
Is Functional Programming Better for Modularity?

Ismael Figueroa
∗

Escuela de Ingeniería Informática
Pontificia Universidad Católica de Valparaíso

ismael.figueroa@pucv.cl

Romain Robbes
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile

rrobbes@dcc.uchile.cl

ABSTRACT
In 1989 John Hughes published an influential position paper
entitled Why Functional Programming Matters. The ar-
ticle extolls the virtues of lazy functional programming by
developing several examples: the Newton-Rhapson squares
root method, numerical differentiation and integration, and
an alpha-beta minimax search. A main conclusion of that
work is that higher-order functions and lazy evaluation sig-
nificantly contribute to modularity. We have found that re-
cent articles from 2010 to 2014 cite Hughes’ work as seminal
work supporting that functional programming is, in general,
good for modularity. We believe this reflects an unstated
hypothesis in part of the research community: functional
programming is inherently better at modularity than other
paradigms such as typical procedural and object-oriented pro-
gramming. To the best of our knowledge there are no (large-
scale) empirical evaluations of this characteristic. We dis-
cuss the influence of Why Functional Programming Mat-
ters on current beliefs regarding the advantages of func-
tional programming, the recent citations that intrigues us,
and provide a small experiment on the GHC Haskell com-
piler, suggesting the existence of modularity issues in it.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity
measures

Keywords
modularity, functional programming, topic analysis, ghc

1. INTRODUCTION
∗Partially funded by FONDECYT 3150672.

Modularity is a key property of software that helps
minimize maintenance efforts and which also improves
the quality of the software [7]. The essential idea be-
hind modularity is to decompose a system into several
modules that isolate important design decisions, as well
as implementation details that are likely to change [18].
The quest for modularity goes back to the beginning
of computer programming. From structured program-
ming [6] to object-oriented programming [14, 15], as
well as recent developments such as aspect-oriented [16],
context-oriented [10], and feature-oriented [1] program-
ming. Functional programming developed concurrently
to object orientation, but remained as an academic niche.

However modularity can be a fuzzy and unprecise
concept. In a famous essay, John Hughes, one of the
original developers of Haskell, states [13]:

“[...] we have argued that modularity is the key to
successful programming. Languages that aim to im-
prove productivity must support modular program-
ming well. [...] modularity means more than modules.
Our ability to decompose a problem into parts depends
directly on our ability to glue solutions together. To
support modular programming, a language must pro-
vide good glue.”
Entitled as Why Functional Programming Matters—

from now on simply Why FP—the origins of this classic
paper go back to 1984 as an internal memo at Chalmers
University, which was later revised and published in the
Computer Journal in 1989 [13]. The article argues, by
developing several example programs in the Miranda
language, an early influence on Haskell, how higher-
order functions and lazy evaluation significantly con-
tribute to modularity [13]. The article concludes:

“since modularity is the key to successful program-
ming, functional programming offers important advan-
tages for software development.”
To this date Why FP has 107 citations in the ACM

Digital Library1 and around 900 informal citations (e.g. in-
cluding web pages and other non-indexed publications)
according to Google Scholar. Regarding official cita-

1http://dl.acm.org/citation.cfm?id=63411

http://dl.acm.org/citation.cfm?id=63411


tions, the most recent ones are 6 citations in 2014. In
the last 5 years, Why FP has 33 citations between 2010
and 2014, with an average of 6 citations per year.

Regarding informal citations, Google Scholar shows a
constant following since its publication, with a notable
increase since 2006.2 Albeit 5 of the most recent cita-
tions in 2014 refer to Why FP in a neutral or historical
context, we became intrigued by this quote [4]:

“Experts have extolled the benefits of laziness for
decades now. As Hughes explained [Hughes, 1989],
lazy programming languages enable programmers to
design code in a modular way;[...]”
because it appears that the alleged benefits of lazy func-
tional programming for modularity are taken as a fact
without much evidence. To the best of our knowledge
there are no large-scale empirical evaluations regarding
the modularity benefits of functional programming.

2. DOES IT REALLY MATTER?
Although for space reasons it is difficult to contex-

tualize the programming landscape of 1989, we believe
that the paper claims—in its historical context—make
a lot of sense. Specifically, it is crucial to be aware that
lazy functional languages as we know them today were
developed mostly during the ’70s and the ’80s. A major
milestone of this process is the first release of Haskell
in 1990, born as the unification of several existing ideas
on lazy functional languages [12].

