
Asking and Answering Questions during a
Programming Change Task in Pharo Language

Juraj Kubelka Alexandre Bergel Romain Robbes
PLEIAD Laboratory, Department of Computer Science (DCC)

University of Chile, Santiago, Chile
{jkubelka,abergel,rrobbes}@dcc.uchile.cl

Abstract
Previous studies focus on the specific questions software en-
gineers ask when evolving a codebase. Though these studies
observe developers using statically typed languages, little
is known about the developer questions using dynamically
typed languages. Dynamically typed languages present new
challenges to understanding and navigating in a codebase
and could affect results reported by previous studies.

This paper replicates a previous study and presents the
analysis of six programming sessions made in Pharo, a dy-
namically typed language. We found a similar result when
comparing sessions on an unfamiliar codebase with the pre-
vious work. Our result on the familiar code greatly deviates
from the replicated study, likely caused by different tasks
and development strategies. Both missing type information
and test driven development affected participant behavior
and prudence on codebase understanding, where some par-
ticipants made changes based on assumptions.

We provide a set of questions that are useful in charac-
terizing activity related to the use of a dynamically typed
language and test-driven development — questions not ex-
plicitly considered in previous research. We also present
a number of issues that we would like to discuss during the
PLATEAU workshop.

1. Introduction
Programming environments have tremendously improved
over the last decade. What were previously simple text edi-
tors are now fully fledged studios for code production. Nav-
igating between source code elements is now supported in
many different ways by most programming environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLATEAU ’2014, October 21, 2014, Portland, Oregon, United States.
Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Sillito et al. [9] (herein designated as Sillito) made a num-
ber of observations on developer navigation. They identify
four question categories and levels of tool support for get-
ting answers. They conducted two studies observing soft-
ware programmers of statically typed languages C++, C,
C#, and Java. In their first study, the participants worked
on a change task for one unique open source project, Ar-
goUML1, of which they were not familiar. The second study
was conducted in an industrial setting including software
engineers working on a change task of familiar codebase.
The context setting used by Sillito in their experiment does
not cover some commonly found software engineering prac-
tices. For example, they only consider statically typed lan-
guages, one industrial codebase, and one open source code-
base.
Research question. Our work replicates the experiment by
Sillito et al. and validates it in a new scenario. The partic-
ipants worked on tasks in Pharo, a dynamically typed pro-
gramming language, and in distinct open source software
systems. The dynamically typed languages present new chal-
lenges to understanding and navigating in a codebase. Both
aspects — dynamically typed language and different code-
bases could affect results reported by Sillito. In summary,
our research question is:

Are findings presented by Sillito applicable to pro-
gramming change tasks using the Pharo programming
language?

Pharo. The Pharo2 environment (Pharo IDE) illustrated in
Figure 1 is largely different from the ones considered in the
Sillito experiment. The Pharo programming environment of-
fers a set of expressive and flexible programming tools. The
System Browser (2) is the main tool for writing and reading
source code. Navigation within the source code is essentially
based on the SendersOf (4), ImplementorOf, and UsersOf
tools; whenever a user asks to where a particular method is
called, or asks for method definition, field reference, or class

1 http://argouml.tigris.org, verified September 2014
2 http://pharo.org, verified September 2014

http://argouml.tigris.org
http://pharo.org


reference, a new window appears with a corresponding list.
In addition, test driven development is supported by the Test
Runner (1). Incremental and live programming is supported
by the Workspace (6) and Transcript (7), a kind of Unix-like
terminal for Pharo.

Pharo language is a dialect of the Smalltalk language [2].
It is a pure object oriented and dynamically typed language.
Results. We observe the following:

• The number of question occurrences on the unfamiliar
code has similar results compared with the study number
one by Sillito.

• The study on the familiar code indicates great deviation,
likely caused by different tasks and development strate-
gies: one participant did not use test cases and was con-
siderably cautious; another participant relied heavily on
the accuracy of tests and did not spend much time reading
the codebase.

• Both missing type information and Test Driven Develop-
ment (TDD) affected a participant’s judgement on code-
base understanding. Some participants made changes
based on assumptions: if a test scenario (a test case or
manual testing) worked, they went further with a partic-
ular task; if a test scenario did not work, they carefully
studied a particular implementation in the codebase.

