
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Anonymous Authors1

Abstract
Source code, with its rich structure and semantics,
has attracted significant research interest. How-
ever, machine learning models of code are very
often designed to perform well on a single task,
failing to capture code’s multifaceted nature. To
address this, we present GLUECODE, a bench-
mark of diverse tasks to evaluate machine learn-
ing models across multiple source code represen-
tations. Crucially, GLUECODE acknowledges that
code is composed of multiple interacting entities,
requiring models to leverage both local reasoning
(within an entity) and global reasoning (across
entities). GLUECODE also includes multiple pre-
processed source code representation, easing ex-
periments for researchers designing source code
models. The GLUECODE tasks are challenging
for the baselines we have evaluated: we find that
no model achieves convincing performance across
all tasks, leaving ample room for researchers to
rise to the challenge and build robust source code
models, incorporating both local and global rea-
soning, to tackle the GLUECODE tasks.

1. Introduction
In recent years, there has been considerable interest in re-
searching machine learning models on source code artifacts.
Machine learning models have been used to address a va-
riety of software engineering tasks, as the inherent rich
structure of code has allowed machine learning researchers
to explore new models and ideas. However, research has
focused on single-purpose application models, targeting a
single task each time while using varying source code rep-
resentations and datasets. This impedes progress towards
general-purpose machine learning models of code that can
learn and reason across many tasks.

In this work, we present GLUECODE (Global and Local
Understanding Evaluation of Code), with the goal of mea-
suring progress in source code modelling across a range of
tasks that account for the diverse characteristics of software
and require diverse reasoning capabilities over several thou-
sands of software projects. As GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) does for natural language,

GLUECODE highlights important aspects of reasoning about
code: (1) since code in software is composed of multiple
interacting entities, it includes tasks that leverage both local
(single method) and global (multiple inter-related methods,
information beyond the local method) reasoning to varying
degrees. This is in contrast to most tasks and models that
have been introduced so far that focus on local reasoning;
(2) since source code mixes structured and unstructured
information, GLUECODE tasks leverage both kinds of in-
formation, and (3) since the space of modelling choices is
large, we provide several source code representations rang-
ing from raw text to abstract syntax trees (AST) and graph
representations, lowering the barrier to entry and ease of
experimentation.

The design space for source code models is extremely large
and spans a wide range of source code representations.
These range from the simplest (software metrics and n-
grams), to very complex that fully take advantage of the
structure and semantics of source code (such as graph-based
representations). GLUECODE aims to provide a unified
benchmark to explore this design space. We provide per-
formance results on a set of baselines, ranging from simple
neural architectures such as LSTMs and CNNs, to variants
of pre-trained transformers for code, to AST-paths based
models, to Graph Neural Networks (GGNNs).

Finally, while models can be evaluated on any single task in
the benchmark in isolation (as the field is presently doing),
a long-term goal of GLUECODE is the creation of unified
multi-task source code models that perform well across
multiple tasks. A source code model that is jointly trained
and can perform well on all the tasks in the benchmark
would be a significant step towards building more versatile
models, that can, beyond the tasks they were trained, also
adapt to downstream tasks, especially when there is not
enough data. Given the performance of our baselines in the
single-task scenario, defining a model that performs well
across the board is thus very much an open problem.

2. The GLUECODE Benchmark
Benchmarks are a common practice in machine learning
research. In the domain of machine learning on source code,
several benchmarks have been proposed. Idbench looks at
identifiers, (Wainakh et al., 2019), BigCloneBench (Sva-



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

jlenko & Roy, 2015) and OJClone (Mou et al., 2016) at
clone detection, and CodeSearchNet at a function-level text-
to-code search (Husain et al., 2020). Finally, COSET con-
cerns classifying small programs by their functionality in
38 classes (Wang & Christodorescu, 2019), and CoNaLa is
a line-level text-to-code generation benchmark (Yin et al.,
2018). However, in contrast to GLUECODE, they consider
relatively local contexts and do not incentivize non-local
reasoning. In this section, we provide an overview of GLUE-
CODE. We first describe the software-specific character-
istics that impact the choice of tasks, before detailing the
dataset and the tasks involved.

2.1. Local versus Global Context

Most existing machine learning models of source code work
at the level of a single function or method. We call these
local models, as they reason over the local context of a sin-
gle software entity. This is in contrast to global models that
reason over multiple software entities and scales. Global
models are highly desirable since software systems are com-
posed of multiple entities such as modules and functions,
that communicate with each other. This composition of
communicating entities dictates the behavior of a software
system. For instance, a function may have a radically dif-
ferent behavior, depending on its arguments. Indeed, small
local changes can manifest in large changes in behaviour in
distant program locations. And having global models will
allow us to detect that.

Fully global models are currently out of reach but GLUE-
CODE incentivizes building models that feature some form
of global reasoning, in addition to local reasoning. Exist-
ing work uses simplified projections of global representa-
tions: the GGNN works of Allamanis et al. (2017; 2020)
look solely at file-level tokens, syntax, data and control
flow information. CocoGum (Wang et al., 2020) uses class
context represented as abstracted UML diagrams. Lamb-
daNet extracts type dependencies in JavaScript into a single
graph (Wei et al., 2020) for a few mid-sized projects (500-
10k lines of code), ignoring syntactic information, code
comments, etc. Finally, Func2Vec (DeFreez et al., 2018)
computes function embeddings over an interprocedural call
graph, ignoring local syntax, function arguments, etc. An ex-
tended related work discussion can be found in Appendix E.

To reason over global contexts two limitations need to be
overcome: First, time-consuming interprocedural static anal-
yses need to be performed at scale. These require compiling
projects and resolving all its dependencies. In GLUECODE,
we take a step towards this direction, by using the largest
publicly available corpus of compilable Java code (Sec. 2.3).
Second, we need to connect interdependent code entities
together so that we could pass non-local context informa-
tion along with the code representations. We construct static

callgraphs for every project considered, which helps us ac-
commodate caller/callee non-local context information for
method samples in the datasets. Additionally, some existing
methods do not operate well on large and sparse inputs and
thus code representations are tailored to use only the nec-
essary information. In GLUECODE, we provide access to a
variety of representations and propose a set of tasks that do
not focus solely on local or global information (Sec 2.2).

2.2. Flexibility in Representations of Code

Representations of source code in machine learning are a
central topic of research. Source code has a known rich
structure, as it can be unambiguously parsed; while valuable
information is present in identifiers, literals, and comments,
which are unstructured. As a result, there has been sustained
work in exploring architectures and representations that
leverage the different structural aspects of software, ranging
from treating software as a textual artifact, to tree and graph-
based representations. These representations come with
distinct trade-offs.

Sequence-level models treating source code as text are sim-
pler and easy to scale to large amounts of data, at the expense
of obscuring the information obtained from distinct struc-
tural inter-relations in code. LSTM (Zaremba & Sutskever,
2014), CNN (Allamanis et al., 2016) and Transformer (Hu-
sain et al., 2020; Kanade et al., 2020; Feng et al., 2020)
based models for source code have been explored. Mean-
while, more structured models commonly learn from less
data thanks to the provided structure, but are harder to scale
as they require extensive pre-processing. Such models use a
program’s abstract syntax tree (AST) in TreeLSTMs (Wei
& Li, 2017), tree-based CNNs (Mou et al., 2014), or use
linearized forms fed to sequence models (LeClair et al.,
2019; Kim et al., 2020), or linearized as bags of AST
paths (Alon et al., 2018c;a). Graph representations have
been used in conjunctions with GGNNs (Allamanis et al.,
2017; Brockschmidt et al., 2018; Wei et al., 2020) and have
been recently combined with RNNs and (relational) trans-
formers (Hellendoorn et al., 2019b).

Yet, most of these works are evaluated on a single task,
yielding limited insights on the trade-offs of various repre-
sentations and models. GLUECODE’s goal is to ease experi-
mentation across representation and modelling choices on a
variety of local and global tasks. To achieve this, we provide
several pre-processed representations at the level of source
code files: raw text, tokenized code, abstract syntax trees,
graph representations (as in Allamanis et al. (2017)), and
bags of AST paths as in Alon et al. (2018c;a). For global
context we provide project-level call graphs. Across all
representations, source code entities (methods and classes)
are identified via a Universally Unique Identifier (UUID),
and can be linked together. More details can be found in



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Appendix B.

Modelling decisions have significant impact on the perfor-
mance of models and many different representations are
possible, especially when considering models that perform
global reasoning. GLUECODE tasks are defined as a map-
ping from the UUID of the entity of interest to its label. Re-
searchers can choose their own input representations based
on how they want to address the GLUECODE tasks. This
allows researchers to combine these preprocessed repre-
sentations as they see fit. GLUECODE provides an API to
efficiently access these representations to define suitable
input features for the models.

