
LM-Powered: Bringing Neural Language Models to Your IDE
Hlib Babii

Free University of Bozen-Bolzano
Bolzano, Italy

hlibbabii@gmail.com

Moritz Griesser
Free University of Bozen-Bolzano

Bolzano, Italy
moritz.griesser@gmail.com

Andrea Janes
Free University of Bozen-Bolzano

Bolzano, Italy
ajanes@unibz.it

Romain Robbes
Free University of Bozen-Bolzano

Bolzano, Italy
rrobbes@unibz.it

ABSTRACT
We present LM-Powered, an extension to the Visual Studio Code
IDE which uses the power and the versatility of Neural Language
Models (NLM) to assist developers in their everyday routines on
a number of tasks such as code completion, risky code visualiza-
tion, natural language code search, and code folding. LM-Powered
also provides features for researchers to debug and visualize the
performance of NLMs. Thanks to its flexible architecture, the ex-
tension is not bound to a specific NLM and allows to seamlessly
switch between NLMs under the hood. The video demonstration of
LM-Powered is available at https://youtu.be/FnzzhJfZtIQ.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Naturalness of code, Neural Language Models, Software tools
ACM Reference Format:
Hlib Babii, Moritz Griesser, Andrea Janes, and Romain Robbes. 2022. LM-
Powered: Bringing Neural Language Models to Your IDE. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The state of practice in IDEs is to use static code analysis to aid
software development (e.g., style checking, code completion, detec-
tion of bugs and potential problems, etc.). Lately, a lot of research
exploits the repetitive nature of code [9] to build machine learning
models of source code [1].

As a result, a number of tools that facilitate software development
have emerged. Cacheca [6] enhances code completion provided
by the Eclipse IDE by utilizing an n-gram Language Model (LM)
with a cache. More recently, TabNine [12] uses an Neural LM to
provide code completion. Visual Studio IntelliCode [4] is another

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

tool that provides AI-assisted context-aware code completion, as
well as code style assistance. Hatari [18] identifies the riskiest lo-
cations in the code based on version control history. DeepCS [7]
implements natural language code search by embedding a query
and code snippets into high-dimensional vectors and finding the
snippet which corresponds to the vector closest to the query vector.
Tassal [5] uses a topic model to fold the code which it considers the
least informative, in this way performing code summarization.

All these tools concentrate on a single task. In this demo, we
show that a Neural Language Model (NLM) can support a variety of
software engineering tasks. An LM is trained on a large corpus of
text, and defines a probability distribution of a sequence of tokens.
LMs can be used in two ways: 1) to predict the most likely next
tokens, given a context, and 2) to measure the probability of a
sequence of tokens. NLMs are trained in an unsupervised fashion
by repeatedly predicting the next token in their training corpus.
Research has shown that this training objective allow NLMs to be
versatile: they can be used with little [11, 16] to no adaptation [14]
to perform a number of different tasks.

We present LM-Powered, a tool implemented as an extension
for the Visual Studio Code (VSC) IDE. LM-Powered uses an NLM
to provide features such as code completion, risky code visual-
ization, code search, and code folding. We discuss the features of
LM-Powered (also for LM researchers and developers) in detail
in Section 2. An important question in this context is also how
to deploy and use LMs in production; often, LMs are not moved
anywhere beyond the researcher’s workstation. We describe the
approach used in LM-Powered in Section 3. NLMs have a reputation
of having high resource requirements (i.e., long training time, GPU
acceleration). However, this mostly applies to training, which needs
to be done only once and in advance. Inference, on the other hand,
can be often done in real time without the use of a GPU. We discuss
performance aspects in Section 4.

The script to install LM-Powered and the source code can be
downloaded from https://github.com/giganticode/lm-powered. The
demo video is available at https://youtu.be/FnzzhJfZtIQ.

2 FEATURES
In this section we describe the features of LM-Powered in detail and
illustrate them in Figure 1. We will refer to the different fragments
of this figure in the following subsections. We note that our focus
is to showcase the versatility of NLMs, rather than obtaining the
best possible results for each task. State of the art results can be

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Hlib Babii, Moritz Griesser, Andrea Janes, and Romain Robbes

Figure 1: Overview of LM-Powered features

achieved by fine-tuning the NLM to a specific task, as our work on
code completion shows [13], but exceeds the scope of this paper.