Finally we provide a set of questions that are useful for
characterizing activity related to the use of a dynamically
typed language and test-driven development — questions
not explicitly considered by Sillito.
Open questions. Our preliminary work makes a number of
assumptions that we hope to verify during the PLATEAU
workshop; we provide the questions we would like to raise
during the workshop.
Outline. Section 2 describes settings of our study. Section 3
describes the analysis process on the collected data. Sec-
tion 4 compares our results against the study by Sillito, re-
ports our observations, and aggregates new questions. Sec-
tion 5 considers validity to our study. Section 6 concludes
our work, and discusses related and future work. Section 7
raises open issues for the PLATEAU workshop.

2. Programming Study
This section describes settings of our exploratory study.

2.1 Initial Considerations for Experimental Design
The intention of the experiment is to conduct partial replica-
tion [3]. Here we describe the setting differences comparing
them to the study by Sillito.
Pharo language. We use dynamically typed Pharo language.
Participants in the studies by Sillito use statically typed
languages, e.g., Java, C++, or C#. We expect that participants
will be interested in variable types and method return types.

Kleinschmager et al. observe in their empirical study that
static type systems improve maintainability of software sys-
tems [4]. This is an aspect which may affect our partial repli-
cation. Pharo however supports live-programming that en-
ables manipulation and inspection of data and program ex-
ecution, though it may diminish the observation by Klein-
schmager et al.
Different IDE. Each IDE comes with a different set of tools
and hence may affect developer work. To our knowledge
there is no official comparison of Pharo with the tools used
in the sessions by Sillito. We therefore do not know if using
Pharo IDE affects our study.
Development process. Pharo developers commonly use Test
Driven Development (TDD). Oram et al. conduct a system-
atic review of TDD research [8], and are interested in know-
ing if there is evidence of TDD improving product quality
and productivity. They conclude that it varies and there is no
common agreement about TDD benefits. Sillito does not dis-
cuss what development technique the participants use. Nev-
ertheless the development process could affect our study.
Pair programming for unfamiliar codebase. Sillito’s partic-
ipants worked in pairs on each task. The discussion between
developers helped them understand what information they
were looking for. We choose one-man programming sessions
because this is the way our participants usually work. In our
case the observer “shadows” the position and a particular
developer explains his/her actions to the observer. We do not
expect the one-man programming to affect our study.
Task definition for unfamiliar codebase. Sillito selects spe-
cific issues from ArgoUML issue tracker. They are without
any reference to the codebase, e.g., classes or methods. Our
assignments contain a snippet of an example related to a par-
ticular task; it is a common practice to report an issue for the
used codebase. We expect that our participants ask less ques-
tions related to finding focus points in the codebase.
Task definition for familiar codebase. Sillito conducts the
tasks on the familiar codebase in one company. Our partic-
ipants — although working in companies — are better de-
scribed as individual programmers; they usually work alone
and comunicate with others through internet. As the partici-
pants worked on their codebase, we do not expect individual
programming to influence our study.
Data collection for familiar codebase. Sillito uses an audio
recording and takes notes during each session. We use au-
dio and screen recording. Our technique may improve the
accuracy of the analysis, but we do not expect the recording
system to affect our study.

2.2 Data Collection
We used three data collection techniques: the think-aloud
protocol, screen captured videos, and interviews. In the
think-aloud protocol, we asked participants to verbalize their



Figure 1. Standard Pharo Programming Environment with (1) Test Runner — for test driven development, (2) System Browser
— a main tool for writing and reading source code, (3) Debugger, (4) SendersOf/ImplementorsOf/UsersOf — for navigating
method and type references and declarations, (5) Workspace and (6) Transcript — for incremental and live programming.

thoughts while solving a given task. It permits us to identify
the developer questions.

After each session we also conducted semi-structured in-
terviews in which the participants were asked to comment
on the challenges experienced during the sessions and diver-
gencies in their common day-to-day work. The interviews
lasted about 5 minutes.

The screen and audio recording, and interviews were cap-
tured using QuickTime Player on the Apple OS X operat-
ing system, and Camtasia on the Microsoft Windows oper-
ating system. The study contains 6 different programming
sessions and about 5 hours of videos.

2.3 Participants
We recruited six participants consisting of doctoral students,
and staff from the department of Computer Science at the
University of Chile, and professional developers from dis-
tinct small local companies. As the community located in
Santiago is relatively small and the programmers know each
other, participants were invited to the study either via email
or through personal encounters. We restrict our experiment
to Pharo programmers.

