactions on Software Engineering 31(2):166–181

Guo D, Ren S, Lu S, Feng Z, Tang D, Liu S, Zhou L, Duan N, Svyatkovskiy A, Fu S, et al
(2020) Graphcodebert: Pre-training code representations with data flow. arXiv preprint
arXiv:200908366

Gururangan S, Swayamdipta S, Levy O, Schwartz R, Bowman SR, Smith NA (2018) Anno-
tation artifacts in natural language inference data. arXiv preprint arXiv:180302324

Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors.
In: 2018 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, pp 317–328

Hellendoorn VJ, Devanbu P (2017) Are deep neural networks the best choice for modeling
source code? In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp 763–773

Hellendoorn VJ, Proksch S, Gall HC, Bacchelli A (2019a) When code completion fails: A case
study on real-world completions. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), IEEE, pp 960–970

Hellendoorn VJ, Sutton C, Singh R, Maniatis P, Bieber D (2019b) Global relational models
of source code. In: International conference on learning representations

Hindle A, Godfrey MW, Holt RC (2008) Reading beside the lines: Indentation as a proxy
for complexity metric. In: 2008 16th IEEE International Conference on Program Com-
prehension, IEEE, pp 133–142

Hindle A, Barr ET, Gabel M, Su Z, Devanbu P (2016) On the naturalness of software.
Communications of the ACM 59(5):122–131

Hora A, Silva D, Valente MT, Robbes R (2018) Assessing the threat of untracked changes
in software evolution. In: Proceedings of the 40th International Conference on Software
Engineering, pp 1102–1113

Hovemeyer D, Pugh W (2004) Finding bugs is easy. Acm sigplan notices 39(12):92–106
Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M (2019) Codesearchnet challenge:

Evaluating the state of semantic code search. arXiv preprint arXiv:190909436
Iyer S, Konstas I, Cheung A, Zettlemoyer L (2016) Summarizing source code using a neural

attention model. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp 2073–2083

Kanade A, Maniatis P, Balakrishnan G, Shi K (2020) Learning and evaluating contextual
embedding of source code. In: International Conference on Machine Learning, PMLR,
pp 5110–5121

Karampatsis RM, Sutton C (2020) How often do single-statement bugs occur? the
manysstubs4j dataset. In: Proceedings of the 17th International Conference on Min-
ing Software Repositories, pp 573–577

Karampatsis RM, Babii H, Robbes R, Sutton C, Janes A (2020) Big code!= big vocabu-
lary: Open-vocabulary models for source code. In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), IEEE, pp 1073–1085

Kitaev N, Kaiser L, Levskaya A (2020) Reformer: The efficient transformer. arXiv preprint
arXiv:200104451

LeClair A, McMillan C (2019) Recommendations for datasets for source code summarization.
arXiv preprint arXiv:190402660

LeClair A, Jiang S, McMillan C (2019) A neural model for generating natural language
summaries of program subroutines. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), IEEE, pp 795–806

Lin XV, Wang C, Zettlemoyer L, Ernst MD (2018) Nl2bash: A corpus and semantic parser for
natural language interface to the linux operating system. arXiv preprint arXiv:180208979

Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) Déjàvu: a
map of code duplicates on github. Proceedings of the ACM on Programming Languages
1(OOPSLA):1–28

Lämmel R, Pek E, Starek J (2011) Large-scale, ast-based api-usage analysis of open-source
java projects. pp 1317–1324, DOI 10.1145/1982185.1982471

42 Karmakar et al.

Ma Y, Dey T, Bogart C, Amreen S, Valiev M, Tutko A, Kennard D, Zaretzki R, Mockus
A (2021) World of code: Enabling a research workflow for mining and analyzing the
universe of open source vcs data. Empirical Software Engineering 26(2):1–42

Martins P, Achar R, Lopes CV (2018) 50k-c: A dataset of compilable, and compiled, java
projects. In: 2018 IEEE/ACM 15th International Conference on Mining Software Repos-
itories (MSR), IEEE, pp 1–5

McCoy RT, Pavlick E, Linzen T (2019) Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:190201007

Milojkovic N, Caracciolo A, Lungu MF, Nierstrasz O, Röthlisberger D, Robbes R (2015)
Polymorphism in the spotlight: Studying its prevalence in java and smalltalk. In: 2015
IEEE 23rd International Conference on Program Comprehension, IEEE, pp 186–195

Mir AM, Latoskinas E, Gousios G (2021) Manytypes4py: A benchmark python dataset for
machine learning-based type inference. arXiv preprint arXiv:210404706

Mou L, Li G, Zhang L, Wang T, Jin Z (2016) Convolutional neural networks over tree
structures for programming language processing. In: Thirtieth AAAI Conference on
Artificial Intelligence

Palsberg J, Lopes CV (2018) Njr: A normalized java resource. In: Companion Proceedings
for the ISSTA/ECOOP 2018 Workshops, pp 100–106

Parr T (2013) The definitive ANTLR 4 reference. Pragmatic Bookshelf
Pietri A, Spinellis D, Zacchiroli S (2019) The software heritage graph dataset: public software

development under one roof. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), IEEE, pp 138–142

Pradel M, Sen K (2018) Deepbugs: A learning approach to name-based bug detection.
Proceedings of the ACM on Programming Languages 2(OOPSLA):1–25

Prenner JA, Robbes R (2021) Automatic program repair with openai’s codex: Evaluating
quixbugs. 2111.03922

Prenner JA, Robbes R (2022) Making the most of small software engineering datasets with
modern machine learning. IEEE Transactions on Software Engineering p in press