2.1 Code completion
The advantage of NLM-based code completion compared to static
analysis is that NLMs are not limited to predicting information from
the local scope: they can also use knowledge extracted from the
thousands of projects they have been trained on. What makes code
completion with NLMs even more appealing is that the prediction
of the next token is an ability that they naturally possess. Therefore,
the implementation of code completion is as simple as querying
the next token from the model. To be more precise: sometimes we
have to query not a single but multiple sub-tokens. The reason for
this is that our NLMs operate on the sub-token level. For sub-token
level models, the problem of predicting the next token becomes a
problem of predicting multiple sub-tokens. We use beam search as
a common approach to tackle this task [13].

LM-Powered queries the next token on the user’s request (via
keyboard shortcuts) or when some event occurs, e.g. ‘.’ is entered. In
Figure 1, Fragment 1 shows LM-Powered proposing a new method
name. Notice how the proposals include generic names (toString),
and others tailored to the context (toJsonString).

2.2 Risky code visualization
There are many situations when a developer wants to see the code
sections that are likely to contain problems, for example, while
doing code reviews, when working on technical debt reduction, etc.

Moreover, getting this information in real-time at almost no price
during actual code writing can be helpful as well.

LMs assign probabilities to sequences of tokens. Good LMs assign
high probabilities to common code, and low ones to rarely seen
code [15]. We use this property to spot suspicious code. We ‘ask’
the LM to estimate the probability of every line of code and based
on that mark each line with a color shade between red and green
(yellow being somewhere in between). The color is on the green
side if the line is assigned a high probability, meaning it is of low
risk. If a line gets a low probability value, it is colored with a shade
of red.

A seen in Fragment 2, most of the code is marked with shades of
green. There are some yellow lines e.g. Timber.e(e, "toJson");,
which is according to the model not a common way to handle an
exception. A typo 1json in line 65 does not remain unnoticed and
is colored in a shade of red.

The evaluation is done for the whole project after it is loaded
into the IDE. Once the user changes a file, this file is reevaluated.

Treemap. It is possible to see the locations of suspicious code
not only on the file, but also on the project level using the treemap
visualization feature (see Fragment 3). It uses colors in the same
way as explained above: files and folders are colored in red if they
are considered to be on average risky, green otherwise.

Token-level visualization. If, on the contrary, a lower-level
view is needed, LM-Powered can visualize risk levels for individual
tokens as can be seen in Fragment 4. This can be useful if it is
not clear to the developer which tokens in the line raise concerns.
Notice how LM-Powered highlights the getId, that returns void,
and getTitle that appears to return the wrong attribute (url).

LM-Powered: Bringing Neural Language Models to Your IDE Conference’17, July 2017, Washington, DC, USA

uses

Developer
[Person]

Visual Studio Code
[Application]

reads from
[HTTP]

sends
evaluation

[JSON]

LM Server
[HTTP server]

Preprocesses and evaluates code,
looks up and downloads model

LM-Powered
[Software system]

LM Repository
[Web server]

Stores trained LMs

uses

langmodels
[Library]

Inference over
language
models

dataprep
[Library]

Preprocesses
code

sends
code

[JSON]

LM-Powered
[Extension]

Augments code, displays
visualizations, caches

results

Figure 2: Architecture of LM-Powered

2.3 Natural language code search
Natural language code search allows looking for code snippets in
the project that most closely correspond to a user defined query.
The idea behind its implementation is to split the project into short
code snippets and feed them one by one to the LM. After every
snippet, we query the LM for the estimated probability of seeing the
query in a form of a comment, given the code snippet as a context.
For example, suppose that we are evaluating the relevance of a
piece of UI code, when the query is about the database concerns;
the NLM would estimate that the probability of the query, given
this code snippet, is low. Those locations where the probability is
above a certain threshold are considered a match.

2.4 Code folding
Code folding is the replacement of multiple lines of code with a
single line. This line can contain a special token and/or the summa-
rization of the folded code with the purpose of hiding ‘uninteresting’
pieces of code. It is common for IDEs to use this feature to hide
boilerplate code such as getters/setter, and can be useful to find
‘interesting’ code faster, for example, if the file is large.

LM-Powered currently uses folding to hide the code that is not
considered risky by the LM (see Fragment 5 where lines with class
member fields are collapsed). Another feature (still under develop-
ment) is a better visualization of the results of a search by folding
all the code the query was not matched against.