By examining a small sample of quotes from research
papers in top conferences and journals, we found that
earlier citations to Why FP are, in our opinion, quite
appropriate because they carefully state the contribu-
tions of the article. Another finding is that a large part
of the citations are properly used to discuss some his-
torical context. However, there is a small set of recent
citations in top conferences that appear to overempha-
size the real contributions of Why FP .

To begin we quote an 1989 ACM Computing Sur-
vey [11] that refers to higher-order functions as a dis-
tinguishing feature of modern functional languages:

“Limiting the values over which abstraction occurs
to non-functions seems unreasonable; lifting that re-
striction results in higher-order functions. Hughes makes
a slightly different but equally compelling argument in
[Hughes, 1984], where he emphasizes the importance
ofmodularity in programming and argues convincingly
that higher-order functions increase modularity [...]”
We believe this citation is quite fair. Indeed it clearly
states that Hughes just put forward a compelling and
convincing argument regarding modularity and func-
tional programming. Seven years later, in the first ICFP
2https://scholar.google.com/citations?view_op=
view_citation&citation_for_view=adD4xmAAAAAJ:
u-x6o8ySG0sC

conference in 1996, Okasaki [17] refers toWhy FP in the
first sentence of the introduction:

“Functional programmers have long debated the rel-
ative merits of strict versus lazy evaluation. Although
lazy evaluation has many benefits [Hughes, 1989], strict
evaluation is clearly superior in at least one area [...]”
This might be one of the first formal citations where

Why FP is used as a seminal reference to the virtues of
(lazy) functional programming. The idea is reinforced
by the fact that Okasaki’s paper is not related at all
to modularity, but to the amortized analysis of algo-
rithms taking laziness into account; there is no further
reference or discussion about Hughes’ work on it.

We have found similar situations in at least one paper
per year, from 2010 to 2014, where Why FP is used as
an authoritative reference to the modularity benefits of
functional programming. We start with the most recent
article, in 2014 at POPL [4]:

“Experts have extolled the benefits of laziness for
decades now. As Hughes explained [Hughes, 1989],
lazy programming languages enable programmers to
design code in a modular way;[...]”
In 2013 at ESOP [3]:

“A lazy functional language naturally supports the
construction of reusable components and their com-
position into reasonably efficient programs [Hughes,
1989]”
Here we take reusability and composition as the key
terms that refer to modularity. In 2012 at ICFP [20]:

“Non-strict functional programming languages, such
as Haskell, offer important benefits in terms of modu-
larity and abstraction [Hughes, 1989].”
appears as the starting sentence in the introduction.
Then in 2011 at IFL [5]:

“While laziness enables modularization [Hughes, 1989],
it unfortunately also reduces a programmer’s ability to
predict the ordering of evaluations.”
also appears as the first sentence in the introduction.
Finally, in 2010 at SAC [19]:

“For instance, using a language such as C++ or
C# allows the file system to be written in a high-
performance, object-oriented language. On the other
hand, functional languages like Haskell and OCaml
provide tools such as higher-order functions and lazy
evaluation that facilitate modularity and, in turn, pro-
ductivity [Hughes, 1989].”
This last paragraph discusses the different language bind-
ings for FUSE file system implementations. The paper
also confers to OCaml the same alleged benefits as those
of Haskell, even though OCaml is strict by default (with
a module for explicit lazy computations), and it has
primitive side-effecting operations. Furthermore, mod-

https://scholar.google.com/citations?view_op=view_citation&citation_for_view=adD4xmAAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&citation_for_view=adD4xmAAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&citation_for_view=adD4xmAAAAAJ:u-x6o8ySG0sC


ularity seems to be regarded as a feature of functional
programming, but not of object-oriented programming.

It is both intriguing and surprising for us that Why
FP appears to be the primordial citation to praise the
modularity benefits of functional programming. In con-
trast to recent research on the modularity properties
of object-oriented software [8, 7, 21] we are not aware
of any empirical evaluation of modularity in functional
programming. Moreover, we believe that this gap is not
due to an inherent difficulty to measure modularity in
functional programming, but, we conjecture, is due ei-
ther to lack of interest from the community, or from un-
stated assumptions like the one described in this paper.
We continue by describing two empirical approaches to
assess modularity and the application of one regarding
the modularity of the GHC Haskell compiler3, one of
the largest software projects written in Haskell.