2.3. Data

Performing pre-processing at scale is challenging and time
consuming. To extract the representations and some of the
labels for the tasks, we use a variety of tools. Some of these
tools perform extensive static analyses, and for this reason,
they require code that is compilable. Automatically compil-
ing large amounts of arbitrary code is surprisingly difficult,
as some systems may have convoluted build processes, or
depend on a large number of libraries that may need to be
present at compile time. We restrict our scope to Java since
it is a popular language, with a lot of mature projects, and
extensive tool support. To ease this task, our starting point
is the 50K-C dataset (Martins et al., 2018), which is a set of
50,000 compilable Java projects. Of the 50,000 projects in
50K-C, many are too small to represent realistic software
projects, such as projects authored by students. Therefore,
we restrict ourselves to ∼7000 of the largest projects that
have 50 or more Java files. Of the ∼7000 (6,925) projects
we were able to compile ∼5,300. These projects have a
combined total of 371,492 class files, and 2,361,110 meth-
ods. Once the projects are compiled, we run additional tools
to extract all the representations, and extract some of the
labels that the tasks need. Note that the entire process took
several months, which we spare other researchers. Trying to
compile ∼7k projects is a weeks-long endeavour. Additional
details can be found in Appendix B.

The utility of the GLUECODE datasets is twofold: first,
GLUECODE is the only benchmark that provides tasks that
both require local and non-local context reasoning. Second,
GLUECODE provides the building blocks (including several
pre-processed base code representations) for researchers to
experiment with. Additionally, what adds a greater value
to our datasets, beyond simply scraping GitHub projects,
is the added parsability and compilability of projects - as
downloading a large set of projects from GitHub is easy,
compiling those projects at scale and extracting semantic
facts is a non-trivial task that none of the existing datasets
perform. These semantic facts (e.g. inferred types, de-
pendencies, call graphs, etc) are an important aspect for

reasoning at a global level. Clearing this hurdle for other
researchers can significantly ease their work.

Figure 1. Code snippet illustrating the five tasks in GLUECODE.

2.4. The GLUECODE Tasks

To incentivize the community to develop models that lever-
age the structured and unstructured aspects of code, we
define several tasks that cover a spectrum in terms of re-
liance on the structure of code, and the need for non-local
reasoning. Each of the five GLUECODE tasks is meant to
test different reasoning capabilities of a model. An overview
is shown in Table 1. We describe the tasks next and provide
an extended discussion on the design of each tasks in the
supplementary manuscript, including discussion of alterna-
tives we discarded. Figure 1 shows each task for a synthetic
snippet. Note that global tasks commonly need additional
context information.

Task Selection Rationale. We select five tasks: three are
inspired by practical scenarios, while two have labels gener-
ated by static analyzers. Models that succeed at the Operator
Prediction task may be used to spot potential bugs in ex-
isting code (Pradel & Sen, 2018); models that succeed at
Method Naming may be used to provide refactoring recom-
mendations on legacy code bases; and models that succeed
at Code Completion may be integrated in an IDE’s code
completion engine. For the two tasks that have labels gener-
ated by static analyzers (NPath complexity and NullToken),
we are not interested in merely replicating these programs.
Rather, our goal is to incentivize the development of neural
architectures that demonstrate global forms of reasoning
(fine-grained reasoning about the control and data flow of
programs, both locally and globally), towards succeeding in
practical tasks in the future.

Task format and metrics. Two tasks in GLUECODE are
classification tasks, while the other three other are sequence
generation tasks. We initially wanted all the tasks to use the
same format, for simplicity and uniformity. However, this
proved too restrictive as it severely limited the candidate



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

tasks, or led to easy variants. The sequence generation tasks
use different metrics, to fit more closely the scenario they
represent. Since all performance metrics range between
0 and 1, we average them to obtain an overall score for a
model.

Unit of interest. In GLUECODE tasks, the unit of interest is
a method. Thus, for each task, the dataset is a mapping from
a unique method ID to a label. As part of pre-processing,
researchers can retrieve the representation they wish, in-
cluding related source code entities (e.g., callers and callees
of the current method). Note that we mask information
that could lead to data leakage in these additional source
code entities (e.g., for the method naming task, we mask the
method call in the callers). To further prevent data leakage,
for tasks that rely on global context, the training, validation,
and test set is split at the project level, such that samples
from projects in the validation and test set (10% of the total
dataset size) are unseen during evaluation. We also release
a development set, the true labels of which are privately
held, to ensure fair evaluation of source code models against
GLUECODE tasks.

Size of datasets. The size of each dataset is dictated by
several factors. Overall, we are limited by the number of
projects we analyzed; adding more projects requires signifi-
cant pre-processing effort. For tasks like Method Naming
and Code Completion, we have about a million samples per
task, with 10% of the samples used as the test set. While
for other tasks (e.g. NullToken), the number of available
examples is limited to ∼12K, as the analysis is expensive
to run and yields a small number of examples. For classi-
fication tasks, some classes are less common, and we take
as many samples as possible across all classes to have a
balanced dataset. While several other works propose larger
datasets, which may be more desirable in some cases, we
note that small datasets have two advantages: they ease
the computational burden, and incentivize work towards
sample-efficient models. Moreover, models may employ
pre-training to obtain good results with limited samples.

2.4.1. NPATH COMPLEXITY

NPath complexity prediction is purely structural and local:
it can be solved while fully ignoring identifiers and non-
local context. We used PMD to extract the NPath code
complexity metric (Nejmeh, 1988), which counts the num-
ber of distinct paths control flow can take in a method. To
succeed at this task, a model needs to keep track of the
control structures and how they relate to each other (e.g. via
nesting). It needs to do this while considering the entire
scope of each method. The task is formulated as a classifi-
cation task, with a balanced set of 12 complexity buckets
(class bins). Note that since NPath is unevenly distributed,
we use buckets that redistribute the complexity values in

our dataset evenly. Our buckets are 1,2,3,4,5-6,7-8,9-10,11-
15,16-20,21-30,31-50,51-100. The number of samples from
the higher buckets (e.g. 31-50, 51-100) get increasingly
smaller. We pick at least 1000 samples from each bucket to
prepare a balanced dataset for the task. The target metric is
classification accuracy.

2.4.2. OPERATOR PREDICTION

The second task involves mostly local reasoning, but in
contrast to NPath complexity, it leverages both structured
and unstructured information. The task requires predicting
a masked operator in the method body, similar to Deep-
Bug (Pradel & Sen, 2018). This involves structural rea-
soning as the context is useful in determining the type of
operators (e.g., Is the operator in an if condition?), as well
on the identifier names which may embed information valu-
able in determining the operator type (e.g., an identifier
“maxQuantity”). While we expect the task to mostly rely
on local reasoning in the method body, non-local reason-
ing may be helpful too (e.g., getting type information from
instance variables or method return types).

The task has 12 classes spanning the most common op-
erators: The 5 arithmetic operators (basic operations and
modulo), six Boolean comparison operators, and the assign-
ment operator. The classes are balanced, and we measure
accuracy. For each method, a single operator is masked,
even if there are multiple operators present in the method.

2.4.3. METHOD NAMING IN CONTEXT

In method naming task (Allamanis et al., 2016; Alon et al.,
2018c), the method name is masked and needs to be pre-
dicted. This can be seen as a summarization task (of the
method body). A model must reason over the body, both at
the level of the structure (control and data flow), and at the
level of identifiers, to succeed at this task.

Globalness. While most existing formulations of the task
have been restricted to using the method body, GLUECODE
does not impose such a restriction; we expect that adding
additional context, such as class-level information and infor-
mation from the calling contexts, can lead to performance
improvements. Identifiers from the class context or method
calling contexts may allow a model to better leverage nam-
ing conventions specific to the project. In addition, useful
information may be found in method usages (invocations),
such as the names or values given to the parameters or the
return value. Thus, GLUECODE provides the facilities to
incorporate such information in models and representations.
Note that to avoid data leakage, we mask the target method
name in each caller’s context, across representations. In con-
trast to traditional method naming, we use a character-level
BLEU as an evaluation metric. The rationale is that it is
independent of tokenization (Denoual & Lepage, 2005), and



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

reduces the weight of common, but short subwords such as
“get” (see the supplementary material for details).

2.4.4. CODE COMPLETION IN CONTEXT

Code completion is a common task for evaluating source
code models, particularly autoregressive language models
(Hellendoorn & Devanbu, 2017; Karampatsis et al., 2020).
We recast the task as masked language modelling task, simi-
lar to Alon et al. (2020). Having a code completion task as
a masked language modelling task allows model to leverage
both the preceding context and the following context, which
makes the task relevant in a scenario where a programmer
would be modifying existing code. Furthermore, we restrict
the task to predict only method calls, not other types of
tokens. This has two benefits: 1) it makes the task more
challenging by removing tokens that are very easy to predict
such as parentheses and semicolon, and 2) it emphasizes the
tokens for which global reasoning is beneficial, particularly
during refactoring efforts in large code bases.

Globalness. Since the goal is to predict a method call inside
a method body, the whole project scope is relevant. While
in method naming, models summarize an entire method
body in a name, in code completion, a model should iden-
tify which of the existing method calls fits. These methods
can be defined in the same class (18% of the dataset), in
another class in the same package (10%), in another pack-
age in the system (26%), or imported from a dependency
(46%).This makes the method completion task much more
amenable to performance improvements when the non-local
context is taken into account. Indeed, section A of the sup-
plementary manuscript shows that the local models perform
much better when completing API methods than local meth-
ods, as common API methods (e.g., toString) are much
more likely to be seen during training than method names
from the project itself, which is in line with the literature
(Hellendoorn et al., 2019a).

For this task, GLUECODE uses exact match accuracy: mod-
els should generate the exact masked token. Unlike method
naming, a close match does is not valid (in a practical sce-
nario, a close match would likely result in an error). The call
graph representation of the system hides any links between
the target and the called method, to avoid data leakage.