2.5 Features for LM researchers
Since language modeling is a central concept on top of which LM-
Powered is built, the availability of a toolkit for LM debugging
and visualization is quite natural. While the target audience of the
extension is developers, LM-Powered contains a few features LM
researchers can also benefit from.

Token-level debugging. To debug and improve the perfor-
mance of an LM in the per-token risk visualization mode, the user
can see how the LM performs on each token separately. In addition
to color visualization, the cross-entropy values can be seen when
hovering over the token of interest: see Fragment 6.

Switching between language models. The extension itself is
decoupled from the specific LM being used. The LM researcher
can easily change the LM currently being used, e.g. to a better
performing one, to see the improvement of predictions, search, etc.

LM comparison. We have developed a stand-alone visualiza-
tion that compares the performance of two LMs; we are currently
integrating it in LM-Powered. The visualization also highlights
tokens or lines with colors. A token or a line is green if the tested
LM performs better than the baseline LM, and red if vice versa. The
intensity of the color indicates the magnitude of the difference.

3 ARCHITECTURE
Figure 2 shows the three major components of LM-Powered: the
extension itself, the Language Model Server (LM Server), and the
Language Model Repository (LM Repository). We depict the ar-
chitecture in the form of a container diagram according to the
C4 model notation [3] also showing important components and
libraries inside the containers.

The extension runs inside VSC and interacts with the user. The
LM server processes requests from the extension and does most of
the computations including inference on LMs. The LM repository
stores trained LMs. All these components run as separate processes
and communicate with each other via HTTP. In a production sce-
nario, the LM Server can run in the cloud (possibly with the use of
GPU if there is a need for exceptional performance). However, it
can also run locally either on a GPU, or on a CPU.

When the extension is started, the LM Server loads an LM into
memory. It first looks up the LM in its disk cache on the disk and,
if absent, downloads it from the LM repository. For each client, an
LM Server has to manage a separate LM since LMs are stateful and
their state depends on the current context (the project loaded, the
file opened, the line being edited at the moment).

When a project is loaded in VSC, LM-Powered sends a request
to the LM Server to evaluate the project’s code. For different tasks,
the payload of the request varies. For search, the whole project is
uploaded, whereas for code completion only a certain number of
tokens before the cursor are sent within the request.

Apart from the HTTP server, which processes requests from
the extension, the LM Server relies on the dataprep and langmodels
libraries. The dataprep library preprocesses the code before it is used
by the LM. The library makes sure that the code is preprocessed in
the same way it was for training, ensuring that the LM will be able
to ‘understand’ it correctly. The langmodels library is responsible
for inference and returning information required by the tasks.

Once the extension receives the results from the server, it creates
the visualization. Requests related to different tasks are contin-
uously sent to the LM Server. Some are sent within some time

Conference’17, July 2017, Washington, DC, USA Hlib Babii, Moritz Griesser, Andrea Janes, and Romain Robbes

Table 1: Performance of the model with 27.7 M parameters.

Disk space 350 MB
RAM 108 MB
Risk calculation speed 56 LOC/s
Code completion time 340 ms

interval, some are sent after a file has been changed or after the
user triggered it implicitly by a key combination.

The extension does not depend on the architecture of the un-
derlying LM, on the way how it was trained, etc. The architecture
allows to plug-in new LMs and switch between LMs. Once a better
model is trained and uploaded to the LM Repository, the extension
can seamlessly switch to it.

Several performance-related architectural decisions were made.
For risky code visualization, the results of the queries are cached and
saved on disk. The langmodels library does not need to be invoked
unless the code changes, even after the IDE restarts. Also, many
requests are done ahead of time in the background. For example,
for the risky code visualization task, all the files in the project are
evaluated as soon as the project is loaded. Another optimization
exists for code completion: when the user changes the location of
the cursor, the context before the cursor is sent to the LM Server
ahead of time to suggest code completions with short delays. In
situations where speed is much more important than the accuracy
of the results, the context or the beam size that is used for code
completion can be reduced.