3. MEASURING MODULARITY
Modularity is traditionally measured by two struc-

tural metrics: coupling and cohesion. Coupling mea-
sures how much a module relies on other modules, while
cohesion measures how close all the methods, functions
or attributes of a module work to implement a common
concern. It is commonly accepted that a system (or at
least a concern) is modular when it is loosely coupled
and highly cohesive. A non-modular concern is scattered
(high coupling) and/or tangled (low cohesion).

Although the traditional approach can be used to
compare modularity across programs written in the same
programming language, it is difficult to make compara-
ble observations across several programs written in dif-
ferent languages. Two language-agnostic methodologies
to assess modularity can be used to overcome this issue.
Analysis of software evolution. It focuses mostly
on scattering by considering the whole evolution history
of the software to detect changes that consistently affect
multiple entities or artifacts of the system. The seminal
work of Eick et al. [8] studies 10 years of the evolution
of a major telephone system. One of its main results is
the breakdown of modularity over time reflected in that
the span of changes, i.e., the quantity of files affected
by an individual code change, increases over time.
Analysis of concerns as latent topics. Based on
information theory, Baldi et al. [2] developed a the-
ory to assess the prevalence of crosscutting concerns
in software. The theory is summarized as follows [2]:
“concerns are latent topics that can be automatically
extracted using statistical topic modeling techniques
adapted to software. Software scattering and tangling
can be measured precisely by the entropies of the under-
lying topic-over-files and files-over-topics distributions.”

These methodologies provide quantitative measure-
ments about the modularity of a system. Moreover,
3https://www.haskell.org/ghc/

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

Scattering Tags

Scattering Fulltext

Tangling Tags

Tangling Fulltext

Topic Ordinal Id

N
o

rm
a

liz
e

d
 E

n
tr

o
p
y

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

● ●
●

●
● ●

●
●

●
●

●
● ●

●
●

●
●

●

●

●

(a) k1 = 428 topics

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

●

Scattering Tags

Scattering Fulltext

Tangling Tags

Tangling Fulltext

Topic Ordinal Id

N
o

rm
a

liz
e

d
 E

n
tr

o
p
y

●

●

●

●
●

●

●
● ● ● ●

●

●
●

(b) k2 = 63 topics

Figure 1: Experimental results for topic analysis for
k1 = 428 and k2 = 63 number of topics on the
ghc/compiler subsystem of a snapshot of GHC.

they are not mutually exclusive and can be used to-
gether to obtain a better picture of the state of the
software. A potential weakness of analyzing software
evolution to measure modularity is its focus on scat-
tering. It seems difficult to assess tangling considering
only the metadata of affected software artifacts. On the
other hand, topic analysis handles both scattering and
tangling, but its results are probabilistic in nature and
depend on the fine tuning of several parameters. We
believe that a mixed approach should yield the best re-
sults. Nevertheless, as a first approach we perfomed a
simple empirical analisys using the second methodology.

4. PRELIMINARY ASSESSMENT
As a first approach we did a topic analysis following

the theory of Baldi et al. [2] to assess the modularity of

https://www.haskell.org/ghc/


the GHC compiler. The complete material used in this
experiment is available at [9]. Using the topicmodels R
package4 we used the latent Dirichlet allocation (LDA)
algorithm on the ghc/compiler subsystem of GHC to
construct scattering and tangling curves as in [2].

We considered two parameters, the topic count k and
the document corpus. As a simple heuristic we used
the total number of modules k1 = 428—in Haskell each
module is defined in exactly one file—and the number
of top-level subfolders from ghc/compiler, k2 = 63,
each representing a different subsystem. As the doc-
ument corpus we first considered the full text of the
files, put into proper form using standard unix tools tr
and awk. Additionally we used a custom parser that
only keeps the identifiers—or tags—of each type and
each function used or declared inside a particular file.5
We performed two simple normalization steps for the
vocabulary. First, following [2] we filtered all identi-
fiers from the Prelude, which is the set of identifiers
available by default in Haskell, including functions to
manipulate list, tuples, logical operators, etc. Second,
we split identifiers in camelCase or in under_score; this
process still needs improvement.