2.4.5. NULL DEREFERENCE PREDICTION

The last task is null dereference prediction. This task should
benefit the most from non-local reasoning. To succeed at
this task, models should be able to reason across the control
flow and the data flow of several methods at once. For this
task, we use the Infer static analyzer (Facebook, 2015) to
find potential null dereferences. Infer performs full-program
static analysis to track the possible values of variables, and
emits warnings when it finds a possible execution path in

Table 1. GLUECODE: Tasks at a Glance

Task Structure Identifiers Globalness Type

NPTH +++ - - Clf.
OPER ++ ++ - Clf.
NAME ++ ++ + Gen.
COMP + +++ ++ Gen.
NTKN +++ + +++ Gen.

which a null pointer dereference can occur. These execution
paths can span several methods, across several files, and
point to the line number and exact token in which the null
dereference can occur. We ran Infer on all the projects in
the dataset. Since Infer’s analysis is precise, it does not
produce many warnings (∼20,000 in total), unlike other
static analysis tools such as FindBugs (Ayewah et al., 2008)
which are more prone to false positives.

Globalness. This task requires non-local reasoning for most
of the warnings emitted by Infer (except those where the
execution path does not exit the method body). One third
of the warnings involve local reasoning only, another third
requires to include direct callers, while the last third requires
indirect callers as well. Section A of the supplementary
manuscript shows that models perform much better on the
subset of warnings that are purely local.

The goal of the task is to output the token where the null
dereference may occur. Similar to code completion, we
measure accuracy, considering only exact matches. We also
added 20% of negative examples, in which the model has
to output a special token signifying that no null dereference
warning could be found, to incentivize models to account
for this eventuality. Thus, a naive baseline always predicting
this token would have a maximum accuracy of 20%.

3. Evaluation
3.1. Baselines

We provide performance results for several simple base-
lines, as well as more advanced models, including a pre-
trained transformer for code and models leveraging structure
(GGNNs, code2seq). There are, of course, many more ad-
vanced models that could be evaluated on GLUECODE, start-
ing with additional models that also exploit source code’s
structure, such as Tree-LSTMs. The space of possibilities
grows even further if we consider models that incorporate
non-local reasoning. Thus, the baselines we provide should
be taken as a starting point, giving insights on the lower
bound exhibited by them. Significant exploration of the per-
formance of models lies ahead, a task for which we welcome
the involvement of the community.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

MLP. A simple Multilayer Perceptron with a single hidden
layer, intended to represent a very simple but non-naive
baseline. The input embedding layer has a maximum size
of 200 tokens. The single dense hidden layer has 64 hidden
units. The output layer is a softmax layer over the all the
classes for classification, or the entire vocabulary for the
generation task.

CNN. A Convolutional Neural Network, with an embedding
layer, followed by a 1D convolution layer of size 5, and by
a global average pooling layer. These are followed by a
dense hidden layer and an output layer similar to the MLP
above. We use it to explore the impact of the inductive bias
of convolution on the GLUECODE tasks.

BiLSTM. A Bidirectional sequential model, where the em-
bedding layer is followed by a single bidirectional LSTM
layer, a dense layer and the output layer. It also uses a
softmax layer for all tasks (predicting tokens over all the
vocabulary for sequence generation tasks).

Seq2Seq. Another LSTM variant that uses a unidirec-
tional encoder-decoder architecture and predict tokens as
sequences of camelCase-separated subtokens (Seq2Seq), or
a single token for the classification tasks (Seq2Tok). Both
variants allow us to explore the impact of the sequential
inductive bias. Seq2Seq type models allow us to reduce the
impact of OoV tokens as we use subtokens.

Code2seq. The code2seq model linearizes ASTs as bags
of paths (Alon et al., 2018a). It follows a standard encoder-
decoder architecture where the encoder creates a vector
representation for each AST path separately. The decoder
then generates the output sequence while applying attention
over all of the combined representations, similar to the way
seq2seq models attend over the source symbols.

GGNN. We use a graph neural network model with gated
recurrent units as defined by Allamanis et al. (2017) that
captures graphs via message passing between the nodes of
graphs. The graph neural networks retain a state that can
represent information from its neighborhood with arbitrary
depth to produce predictions from the graph data.

Transformer. We include a stronger baseline, a Trans-
former, to explore the impact of the popular NLP pre-
training then fine-tune paradigm. CodeBERTa is a pre-
trained, 6-layer Transformer trained on the CodeSearchNet
challenge dataset (Husain et al., 2020) by HuggingFace.
We fine-tune it separately on each task. We chose this as
our stronger baseline since pretrained transformers for code
have performed very well on other tasks (Kanade et al.,
2020)

Table 2. NPTH: NPath complexity prediction accuracies for base-
line models on local and global datasets.

MODELS LOCAL GLOBAL STRUCTURE

MLP 36.9± 0.3 34.3± 0.3 −
CNN 42.8± 0.2 36.6± 0.1 −
LSTM 47.7± 0.4 45.7± 0.0 −
SEQ2SEQ 54.3± 0.6 40.5± 0.1 −
CODE2SEQ 19.1± 0.2 15.3± 0.9

√

GGNN 48.4± 0.1 38.9± 0.0
√

TRANSFORMER 72.8± 0.0 69.4± 0.0 −

3.2. Local and Global representations

The baselines are evaluated with local representations,
where the information they can access is limited to the
current method, and also with initial global representations.
While much work lies ahead in finding effective global
representations, our initial attempt consists in simply con-
catenating the representations of the callers of the current
method before giving it to the model. Section B.3 of the
supplementary manuscript provides additional information
on how we do this. The downside of this basic approach is
that the size of the input grows significantly. We did this
for all models expect the Transformer on the NAME and
COMP tasks, due to the large computational requirements.

3.3. Results

The baseline evaluation results on the GLUECODE tasks are
presented below.

NPTH. For the NPATH complexity prediction task, the
transformer model is the best performing model, with ∼73%
accuracy, followed by the sequence to sequence model with
∼54% accuracy, and the GGNN with ∼48% accuracy, fol-
lowed by LSTM, and CNN models. The sequence to se-
quence model is able to encode the complexity from the
input code into a single embedding which could then be
rendered correctly as output. The transformer model us-
ing multi-head attention performs significantly better. The
code2seq model exhibits the least favorable performance.
This could be due to the nature of the task. To succeed at
this task, a model needs to keep track of the the number of
distinct paths the control flow can take in a method. Since
AST paths compress the information from method tokens
and identifiers along a certain path into embeddings, it could
be harder for the model to follow all the branches of control
flow from the corresponding path representations.

OPER. For the operator prediction task, the transformer
model performs the best (∼70%), while the code2seq model
seems to be the worst-performing model for this dataset
(likely for similar reasons as for the NPATH task). The
Transformer is followed by the GGNN model and seq2seq



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Table 3. OPER: Operator prediction accuracies for baseline models
on local and global datasets.

MODELS LOCAL GLOBAL STRUCTURE

MLP 31.1± 0.4 31.2± 0.2 −
CNN 27.9± 0.6 27.6± 0.4 −
LSTM 27.7± 0.8 34.7± 1.2 −
SEQ2SEQ 51.1± 0.2 44.7± 0.5 −
CODE2SEQ 28.2± 0.5 23.4± 0.2

√

GGNN 51.5± 0.1 46.5± 0.9
√

TRANSFORMER 69.7± 0.0 68.4± 0.0 −

Table 4. NAME: Method name prediction accuracies for baseline
models on local and global datasets.

MODELS LOCAL GLOBAL STRUCTURE

MLP 16.9± 0.5 14.3± 0.4 −
CNN 19.8± 0.1 18.2± 0.2 −
LSTM 22.1± 0.4 21.0± 0.8 −
SEQ2SEQ 26.2± 0.3 22.5± 1.3 −
CODE2SEQ 32.1± 0.7 28.9± 0.8

√

GGNN 34.6± 0.2 31.8± 0.1
√

TRANSFORMER 38.9± 0.0 - −

model with comparable accuracies (∼51%). The LSTM
model exhibits an accuracy of ∼35%. The seq2seq model
does comparatively quite well, as they are designed to
make use of sequential data. CNN’s are good at extract-
ing position-invariant features, but since operator prediction
needs important sequential information, it fares poorly in
comparison.

NAME. For method naming, the transformer model shows
the best performance with an accuracy of ∼39%, followed by
the GGNN model with ∼35% and code2seq with ∼32%. For
method naming, performance is much lower; it is also lower
than in similar naming tasks, but evaluated with different
metrics - showing that our choices yield a more challenging
task.

COMP. For the method call completion task, the GGNN
model shows the best performance with ∼56%, followed by
the transformer model (∼53%), and then the sequence to
sequence model (∼52%).

It is important to note here that unlike method naming, the
completion task has many labels (method API calls) which
belong to the Java standard library, such as println(),
toString() etc. which are commonly used. These are
easier to predict for deep learning models, as shown in
the literature (Hellendoorn et al., 2019a), and in section
A of the supplementary manuscript. About 45% of the
dataset consist of standard library method calls, which can
be learned from methods in the training set more easily,
and for which the performance is much higher than locally

Table 5. COMP: Method call prediction accuracies for baseline
models on local and global datasets.