4 PERFORMANCE
There are two important aspects of the performance of LM-Powered:
the accuracy of the results and the responsiveness. The former as-
pect entirely depends on the accuracy of the underlying LM. There-
fore it can be evaluated separately, outside of the context of exten-
sion. We refer the reader to our previous work [13] where we exten-
sively evaluate our NLMs. The default NLM used in LM-Powered
is an LSTM trained on more than 10k projects [2], pre-processed
with BPE [17] with 10k merges. The model uses embedding vectors
with 1024 dimensions, and 3 hidden layers of 1024 hidden units.

Notwithstanding the excellent predictive performance of the
engine, the extensionmight be of little use if it could not handle user
requests reasonably fast. For this reason, the runtime characteristics
of the extension are crucial. We show that even using our largest
model, that contains 27.7M trainable parameters, LM-Powered does
not slow down the IDE. The evaluation is done on a consumer-grade
laptop with 2.3 GHz Intel Core i5. Note that for the evaluation the
LM Server was run locally, and a CPU was used for inference, to
show the worst-case scenario (a GPU being 5-10X faster).

The evaluation summary can be seen in table 1. One instance of
the model consumes 108MB of RAM; multiple models can coexist
if necessary. The code completion request is performed on average
in 340ms, which is an acceptable delay for an interactive request.
For risky code visualization in one second probabilities for 56 lines
of code are calculated. This is acceptable if requests are done in the
background and cached. If the user chose to run LM Server locally,
the model would require 350MB of storage on their computer.

There are approaches to make models smaller and faster while
keeping their performance at the similar levels than larger models,
such as distilling a large model in a smaller one [10], quantization
of floating points weights to discrete integers, and pruning of small
weights [8]. We plan to investigate these approaches in future work.

5 CONCLUSIONS
We show that a trained-once NLM can be used to solve several
tasks, such as risky code visualization, code completion, natural
language code search, and code folding. We implement these tasks
in LM-Powered, an extension for Visual Studio Code. We believe
that LM-Powered can increase developer’s productivity without
being a significant burden on the IDE. Code completion can be done
in a fraction of a second. For risk visualization, the pre-processing
of a file with 100 LOC takes less than two seconds. The extension
itself is decoupled from the LM being used which allows plugging in
at runtime a new, better-performing LM, once one has been trained.
With developers being a primary target audience of the extension,
LM researchers can also benefit from features that simplify the
debugging of LMs and visualization of their performance.

ACKNOWLEDGEMENTS
We thank Ivica Stanimirovic for his help with creating the video
demonstration and giving valuable feedback.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018).

[2] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories
at massive scale using language modeling. In Proceedings of MSR 2013.

[3] Simon Brown. 2015. The Art of Visualising Software Architecture. leanpub.com.
[4] Microsoft Corporation. 2019. IntelliCode. https://docs.microsoft.com/en-gb/

visualstudio/intellicode
[5] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,

Mirella Lapata, and Charles Sutton. 2016. TASSAL: Autofolding for source code
summarization. In Proceedings of ICSE 2016.

[6] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.
2015. Cacheca: A cache languagemodel based code suggestion tool. In Proceedings
of ICSE 2015-Volume 2.

[7] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of ICSE 2018.

[8] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[9] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proceedings of ICSE 2012.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[11] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[12] TabNine Inc. 2019. TabNine. https://tabnine.com
[13] Rafael Karampatsis, Hlib Babii, Andrea Janes, Charles Sutton, and Romain Robbes.

2020. Big Code != Big Vocabulary: Open-Vocabulary Models for Source Code. In
Proceedings of ICSE 2020. in press.

[14] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog 1, 8 (2019).

[15] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the" naturalness" of buggy code.
In Proceedings of ICSE 2016.

[16] Romain Robbes and Andrea Janes. 2019. Leveraging small software engineering
data sets with pre-trained neural networks. In Proceedings of ICSE (NIER) 2019.

[17] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine
translation of rare words with subword units. In Proceedings of ACL 2016.

[18] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. Hatari: raising
risk awareness. In ACM SIGSOFT Software Engineering Notes, Vol. 30.

https://docs.microsoft.com/en-gb/visualstudio/intellicode
https://docs.microsoft.com/en-gb/visualstudio/intellicode
https://tabnine.com

	Abstract
	1 Introduction
	2 Features
	2.1 Code completion
	2.2 Risky code visualization
	2.3 Natural language code search
	2.4 Code folding
	2.5 Features for LM researchers

	3 Architecture
	4 Performance
	5 Conclusions
	References