The resulting scattering and tangling curves are shown
in Figure 1. The plots represent normalized entropy [2],
a comparable measure of entropy between 0 and 1, of
both metrics. Maximum scattering entropy for a topic
means that it appears in every document. Likewise,
maximum tangling entropy means that a file contains
every topic in similar proportion. The curves are similar
to those in [2], where entropies above 0.5 were regarded
as high scattering or tangling. Based on this we can
conclude that for both k1 and k2 the scattering entropy
is high, which suggest that there exists some modular-
ity issues in this project. Tangling looks less of an issue
than scattering, but might be worth exploring for k2.

5. CONCLUSIONS
Modularity is a key property of software which arises

from the proper decomposition of a system into mod-
ules. The decomposition mechanisms of a programming
language are crucial to determine the opportunities to
write modular and maintenable code. Our hypothesis
is that parts of the functional-programming community
in particular, and of the software-development commu-
nity in general, overestimate the modularity benefits
of functional programming. Our bibliographic analysis
supports this hypothesis by showing that several articles
in top conferences cite Why FP as the main supporting
evidence. Following the recent trend on empirical stud-
ies on programming languages, we believe that a single
paper that develops a handful of sample programs is
unsatisfactory evidence for such strong claims. Initial
4http://cran.r-project.org/package=topicmodels
5https://github.com/ifigueroap/hothasktags

empirical evidence suggest modularity issues in GHC,
one of the most emblematic functional programming
software projects. Perhaps functional programming is
actually better for modularity—we do not know it yet—
but currently there is not enough supporting evidence.

References
[1] S. Apel and C. Kästner. “An Overview of Feature-

Oriented Software Development”. In: JOT (2009).
[2] P. F. Baldi et al. In: OOPSLA 2008.
[3] S. Chang. “Laziness by Need”. In: ESOP 2013.
[4] S. Chang and M. Felleisen. “Profiling for Laziness”. In:

POPL 2014.
[5] S. Chang et al. “From Stack Traces to Lazy Rewriting

Sequences”. In: IFL’11. 2012, pp. 100–115.
[6] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds.

Structured Programming. 1972.
[7] M. Eaddy et al. “Do Crosscutting Concerns Cause De-

fects?” In: TSE 34.4 (July 2008).
[8] S. G. Eick et al. “Does Code Decay? Assessing the

Evidence from Change Management Data”. In: TSE
27.1 (Jan. 2001).

[9] I. Figueroa and R. Robbes. Initial Topic Analysis of
GHC. http://www.inf.ucv.cl/~ifigueroa/doku.
php/research/plateau2015.

[10] R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-
oriented Programming”. In: JOT (2008).

[11] P. Hudak. “Conception, Evolution, and Application of
Functional Programming Languages”. In: ACM CSUR
(Sept. 1989).

[12] P. Hudak et al. “A History of Haskell: Being Lazy with
Class”. In: HOPL III. 2007.

[13] J. Hughes. “Why Functional Programming Matters”.
In: Comput. J. 32.2 (Apr. 1989), pp. 98–107.

[14] D. H. H. Ingalls. “The Smalltalk-76 Programming Sys-
tem Design and Implementation”. In: POPL ’78.

[15] A. C. Kay. “The Early History of Smalltalk”. In: ACM
SIGPLAN Notices 28.3 (Mar. 1993), pp. 69–95.

[16] G. Kiczales et al. “Aspect Oriented Programming”. In:
Special Issues in Object-Oriented Programming. 1996.

[17] C. Okasaki. “The Role of Lazy Evaluation in Amor-
tized Data Structures”. In: ICFP ’96. May 1996.

[18] D. Parnas. “On the criteria for decomposing systems
into modules”. In: Communications of the ACM (1972).

[19] A. Rajgarhia and A. Gehani. “Performance and Ex-
tension of User Space File Systems”. In: SAC 2010.

[20] H. Simões et al. “Automatic Amortised Analysis of
Dynamic Memory Allocation for Lazy Functional Pro-
grams”. In: ICFP 2012. Sept. 2012, pp. 165–176.

[21] R. J. Walker, S. Rawal, and J. Sillito. “Do Crosscutting
Concerns Cause Modularity Problems?” In: FSE 2012.

http://cran.r-project.org/package=topicmodels
https://github.com/ifigueroap/hothasktags
http://www.inf.ucv.cl/~ifigueroa/doku.php/research/plateau2015
http://www.inf.ucv.cl/~ifigueroa/doku.php/research/plateau2015

	Introduction
	Does it really matter?
	Measuring Modularity
	Preliminary Assessment
	Conclusions