MODELS LOCAL GLOBAL STRUCTURE

MLP 28.8± 0.9 20.7± 0.5 −
CNN 45.1± 0.2 43.6± 0.9 −
LSTM 49.4± 0.4 49.0± 0.3 −
SEQ2SEQ 52.4± 0.6 48.3± 0.8 −
CODE2SEQ 47.6± 0.1 43.1± 0.2

√

GGNN 56.2± 0.0 52.9± 0.0
√

TRANSFORMER 53.4± 0.0 - −

Table 6. NTKN: Null token prediction accuracies for baseline mod-
els on local and global datasets.

MODELS LOCAL GLOBAL STRUCTURE

MLP 27.8± 0.3 29.4± 0.2 −
CNN 20.3± 0.4 21.8± 0.5 −
LSTM 22.1± 0.2 22.5± 0.4 −
SEQ2SEQ 23.1± 0.8 26.8± 0.2 −
CODE2SEQ 30.6± 0.6 31.0± 0.5

√

GGNN 31.4± 0.0 33.9± 0.0
√

TRANSFORMER 59.0± 0.0 60.0± 0.0 −

defined methods. This explains why the models perform
better in comparison solely against the method naming task.
We are considering making the task more challenging by
using stratified sampling, to force the sample to have more
locally defined methods than it has now.

We also see that global models do not perform well for
completion, despite it being a global task. This is because
our initial global models may not be the most suited for
this specific task, as the global information they contain is
limited to direct callers, rather than having the entire project.

NTKN. Finally for the Null Token prediction task we ob-
serve again that the Transformer model performs the best
across all models with an accuracy of 60%. The next best
model is the GGNN with ∼34% accuracy, followed closely
by the code2seq model with ∼31% accuracy. Among the
rest, the simpler MLP model outperforms ( 29%) the other
token-sequence based models, in order of seq2seq (∼26%),
LSTM (∼22%) and CNN (∼21%). As expected, all of the
evaluated models have benefited by the addition of global
context information, with the GGNN and SEQ2SEQ models
benefiting the most.

Overall, we see that the Transformer model exhibits the
best performance on the first four tasks (Null Token pre-
diction, NPath complexity prediction, Operator prediction,
Method naming), and for the method call completion it is
only second to the GGNN model.

For the tasks which have some global aspect, transformers



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

have an average accuracy of ∼51% with highest score being
barely above the sixty percent for the null token prediction
task. Even in the purely local tasks, such as npath complex-
ity prediction, where the transformers score well, there is
still a margin for improvement of more than 20%.

4. Discussion
There is ample room for improvement. Our goal was to
provide tasks that are challenging for models. None of the
models have highest performance across all the tasks. State
of the art models (e.g., code transformer) perform better on
some tasks requiring mostly local reasoning, however, we
do not see them reach acceptable performance on the tasks
that require non-local reasoning.

Incorporating non-local reasoning. Significant improve-
ments are required to develop models that better handle
more global context. We can already see that simple solu-
tions, such as growing models to accommodate more context
quickly hit diminishing returns as the size of the input grows
considerably, while adding only limited information. These
models also tend to perform worse on local tasks, as the
additonal data is not relevant to the task. Better strategies
will need to be devised to build more useful global models.

Impact of inductive bias. On some tasks, the performance
of the models vary widely. We hypothesize that the induc-
tive bias of some of the models is not a good fit for some
task. For instance, the Transformer trained with the MLM
objective works very well for operator prediction (even with-
out fine-tuning!), as the task is very similar in spirit to the
pre-training task.

Multi-task models. While a longer-term goal is to define
multi-task models that perform well on all the tasks in the
benchmark, the tasks proved challenging enough that we ex-
pect most short-term development should be geared towards
single-task performance first.

4.1. Limitations of the Benchmark

Additional software characteristics. With GLUECODE,
we focus on two principal characteristics of software: the
fact that it is structured, and that non-local reasoning is
necessary. There are other characteristics we didn’t take
into account, such as the prevalence of natural language
comments (Allamanis et al., 2015b), the fact that code can
be executed (Wang, 2019), or that it evolves (Hoang et al.,
2019). New benchmarks or an extension of GLUECODE
would be needed to account for these characteristics.

Shortcuts. Deep learning models can take shortcuts and
exploit spurious correlations if they are present in the data
(Geirhos et al., 2020). We spent considerable time iterating
on the task selection and formulation to avoid these issues

(section C of the supplementary manuscript details some of
the alternatives we considered), by thoroughly investigat-
ing when our baselines had suspiciously high performance.
However we cannot guarantee we have found all issues.

Choice of metrics. We tried to select metrics that present
a fair view of performance, at the expense sometimes of
reformulating a task (e.g. for method naming). When using
accuracy, we were careful to balance the datasets.

Number of baselines. Our principal focus in this work is
the definition of the tasks. We have a limited number of
baselines that we include as a result. We plan to evaluate
more models in future work, and we invite the community
to contribute.

Code duplication for global scenarios. Code duplication
is known to be extensive in software (Allamanis, 2019).
A simple approach that filters out duplicated code would
not work in our case, as it would make the projects to be
incomplete for global contexts. However, we have carefully
checked all of our datasets and can ensure that there is no
duplicated code between the training and test sets. For two
of the tasks with large number of samples, we even went a
step further to ensure that the datasets are project-balanced -
meaning that the test set only contains samples from projects
not used in the training set.

5. Conclusion and Future work
We introduce GLUECODE, a benchmark for source code
machine learning models that emphasizes that code is com-
posed of interacting entities and has a fundamental struc-
tured nature. The GLUECODE tasks include both tasks that
require local and global reasoning, to account for source
code’s interacting entities. Moreover, to facilitate experi-
mentation on range of structures, GLUECODE includes an
exhaustive set of preprocessed source code representations
(textual, ASTs, graphs) that researchers are free to leverage
when they are building their models.

The data collection and preprocessing for the task datasets
and generating multiple representations for each data sam-
ple, scaled at the size of thousands of projects, took months
to complete, which we spare the community. We also tested
several baselines, ranging from simple neural models to
GGNNs and pretrained Transformers, using both local and
limited global representations. The results indicate that
there is a lot of progress to be made on the GLUECODE
tasks. The design space of models that leverage global rea-
soning on complex, structured data is even larger than for
local models. Thus, we invite the community to download
our preprocessed code representations, write “glue code” to
transform these representations as they see fit, and evaluate
their best source code models on GLUECODE tasks.



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

References
Allamanis, M. The adverse effects of code duplication in

machine learning models of code. In Proceedings of the
2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software, pp. 143–153, 2019.

Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. Suggest-
ing accurate method and class names. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 38–49, 2015a.

Allamanis, M., Tarlow, D., Gordon, A., and Wei, Y. Bimodal
modelling of source code and natural language. In Inter-
national conference on machine learning, pp. 2123–2132,
2015b.

Allamanis, M., Peng, H., and Sutton, C. A. A convolutional
attention network for extreme summarization of source
code. CoRR, abs/1602.03001, 2016. URL http://
arxiv.org/abs/1602.03001.

Allamanis, M., Brockschmidt, M., and Khademi, M.
Learning to represent programs with graphs. CoRR,
abs/1711.00740, 2017. URL http://arxiv.org/
abs/1711.00740.

Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. A
survey of machine learning for big code and naturalness.
ACM Computing Surveys (CSUR), 51(4):1–37, 2018.

Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typ-
ilus: neural type hints. arXiv preprint arXiv:2004.10657,
2020.

Alon, U., Levy, O., and Yahav, E. code2seq: Generating
sequences from structured representations of code. CoRR,
abs/1808.01400, 2018a. URL http://arxiv.org/
abs/1808.01400.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. A
general path-based representation for predicting pro-
gram properties. CoRR, abs/1803.09544, 2018b. URL
http://arxiv.org/abs/1803.09544.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. code2vec:
Learning distributed representations of code. CoRR,
abs/1803.09473, 2018c. URL http://arxiv.org/
abs/1803.09473.

Alon, U., Sadaka, R., Levy, O., and Yahav, E. Structural
language models of code, 2020.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J. D.,
and Penix, J. Using static analysis to find bugs. IEEE
software, 25(5):22–29, 2008.

Bielik, P., Raychev, V., and Vechev, M. PHOG: probabilistic
model for code. In International Conference on Machine
Learning, pp. 2933–2942, 2016.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang,
A. M., McKinley, K. S., Bentzur, R., Diwan, A.,
Feinberg, D., Frampton, D., Guyer, S. Z., and et al.
The dacapo benchmarks: Java benchmarking develop-
ment and analysis. SIGPLAN Not., 41(10):169–190,
October 2006. ISSN 0362-1340. doi: 10.1145/
1167515.1167488. URL https://doi.org/10.
1145/1167515.1167488.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. arXiv
preprint arXiv:1805.08490, 2018.

Büch, L. and Andrzejak, A. Learning-based recursive aggre-
gation of abstract syntax trees for code clone detection.
In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 95–
104. IEEE, 2019.

Chen, B. and Cherry, C. A systematic comparison of
smoothing techniques for sentence-level BLEU. In
Proceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pp. 362–367, Baltimore, Maryland,
USA, June 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/W14-3346. URL https:
//www.aclweb.org/anthology/W14-3346.