Puri R, Kung DS, Janssen G, Zhang W, Domeniconi G, Zolotov V, Dolby J, Chen J,
Choudhury M, Decker L, et al (2021) Project codenet: A large-scale ai for code dataset
for learning a diversity of coding tasks. arXiv preprint arXiv:210512655

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al (2019) Language models
are unsupervised multitask learners. OpenAI blog 1(8):9

Raemaekers S, Van Deursen A, Visser J (2013) The maven repository dataset of met-
rics, changes, and dependencies. In: 2013 10th Working Conference on Mining Software
Repositories (MSR), IEEE, pp 221–224

Raychev V, Bielik P, Vechev M (2016) Probabilistic model for code with decision trees.
ACM SIGPLAN Notices 51(10):731–747

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) Sourcerercc: Scaling code clone
detection to big-code. In: Proceedings of the 38th International Conference on Software
Engineering, pp 1157–1168

Sawant AA, Bacchelli A (2017) fine-grape: fine-grained api usage extractor–an approach and
dataset to investigate api usage. Empirical Software Engineering 22(3):1348–1371

Schwarz N, Lungu M, Robbes R (2012) On how often code is cloned across repositories. In:
2012 34th International Conference on Software Engineering (ICSE), IEEE, pp 1289–
1292

Spinellis D (2017) A repository of unix history and evolution. Empirical Software Engineer-
ing 22(3):1372–1404

Svajlenko J, Roy CK (2015) Evaluating clone detection tools with bigclonebench. In: 2015
IEEE international conference on software maintenance and evolution (ICSME), IEEE,
pp 131–140

Tay Y, Dehghani M, Abnar S, Shen Y, Bahri D, Pham P, Rao J, Yang L, Ruder S, Metzler
D (2020a) Long range arena: A benchmark for efficient transformers. arXiv preprint
arXiv:201104006

Tay Y, Dehghani M, Bahri D, Metzler D (2020b) Efficient transformers: A survey. arXiv
preprint arXiv:200906732

Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton H, Noble J (2010) The
qualitas corpus: A curated collection of java code for empirical studies. In: 2010 Asia

Java Extensible dataset for Many ML4Code Applications 43

Pacific Software Engineering Conference, IEEE, pp 336–345
Terra R, Miranda LF, Valente MT, Bigonha RS (2013) Qualitas. class corpus: A compiled

version of the qualitas corpus. ACM SIGSOFT Software Engineering Notes 38(5):1–4
Tufano M, Watson C, Bavota G, Penta MD, White M, Poshyvanyk D (2019) An empirical

study on learning bug-fixing patches in the wild via neural machine translation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 28(4):1–29

Utture A, Kalhauge CG, Liu S, Palsberg J (2020) Njr-1 dataset. DOI 10.5281/zenodo.
4839913, URL https://doi.org/10.5281/zenodo.4839913

Vasic M, Kanade A, Maniatis P, Bieber D, Singh R (2019) Neural program repair by jointly
learning to localize and repair. arXiv preprint arXiv:190401720

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I
(2017) Attention is all you need. In: Advances in neural information processing systems,
pp 5998–6008

Wang K, Christodorescu M (2019) Coset: A benchmark for evaluating neural program em-
beddings. arXiv preprint arXiv:190511445

Wang Y, Du L, Shi E, Hu Y, Han S, Zhang D (2020) Cocogum: Contextual code summa-
rization with multi-relational gnn on umls. Tech. rep., Microsoft, Tech. Rep. MSR-TR-
2020-16, May 2020.[Online]. Available: https . . .

Wei J, Goyal M, Durrett G, Dillig I (2020) Lambdanet: Probabilistic type inference using
graph neural networks. arXiv preprint arXiv:200502161

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf
R, Funtowicz M, Brew J (2019a) Huggingface’s transformers: State-of-the-art natural
language processing. CoRR abs/1910.03771, URL http://arxiv.org/abs/1910.03771,
1910.03771

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Fun-
towicz M, et al (2019b) Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:191003771

Yao Z, Weld DS, Chen WP, Sun H (2018) StaQC: A systematically mined question-code
dataset from Stack Overflow. In: Proceedings of the 2018 World Wide Web Conference,
pp 1693–1703

Yin P, Deng B, Chen E, Vasilescu B, Neubig G (2018) Learning to mine aligned code and
natural language pairs from stack overflow. In: 2018 IEEE/ACM 15th international
conference on mining software repositories (MSR), IEEE, pp 476–486

Yu T, Zhang R, Yang K, Yasunaga M, Wang D, Li Z, Ma J, Li I, Yao Q, Roman S,
et al (2018) Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. arXiv preprint arXiv:180908887

Zavershynskyi M, Skidanov A, Polosukhin I (2018) Naps: Natural program synthesis dataset.
arXiv preprint arXiv:180703168

Zhou Y, Liu S, Siow J, Du X, Liu Y (2019) Devign: Effective vulnerability identification by
learning comprehensive program semantics via graph neural networks. arXiv preprint
arXiv:190903496

44 Karmakar et al.

Appendix A Code Examples

Snippet A.1 Defining and adding new property to JEMMA: This snippet shows how to add
the output of the Metrix++ code analysis tool as a new property to the JEMMA dataset.

Java Extensible dataset for Many ML4Code Applications 45

Snippet A.2 Generating new representations for a masking task: This example shows how
to generate new representations for a masking task.

46 Karmakar et al.

Snippet A.3 Running a Transformer model: Evaluating a transformer model on a prediction
task, specifically the cyclomatic complexity prediction task.

Java Extensible dataset for Many ML4Code Applications 47

Snippet A.4 (a) Building a Context: This example shows how to combine a textual rep-
resentation of a method with additional context from its direct callees.

Snippet A.4 (b) Building a Context: This example shows how to combine a code2vec
representation of a method with additional context from its direct callees.