DeFreez, D., Thakur, A. V., and Rubio-González, C. Path-
based function embedding and its application to spec-
ification mining. CoRR, abs/1802.07779, 2018. URL
http://arxiv.org/abs/1802.07779.

Denoual, E. and Lepage, Y. Bleu in characters: towards auto-
matic mt evaluation in languages without word delimiters.
In Companion Volume to the Proceedings of Conference
including Posters/Demos and tutorial abstracts, 2005.

Facebook. A static analyzer for java, c, c++, and objective-
c, 2015. URL https://github.com/facebook/
infer. Accessed: 3rd March 2020.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou, M.
Codebert: A pre-trained model for programming and
natural languages, 2020.

Fernandes, P., Allamanis, M., and Brockschmidt, M.
Structured neural summarization. arXiv preprint
arXiv:1811.01824, 2018.

http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1803.09544
http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1803.09473
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
https://www.aclweb.org/anthology/W14-3346
https://www.aclweb.org/anthology/W14-3346
http://arxiv.org/abs/1802.07779
https://github.com/facebook/infer
https://github.com/facebook/infer


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut
learning in deep neural networks, 2020.

Hellendoorn, V. J. and Devanbu, P. Are deep neural net-
works the best choice for modeling source code? In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, pp. 763–773, 2017.

Hellendoorn, V. J., Proksch, S., Gall, H. C., and Bacchelli,
A. When code completion fails: A case study on real-
world completions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 960–
970. IEEE, 2019a.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and
Bieber, D. Global relational models of source code. In
International Conference on Learning Representations,
2019b.

Hoang, T., Lawall, J., Tian, Y., Oentaryo, R. J., and Lo, D.
Patchnet: Hierarchical deep learning-based stable patch
identification for the linux kernel. IEEE Transactions on
Software Engineering, 2019.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search, 2020.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
Learning and evaluating contextual embedding of source
code, 2020.

Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., and
Janes, A. Big code!= big vocabulary: Open-vocabulary
models for source code. arXiv preprint arXiv:2003.07914,
2020.

Kim, S., Zhao, J., Tian, Y., and Chandra, S. Code prediction
by feeding trees to transformers, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

LeClair, A., Jiang, S., and McMillan, C. A neural model
for generating natural language summaries of program
subroutines. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), pp. 795–806,
2019.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach,
2019.

Maddison, C. J. and Tarlow, D. Structured generative mod-
els of natural source code. CoRR, abs/1401.0514, 2014.
URL http://arxiv.org/abs/1401.0514.

Martins, P., Achar, R., and Lopes, C. V. 50k-c: A
dataset of compilable, and compiled, java projects.
In Proceedings of the 15th International Conference
on Mining Software Repositories, MSR ’18, pp. 1–5,
New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450357166. doi: 10.1145/
3196398.3196450. URL https://doi.org/10.
1145/3196398.3196450.

McCann, B., Keskar, N. S., Xiong, C., and Socher, R. The
natural language decathlon: Multitask learning as ques-
tion answering. CoRR, abs/1806.08730, 2018. URL
http://arxiv.org/abs/1806.08730.

Mou, L., Li, G., Jin, Z., Zhang, L., and Wang, T. TBCNN: A
tree-based convolutional neural network for programming
language processing. CoRR, abs/1409.5718, 2014. URL
http://arxiv.org/abs/1409.5718.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convolu-
tional neural networks over tree structures for program-
ming language processing. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

Nejmeh, B. A. Npath: a measure of execution path com-
plexity and its applications. Communications of the ACM,
31(2):188–200, 1988.

Pradel, M. and Sen, K. Deep learning to find bugs. TU
Darmstadt, Department of Computer Science, 2017.

Pradel, M. and Sen, K. Deepbugs: A learning approach to
name-based bug detection, 2018.

Raychev, V., Vechev, M., and Krause, A. Predicting program
properties from ”big code”. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’15, pp. 111–124,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3300-9. doi: 10.1145/2676726.2677009. URL http:
//doi.acm.org/10.1145/2676726.2677009.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Li, F. Imagenet large scale visual
recognition challenge. CoRR, abs/1409.0575, 2014. URL
http://arxiv.org/abs/1409.0575.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. arXiv
preprint arXiv:1508.07909, 2015.

Sim, S., Easterbrook, S., and Holt, R. Using benchmarking
to advance research: A challenge to software engineering.
pp. 74– 83, 06 2003. ISBN 0-7695-1877-X. doi: 10.
1109/ICSE.2003.1201189.

http://arxiv.org/abs/1401.0514
https://doi.org/10.1145/3196398.3196450
https://doi.org/10.1145/3196398.3196450
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1409.5718
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
http://arxiv.org/abs/1409.0575


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Svajlenko, J. and Roy, C. K. Evaluating clone detection
tools with bigclonebench. In 2015 IEEE International
Conference on Software Maintenance and Evolution (IC-
SME), pp. 131–140. IEEE, 2015.

Wainakh, Y., Rauf, M., and Pradel, M. Evaluating semantic
representations of source code, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/
abs/1804.07461.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. CoRR, abs/1905.00537, 2019.
URL http://arxiv.org/abs/1905.00537.

Wang, K. Learning scalable and precise representation of
program semantics. ArXiv, abs/1905.05251, 2019.

Wang, K. and Christodorescu, M. COSET: A bench-
mark for evaluating neural program embeddings. CoRR,
abs/1905.11445, 2019. URL http://arxiv.org/
abs/1905.11445.

Wang, Y., Du, L., Shi, E., Hu, Y., Han, S., and Zhang, D.
Cocogum: Contextual code summarization with multi-
relational gnn on umls, 2020.

Wei, H. and Li, M. Supervised deep features for software
functional clone detection by exploiting lexical and syn-
tactical information in source code. In IJCAI, pp. 3034–
3040, 2017.

Wei, J., Goyal, M., Durrett, G., and Dillig, I. Lambdanet:
Probabilistic type inference using graph neural networks.
arXiv preprint arXiv:2005.02161, 2020.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van
Merriënboer, B., Joulin, A., and Mikolov, T. Towards
ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

White, M., Tufano, M., Vendome, C., and Poshyvanyk, D.
Deep learning code fragments for code clone detection.
In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 87–98. IEEE,
2016.

Winkler, W. E. String comparator metrics and enhanced de-
cision rules in the fellegi-sunter model of record linkage.
1990.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,

Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

Yin, P. and Neubig, G. A syntactic neural model
for general-purpose code generation. arXiv preprint
arXiv:1704.01696, 2017.

Yin, P., Deng, B., Chen, E., Vasilescu, B., and Neubig,
G. Learning to mine aligned code and natural language
pairs from stack overflow. In International Conference on
Mining Software Repositories, MSR, pp. 476–486. ACM,
2018. doi: https://doi.org/10.1145/3196398.3196408.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.11445
http://arxiv.org/abs/1905.11445


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

A. ADDITIONAL EXPERIMENTS
A.1. Utility of global information

As a first step in the study of understanding the impact of
including non-local entities as a part of the feature input
to machine learning models, we conduct an experiment to
examine whether adding global information helps. For tasks
such as null token prediction task where the source of the
null dereference could be anywhere in the call trace, adding
non-local information might prove to be useful.

To make a fair examination on the contribution of global
information, we categorize the method samples from our
null token prediction dataset based on three levels:

1. the null dereference source is within the method (33%)
2. the null dereference source is in a direct caller (34%)
3. the null dereference source is beyond a direct caller

(33%)

Next we proceed to train two sets of models, one trained
on only local method features (local models), the other
trained on both local and non-local features (global models).
We record the performance of the two sets of local and
global models, and report their overall performance and
their performance by each level as categorized above. Table
7 summarizes the results.

In terms of the performance of the models on the 3 cate-
gories of null dereference source, adding non-local informa-
tion from direct callers helped improve the performance of
both samples where the null dereference source was within
the method sample and where the null dereference source
was in a direct caller. There was not a decisive improvement
across all models in the category of method samples where
the null dereference originated beyond the direct callers.
This could be explained based on the fact that only non-local
information from direct callers of the method sample was in-
cluded for the global models. Nevertheless, we observe that
overall adding global information clearly improves the per-
formance of the models for the null dereference prediction
task, which should reason enough to motivate researchers
to incorporate non-local information for suitable tasks.

A.2. Enhanced performance on method call completion

A closer look at the performance of our baseline models on
the method call completion task might indicate that the task
is fairly easy. The models perform quite well even though,
intuitively, the task of predicting an accurate method call at
a given location within a snippet of code should be hard.

To look into the situation, we constructed an experiment
hypothesizing that the higher performance of the models
is greatly due the presence of a significant number of API
method call samples in the dataset.

Table 7. NTKN: Preliminary study on the effectiveness of adding
global information for the null token prediction task

MODELS LEVEL 1 LEVEL 2 LEVEL 3 OVERALL

MLP 0.562 0.160 0.072 0.278
MLP (G) 0.602 0.168 0.073 0.294

CNN 0.372 0.139 0.066 0.203
CNN (G) 0.401 0.152 0.072 0.218

LSTM 0.430 0.128 0.066 0.221
LSTM (G) 0.481 0.131 0.037 0.225

Table 8. COMP: Preliminary study on the impact of API calls for
the method call prediction task

MODELS TYPE I TYPE II TYPE III TYPE IV

MLP 0.330 0.259 0.111 0.143

CNN 0.462 0.236 0.140 0.203

LSTM 0.524 0.299 0.154 0.228

We observed that broadly the method call samples in our
dataset could be grouped into four categories:

I calls to API methods
II calls to methods in the same class of the same package

III calls to methods in another class of the same package
IV calls to methods in another class in another package

We marked our test samples and grouped them into the
categories mentioned above and calculated the metrics sepa-
rately for each category. The results of the experiment are
presented in Table 8. In accordance with our initial hypothe-
sis, we notice that the model performance on the method call
completion task seemed to be higher than expected due to
the categorical contribution of the API method call samples.
In essence, models predict the API method calls with much
higher accuracy than any other method call type, across all
of the models, pushing the overall score higher.



660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

B. DETAILS ON THE DATASETS &
REPRESENTATIONS

B.1. The 50K-C Dataset

The projects in 50K-C (Martins et al., 2018) where harvested
from GitHub, and selected as they included a build script
which made automated compilation of the dataset available.
We need compilable projects as additional post-processing
tools require Java bytecode to work. However, many of the
projects are small, so we selected the ∼7,000 projects with
50 or more classes, as a proxy for more mature projects.
While trying to compile the projects, we did notice some
failures, mainly related to some unresolved libraries. Since
we had still ∼5,300 projects that compiled successfully, we
did not investigate it further. We use Andrew Rice’s fea-
ture graph extractor (https://github.com/acr31/
features-javac) to extract feature graphs similar to
the ones in Allamanis et al. (2017), but for Java instead of
C#. This representation allows us to also extract the AST
and token representations, by simply omitting unnecessary
edges. Note that compiling projects and extracting feature
graphs both took several weeks to simply execute.

Of note, these feature graphs are at the file level,
not the project level. We thus use the Java call
graph extractor (https://github.com/gousiosg/
java-callgraph) of Georgios Gousios to extract inter-
procedural call graphs. We then link the entities across
representations using their UUIDs, and apply further post-
processing to disambiguate some method calls between file.
In the cases where a method call can not be disambiguated
(e.g., a polymorphic method call), we include all possible
edges in the call graph.

B.2. Available Representations in GLUECode

Here, we present the code representations readily-available
with our benchmark. We choose a data sample and present
it in various representations. Based on machine learning
model, different representations corresponding to the same
data samples are readily available making evaluation on
GLUECODE tasks versatile across different model types.
All representations are stored in a database, where they are
accessible via a sample’s UUID.

Raw Text The first text representation we have for every
data sample is the raw text. Each line is comma separated,
and even the line breaks and tab spaces are preserved.

public static Key getKey(String ahex)
{

try
{

byte[] bytes =
CHexString.toByteArr(ahex);

SecretKeySpec skeySpec = new
SecretKeySpec(bytes, "AES");

return skeySpec;
}
catch( Exception e )
{

System.err.println(
"CAesEncrypt.getKey: " + e);

return null;
}

}

Tokens The second representation is the list of method to-
kens which are ready to use, or further pre-processed if a
model using subword units is desired.

PUBLIC, STATIC, Key, getKey, LPAREN,
String, ahex, RPAREN, LBRACE, TRY,
LBRACE, byte, LBRACKET, RBRACKET,
bytes, EQ, CHexString, DOT,
toByteArr, LPAREN, ahex, RPAREN,
SEMI, SecretKeySpec, skeySpec, EQ,
NEW, SecretKeySpec, LPAREN, bytes,
COMMA, "AES", RPAREN, SEMI, RETURN,
skeySpec, SEMI, RBRACE, CATCH,
LPAREN, Exception, e, RPAREN, LBRACE,
System, DOT, err, DOT, println,
LPAREN, "CAesEncrypt.getKey:", PLUS,
e, RPAREN, SEMI, RETURN, null, SEMI,
RBRACE, RBRACE

AST We also have AST representation of every data sam-
ple, where the ast labels are the list of nodes of the data
sample, and ast edges are the list of tuples with parent-child
edges.

{
"ast_labels": ["METHOD", "NAME",
"MODIFIERS", "FLAGS", "RETURN_TYPE",
"IDENTIFIER", "NAME", "PARAMETERS",
"VARIABLE", "NAME", "TYPE",
"IDENTIFIER", ... "ARGUMENTS",
"PLUS", "LEFT_OPERAND",
"STRING_LITERAL", "RIGHT_OPERAND",
"IDENTIFIER", "NAME", "RETURN",
"EXPRESSION", "NULL_LITERAL",
"VALUE", "PARAMETER", "VARIABLE",
"NAME", "TYPE", "IDENTIFIER", "NAME"],
"ast_edges": [

https://github.com/acr31/features-javac
https://github.com/acr31/features-javac
https://github.com/gousiosg/java-callgraph
https://github.com/gousiosg/java-callgraph


715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

[0, 1],
[0, 4],
[0, 7],
[0, 13],
[0, 2],
[2, 3],
...
[54, 55],
[55, 81],
[55, 56],
[56, 57],
...
[79, 80],
[81, 82],
[82, 83],
[82, 84],
[84, 85],
[85, 86]

]
}

Code2Vec We have Code2Vec representations for every
data sample. Each method is represented as a set of up
to 200 AST paths; in case the method has more than 200
possible paths, the 200 paths are selected at random. Each
path is a combination of AST node labels, represented as a
unique symbol.

get|key key,362150388,getKey
key,714300710,ahex
key,-1248995371,string
getKey,-1103308019,ahex
getKey,1228363196,string
...
e,-850278433,println
e,910578178,null
println,-1488546123,null

Code2Seq We also have Code2Seq representations for the
entire dataset of samples. These are similar to Code2Vec rep-
resentations, but the identifiers are sequences of camelCase-
separated tokens, while the paths are sequences of AST
node labels.

get|key key,Cls0|Mth|Nm1,getKey
key,Cls0|Mth|Prm|VDID0,ahex
key,Cls0|Mth|Prm|Cls1,string
getKey,Nm1|Mth|Prm|VDID0,ahex
getKey,Nm1|Mth|Prm|Cls1,string
...
e,Nm1|Plus2|Cal|Nm3,println
e,Nm1|Plus2|Cal|Ex|Bk|Ret|Null0,null
println,Nm3|Cal|Ex|Bk|Ret|Null0,null

Feature Graphs Finally, we have the feature graph repre-
sentation for each sample of the dataset. The node labels
key lists all nodes in the feature graph, while the edges key
has information about every edge type and the correspond-
ing connections.

{
"backbone_sequence": [13, 14, 15, 16,
17, 18, 19, 20, 21, 22],
"node_labels": ["METHOD", "NAME",
"MODIFIERS", "FLAGS", "RETURN_TYPE",
"IDENTIFIER", "NAME", "BODY",
"BLOCK", "STATEMENTS", "RETURN",
"EXPRESSION", "STRING_LITERAL",
"PUBLIC", "String",
"METH_PLACEHOLDER", "LPAREN",
"RPAREN", "LBRACE", "RETURN",
"\"Login request processing\"",
"SEMI", "RBRACE"],
"edges": {

"CH": [
[0, 1],
[0, 4],
[0, 7],
[0, 2],
[2, 3],
[4, 5],
[5, 6],
[7, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 12]

],
"NT": [

[13, 14],
[14, 15],
[15, 16],
[16, 17],
[17, 18],
[18, 19],
[19, 20],
[20, 21],
[21, 22]

],
"LU": [],
"LW": [],
"CF": [],
"LL": [],
"RT": [],
"FA": [],
"GB": [],
"GN": []

},
"method_name": ["get", "Servlet",
"Info"]

}



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

Figure 2. Illustration for global context

B.3. Combining Representations for Global Context

For global context we provide project-level call graphs.
Across all representations, source code entities (methods
and classes) are identified via a Universally Unique Identi-
fier (UUID), and can be linked together.

For every project, we provide a callgraph representation of
the entire project. This representation is a graph where the
nodes are methods, and the edges represent caller/callees
relationships. This representation can be used to retrieve
callers and callees of the method of interest, or even the
entire project’s call graph, if researchers wish to do so.

We leverage this call graph when building global models.
While there is ample future work in finding the best global
representations, we provide initial global representations ob-
tained by concatenating the representations of the callers of
the method of interest to the representation of the method of
interest, before sending the input to the model. Specifically:

• For textual models, we concatenate the representations
of the method callers before the method that is being
called. We also extend the maximum window size
from XXX tokens to YYY tokens (we base this value
on the average token lenghts of the method and the av-
erage number of callers for a given method). A special
¡JOIN¿ token is added between each representation.

• For the code2seq models that leverage AST paths, we
first compute the AST path representations for each
method (limiting the size of the paths to 200, as done
by the original authors (Alon et al., 2018a). We then
concatenate the paths in one large ”Bag of paths”, of
maximum size 1000, that we provide as input to the
model. Importantly, we pad each method representa-
tion so that there are always 200 paths (not less), so
that the model can learn that a new method starts in a
predictible location.

• For the GGNNs, we gather all the individual graphs of
the each method (the method of interest and its callers),
and we concatenate them together in a larger graph. We
add ”call” edges from the method calls to the actual
method, so that the graph is not disconnected. We also
perform additional preprocessing so that the nodes and
edges are properly indexed in the resulting structure.

As the reader can infer, these initial representations are
limited in the amount of global information they use (only
direct callers), and are still much larger than the original rep-
resentation. Thus there are significant issues both in terms
of scaling and in terms of the amount of information that
is missing. This is why there is ample space for additional
exploration.



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

C. DETAILS ON THE GLUECODE TASKS
C.1. NPath Complexity Prediction

We used the PMD static analyzer to compute the NPATH
complexity of the methods in the dataset. PMD imple-
ments a variety of static analysis checks. The detailed
description of the NPATH complexity metric, as imple-
mented in PMD, is available at https://pmd.github.
io/latest/pmd_java_metrics_index.html#
npath-complexity-npath. Of note, NPATH
grows exponentially, as consecutive statements have their
complexity multiplied. This can lead to very high NPATH
values. The distribution of the metric is highly skewed,
with many more methods that have low complexity values
than ones with higher ones. In addition, there are peaks in
the distribution as values that are powers of two are more
numerous than others. As a result, we defined variable size
bins to have an appropriately balanced dataset. Our bins are
1,2,3,4,5-6,7-8,9-10,11-15,16-20,21-30,31-50,51-100.

Alternatives we considered. We considered several other
tasks that incentivize structure at the local level, such as
tasks that would involve replicating local static analyzes.
We considered having four tasks representing each canoni-
cal local static analyses: Live variables (“backwards may”);
Reaching definitions (“forwards may”); available expres-
sions (“forwards must”); and very busy expressions (“back-
wards must”). However, we felt this would have weighted
too heavily on local tasks, hence we decided for a single
task. We had considered other common complexity metrics
such as Halstead’s complexity metrics and McCabe’s cyclo-
matic complexity, and we prototyped a version of this task
using McCabe’s complexity. Ultimately, we decided against
it, as it did not require models to reason on how control flow
statements relate to each other; it was limited to counting
operators.

C.2. Operator prediction

Since not all operators are equally rare, we made choices
among the most common operators, in order to have a bal-
anced dataset in the end. We also had to select operators
that could be plausibly mistaken from one another, leading
us to discard additional operators. We ended up choosing
the following operators: ‘‘+’’, ‘‘-’’, ‘‘*’’, ‘‘/’’,
‘‘%’’, ‘‘=’’, ‘‘==’’, ‘‘!=’’, ‘‘<’’, ‘‘>’’,
‘‘<=’’, and ‘‘>=’’. Thus, we have two larger classes of
arithmetic operators on the one hand, and boolean operators
on the other. We find that models do pick up on this, and
tend to missclassify arithmetic operators with other arith-
metic operators, and boolean operators with other boolean
operators.

Alternatives we considered. We considered other tasks
that, similarly to operator prediction, were mostly local but

were more “holistic” in their reasoning. An early candidate
was the “VarMisuse” task of (Allamanis et al., 2017), where
models have to detect whether a variable is replaced by
another, type-compatible variable. However, this requires
extensive static analysis, that is so far only implemented for
C#, not Java. We also considered other “Misuse” variants,
such as an “OperatorMisuse” variant of operator prediction.
We decided against this as we were concerned that substi-
tuting an operator with another may turn out to be too easy
of a task, and that models may take shortcuts in their rea-
soning. An interesting other task would be predicting the
output of programs, as in (Zaremba & Sutskever, 2014); this
would however diverge from our goal, as the task involves
generated code snippets.

C.3. Method naming

We initially considered all the methods in the corpus, after
accounting for code duplication. We did find that a sig-
nificant number of methods had very short names, which
inflated performance on the task. Thus, we filtered out most
method names that were shorter than 4 characters; we left a
small portion of them (around 23,000) in order to arrive at
a round number of one million method names. We use the
character-level BLEU metric described in (Denoual & Lep-
age, 2005), with smoothing “Smoothing1” from (Chen &
Cherry, 2014). We replace the method name with a special
mask token, also replacing it in the method body (in case
the method is recursive or forwards it to a similar, or uses
super, and also replacing it in the callers of the method,
for models that want to use those in their global reasoning.

Alternatives we considered. We considered other tasks
that involve reasoning over the whole method body, such
as a summarization variant in which the task is to predict
a method comment (such as in (LeClair et al., 2019). This
task had the advantage of also requiring models to generate
natural language, but we felt this complexified the architec-
ture on the decoding side, and would dillute the focus of
the benchmark. We also considered clone detection tasks
(Mou et al., 2016; Wei & Li, 2017), but these would require
the models to reason over a pair of entities, which would
also complexify the models for a single task (a more drastic
change, as it is on the encoder side).

We also had extensive discussions on the metric to use. The
state of the art evaluates method naming by tokenizing the
prediction and the target according to camelCase convention.
This has two disadvantages: 1) it adds a bias towards mod-
els that tokenize identifiers in the same way (while recent
models tend to use variants of byte-pair encoding (Sennrich
et al., 2015), that may not respect the camelCase conven-
tion), and 2) it weights common subwords such as “get”,
“set”, or “is” too heavily, distorting performance. We in-
stead use a character-level BLEU metric that is independent

https://pmd.github.io/latest/pmd_java_metrics_index.html#npath-complexity-npath
https://pmd.github.io/latest/pmd_java_metrics_index.html#npath-complexity-npath
https://pmd.github.io/latest/pmd_java_metrics_index.html#npath-complexity-npath


880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

of the tokenization (Denoual & Lepage, 2005), and reduces
the weight of these common, but very short subwords. This
allows researchers to experiment with the tokenization that
they prefer, and makes the task more challenging while
still rewarding close, but not exact matches (e.g., similar
words but with different endings). We also considered other
character-level metrics, such as the Jaro-Winkler string dis-
tance (Winkler, 1990). However, we found that it had a
“high floor”, giving relatively high scores to very distant
guesses, and emphasizing similarities in the prefix, which
increased the weight of the easy subwords; both issues made
it harder to accurately measure progress on the task.

C.4. Method completion

In each method in the dataset (the same one as method nam-
ing), we mask a single method call in the method body, at
random. The task is to predict this token, with only ex-
act matches allowed: a code completion engine that would
recommend “near misses” would not be very useful. The
method call could be to a method in the same class, to a
method in a different class in the same java package, to a
method anywhere in the system, or to a method imported
from a library. Each of these cases involves different kinds
sizes of context and different kinds of reasoning. Mod-
els leveraging only local reasoning will have to generate
identifiers from scratch, increasing the probability of these
“near misses”. Models that use global reasoning could, on
the other hand, learn to copy an identifier in the extended
context. Existing work show that deep learning with local
reasoning can be more successful in predicting API method
calls (more likely to be seen in training) than method calls
found in the project (Hellendoorn et al., 2019a). Beyond
masking the method call token, we also mask call edges to
the method that might be present in other representations.

Alternatives we considered. While looking for tasks that
involve local masking of the method body, but would re-
quire models to take into account global context, a very
close second alternative we considered was type predic-
tion, for which a few more global models already exist (Wei
et al., 2020; Allamanis et al., 2020). We ultimately preferred
method call completion as the set of potential candidates
(methods) is larger and finer grained than in type prediction
(classes). We also discussed variants of method call comple-
tion, namely whether to ask models to hide and complete
the arguments to the method call, as is done in (Alon et al.,
2020). However, completing the arguments to the method
call would have increased the weight of the local context, as
most arguments are variables defined in the context. This
would have made the task less aligned with the benchmark’s
goal.

C.5. NullToken

For each warning, Infer produces a report that contains: an
error message, the line number where the null dereference
happens, and a trace of abstract interpretation steps that
Infer took to find the potential null dereference. This trace
ranges from simple, local cases (e.g., taking a particular
if branch while a variable is not yet initialized), to highly
complex cases covering dozens of steps across multiple
methods, scattered over several files. Over all the projects,
Infer took several weeks to execute and produced roughly
20,000 warnings, showing that these warnings are pretty
rare. We did filter some of the warnings: some methods
had more than one warning, which would make the task
ambiguous for the models, so we discarded such warnings.

Alternatives we considered. Infer (Facebook, 2015) has
several precise, interprocedural analyses that are strong can-
didates for tasks that require precise modelling and reason-
ing over multiple entities. Examples include reachability
analysis (finding whether method A can call method B, di-
rectly or indirectly), or an analysis that estimates the runtime
cost of a method (including the cost of methods that it calls).
All of these tasks have the drawback that we are asking the
model to emulate the reasoning of an existing tool. One
of the deciding factors was that Null dereference detection,
while being a task that requires us to emulate the reasoning
of a tool, is closer to a practical scenario, as it provides warn-
ings for real bugs. Another alternative in that area would be
to use a Taint analysis tool, such as (Arzt et al., 2014); how-
ever, we would expect that taint analysis warnings would be
even rarer than possible null dereferences.

We initially tried a simpler version of the task - a binary
classification at the method level (whether there a null deref-
erence warning in this method), with a balanced sample of
positive and negative methods. However, selecting nega-
tive examples proved to be difficult, as even simple models
found spurious correlations that led to inflated performance
in this simplified version of the task. We thus settled for a
generation version of the task, where the goal is to output
the token in which the null dereference can occur. We also
discussed the amount of negative examples to include, find-
ing that 20% was a reasonable tradeoff, that required models
to envision that having no null dereference was a possiblity,
while not inflating disproportionately the performance of
trivial baselines that always predict this label.

We also considered a more complex version of the task,
such as requiring models to predict steps in Infer’s execution
traces, but we thought they might prove too difficult at this
time. We also considered a variant where the model would
need to predict the line number (starting from the beginning
of the method) instead of the actual token, but didn’t choose
this since it would then become sensitive to code formatting
choices.



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

D. DETAILS ON THE BASELINES
Vocabulary MLP, CNN and BiLSTM all use a full-token
vocabulary of 10,000 elements, initialized on the training
set of each task. Tokens that are not in the top 10,000
are replaced by OOV tokens. Seq2Seq splits token via the
camelCase coding convention to reduce vocabulary size,
while the pretrained Transformer uses it’s original open
vocabulary (using Byte-Pair encoding).

MLP: A model with an embedding layer of vocabulary
size 10,000, embedding dimension 64, and input maximum
length 200, as its first layer. This converts our words or
tokens into meaningful embedding vectors. This is fed into
a single, dense hidden layer of size 64. We use ReLU as
our activation function. The output layer has a softmax
activation. We compile the model with the Adam (Kingma
& Ba, 2014) optimizer, and use sparse categorical cross-
entropy as our loss since we are going to use the same
model for classification and generation (this models treat
generation as classification over the entire vocabulary).

BiLSTM: A model with an embedding layer of vocabulary
size 10,000, embedding dimension 64, and input maximum
length 200, as its first layer. This converts our words or
tokens into meaningful embedding vectors. Then we add
our Bidirectional LSTM layer. The standalone LSTM layer
is initialized with the value of the embedding dimension.
The LSTM layer is then wrapped with a Bidirectional layer
wrapper. We then add a densely-connected neural network
layer on top of that with the number of units equal to the
embedding dimension, and use ReLU as our activation
function. And yet another layer, with softmax activation,
which is our output layer. We compile the model with the
Adam (Kingma & Ba, 2014) optimizer, and use sparse
categorical cross-entropy as our loss since we are going to
use the same model for multi-class classification.

Seq2Seq/Seq2Tok: Same as BiLSTM, but is unidirectional
with an encoder/decoder architecture and uses camelCase-
separated tokens, reducing OOV.

CNN: For our base CNN model, use an embedding layer
of vocabulary size 10,000, embedding dimension 64, and
input maximum length 200, as our first layer. We then add
a 1D convolution layer, specifying the dimensionality of
the output space 128, the size of 1D convolution window 5,
and the activation function which we set to ReLU. We then
add a 1D global average pooling layer to reduce the data
dimensionality, so as to make our model faster. The last two
layers on top of the pooling layer are identical to our LSTM
model, we add a densely-connected neural network layer
with the number of units equal to the embedding dimension,
and use ReLU as our activation function. We then add
another dense layer as our output layer, with a softmax

activation.

We also choose sparse categorical cross-entropy as our loss
function as we use the same model for all the tasks. We
compile the CNN model with the Adam (Kingma & Ba,
2014) optimizer.

Transformer: We use CodeBERTa-small1, a pre-
trained, 6-layer transformer based on the RoBERTa (Liu
et al., 2019) architecture. The model was pre-trained on
2 million functions written in six different languages (in-
cluding Java) from the CodeSearchNet dataset(Husain et al.,
2020) and released by Huggingface (Wolf et al., 2020).

1https://huggingface.co/huggingface/
CodeBERTa-small-v1

https://huggingface.co/huggingface/CodeBERTa-small-v1
https://huggingface.co/huggingface/CodeBERTa-small-v1


990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

E. RELATED WORK
E.1. Benchmarks

Many communities create benchmarks to advance the state-
of-the-art of their field. Arguably, the ImageNet challenge
(Russakovsky et al., 2014) is one of the most well-known
benchmarks in the machine learning and computer vision
community. In software engineering, Sim et al. (2003) urged
to adopt benchmarking as an evaluation measure, based on
the impact it has on community building. While in the
performance community, benchmarks such as the one from
Blackburn et al. (2006) have been used. Below we provide
a brief overview of some NLP benchmarks, as an extended
related work, which focus beyond a single task.

bAbI Tasks Weston et al. (2015) present several NLP tasks
in simple question-answering format intended to test
dialogue agents on natural language understanding.
bAbI aimed to provide a yardstick for researchers to
assess their NLP models for intelligent dialogue agents.
The tasks in bAbI are artificial, but measure specific
aspects of reading comprehension, such as reasoning
by chaining facts, simple induction, deduction, etc.,
and have well-defined degrees of difficulty.

GLUE Benchmark To progress towards the generalizabil-
ity of NLP models, Wang et al. (2018) present the
GLUE benchmark to evaluate and analyze the perfor-
mance of NLP models across a diverse range of exist-
ing tasks. They further evaluate baselines for multi-
task and transfer learning, comparing them to training
a separate model per task.

SuperGLUE Benchmark With the performance of NLP
models on the GLUE benchmark surpassing the level
of non-expert humans, Wang et al. (2019) reinforce
their GLUE benchmark by presenting the SuperGLUE
benchmark with harder tasks and more diverse task
formats.

DecaNLP Benchmark Going beyond the paradigm of
task-specific NLP models, McCann et al. (2018)
present a set of ten tasks, to evaluate general NLP
models. They cast all tasks in a Question-Answering
format over a given context, and present their own
Multitask Question Answering Network (MQAN) that
jointly learns on all tasks.

E.2. Code Problem Tasks

Here we detail some related problem tasks in the source code
domain, for machine learning source code models. Several
studies have worked on source code-related tasks (Allamanis
et al., 2018), some of which we discuss here. These tasks
are examples of problem tasks we could address to a great
degree with the aid of modern deep learning methods.

MethodNaming A machine learning model of source code
aims to predict the name of a certain method, given
its code body. This problem task was explored by
multiple studies (Allamanis et al., 2015a; 2016; Alon
et al., 2018a; Fernandes et al., 2018).

VarMisuse This goal of this task is to detect and fix incor-
rect variable uses within a program. Given the source
code, a machine learning model should determine if a
certain variable has been misused at a given location.
For example, a developer, might use i instead of j in
an index. Allamanis et al. (2017); Hellendoorn et al.
(2019b) addressed this task and showed that a graph
neural network learns to reason about the correct vari-
able that should be used at a given program location;
they could also identify a number of bugs in mature
open-source projects.

Defect Prediction Finding a broader set of defects in
source code is another task with the potential to be ex-
tremely useful. Pradel & Sen (2017) address the prob-
lem of defect prediction by training a deep-learning
based model that can distinguish correct from incorrect
code. They present a general framework for extracting
positive training examples from a code corpus, make
simple code transformations to convert them into nega-
tive training samples, and then train a model to indicate
one or the other.

Clone Detection This tasks deals with the identification of
code clones. With available pairs of code fragments, a
source code model should be able to indicate whether
the sample pairs are clones. White et al. (2016) utilize
a deep learning approach for the classic task of code
clone detection, both at the file and the method level
with promising results.

E.3. Source Code Representations

Representing source code for the consumption in machine
learning models is an active research area. In the recent past,
programs were generally represented as a bag of tokens to
be fed into machine learning models, but multiple studies
(Allamanis et al., 2017; Alon et al., 2018a;b; Maddison &
Tarlow, 2014) have now shown that leveraging the structured
nature of source code helps machine learning models to
reason better over code; and the models trained on such
representations perform consistently well over sequential or
less-structured program representations. Therefore, in our
discussion here we include program representations which
make use of some form of program structure, whether by
extracting information from abstract syntax tress, control-
flow or data-flow graphs, or similar structures.

AST The abstract syntax tree (AST) is one of the most com-
monly used structured representation for code. There



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

GLUECODE: A BENCHMARK FOR SOURCE CODE MODELS

are multiple ways to exploit this structure. Some stud-
ies directly model the AST as a sequence of applica-
tions of a context-free grammar (Bielik et al., 2016;
Maddison & Tarlow, 2014), and augment the gram-
mar with long-range information (Yin & Neubig, 2017;
Brockschmidt et al., 2018). Various other approaches
have considered “summarizing” the tree-like structures
recursively, inspired from work in NLP. For example,
Büch & Andrzejak (2019) use the AST node type and
node content to create node representations of a func-
tion. Mou et al. (2016) use a convolutional architecture
on ASTs.

More recently, Alon et al. (2018b;a) linearize an AST
into a bag of AST paths. By sampling paths from one
leaf node to another, they generate a set of these paths.
Finally, they use representations of the paths for the
task of MethodNaming as code summarization, and
code captioning.

Path-based Embedding of CFGs DeFreez et al. (2018)
utilize inter-procedural control flow graphs (CFG) to
generate function embeddings for code. They con-
sider paths from random walks on the inter-procedural
control flow graph of a program to generate the embed-
dings. They then use the embeddings, for C code, to
detect function clones.

Feature Graphs Allamanis et al. (2017); Fernandes et al.
(2018); Raychev et al. (2015) combine information
from multiple sources, such as token sequences, ASTs,
control-flow, data-flow graphs etc. of a program to
generate feature graphs, which consider long-range
dependencies and the structural nature of source code,
to reason over source code. To learn from these graphs,
these works use methods such as conditional random
fields (CRF) and graph neural networks (GGNN).