The software development experience among the partici-
pants ranged from 5.5 to 22 years, with a median of 11 years.
The experience in a Smalltalk programming language ranges
from 0.5 to 16 years, with a median of 7 years. The partici-
pants consisted of 1 Ph.D. student, 2 professors, and 3 pro-
fessional developers. Details are illustrated in Table 1.

2.4 Tasks
We observed six programming sessions (one session per
participant). Table 1 illustrates how the sessions were dis-
tributed. Being familiar or not with a codebase when car-
rying out a programming activity is a significant factor, on
which our experiment is articulated: 3 sessions were con-
ducted using a familiar codebase, 1 session on a partially

familiar codebase, and 2 sessions on an unfamiliar code-
base. The participants working on the familiar code chose
their tasks in advance. The participants working on partially
familiar or unfamiliar codebase worked on tasks we prepared
for them.

All sessions were conducted on the participant devices
and were scheduled on average with two-days notice.

2.4.1 Familiar Codebase
We qualify a participant P as familiar to a codebase if P is
one of the authors of the codebase.

We asked each participant to choose a programming task
of his/her project on which he/she can work about 40 min-
utes. We stressed that it was not important to finish the task
at the end of the session. Each participant chose a task and
prepared his/her device in advance.

2.4.2 Partially Familiar and Unfamiliar Codebase
We qualify a participant P as partially familiar with a code-
base if P has previous experience with the codebase — for
example, the participant used it before.

We define unfamiliar codebase in which a participant P
has little to no knowledge of where the minimal knowledge
is not beneficial to completing the task.

We decided to differentiate partially familiar and unfamil-
iar codebase knowledge when participant P3 reported that
knowledge of other parts of the framework helped him be
more oriented on the focused code.

We asked each participant to work on a particular task.
All tasks were made on Roassal23 in Pharo. Roassal2 is
a visualization engine that follows the common model-view-
controller pattern. Each participant worked on a task that was
different from that of other participants. The purpose was to

3 http://objectprofile.com/Roassal.html, verified September
2014

http://objectprofile.com/Roassal.html


indicate which code structure could highlight problems in
order to better understand it.

Each assignment included a prepared Pharo image with
a snippet of an example related to a particular task and
task explication. Participants copied their assignment to their
device and after basic checks of the recording software and
code, started to work.

2.5 Study Setting
Participants working on partially familiar and unfamiliar
codebase completed the study using the Pharo (version 3).
We choose the Pharo since we have substantial experience
developing in it and we know the characteristics of the lan-
guage and IDE. This increases our confidence in our inter-
pretation of the participant actions.

Participants working on the familiar codebase completed
the study using the Moose platform (version 5). It is based
on Pharo version 3 and it includes additional tools. It was not
our choice, but the participants’ preference. Participant P6
even demanded to work in Moose 5, because he uses some
frameworks included in that image. The session settings are
illustrated in the Table 1.

Our purpose is not to compare a developer’s behavior in
Moose and in Pharo. Nevertheless we did not see a signifi-
cant change in participant behavior using Moose. Only par-
ticipant P5 used the Moose Inspector tool regularly in or-
der to understand object compositions. A similar function is
available in Pharo as Tree Inspector tool.

The participants were permitted to use any of the features
of the IDEs and any of the documentation resources. They
were advised to proceed with their work as usual.

The programming studies were conducted individually on
the university premises. Sessions S2, S4, and S6 were con-
ducted in participant offices. The sessions S1 and S3 were
conducted at other locations available to the university staff.
Session S5 was done at the participant’s private premise
without an observer. Before this session S5, we conducted
another session with participant P5, but the screencast was
lost because of technical problems. Participant P5 was will-
ing to run another session in his office a few days later. He
built it on the work of the original session. As he was expe-
rienced from the first session, we do not detect any threats to
validity.

Before each study, we setup the participant device and
explained the procedure of the session, in particular, how the
think-aloud protocol works. Other than this explanation, we
have not done any training on the think-aloud protocol.

Once the participant was satisfied and his device was
ready, we started a screen and voice recording software and
DFlow framework [7] for tracking additional information
about developer behavior.

3. Data Analysis
This section describes the analysis process on the collected
data.

Our analysis focuses on the questions the participants ask
when developing. Our goal is to identify those questions and
compare them with the findings of Sillito [9]. Our method
of analysis involves two techniques: (i) identifying the con-
crete questions, (ii) generalizing of concrete questions and
mapping to existing questions from Sillito.
Identification of concrete questions. In this phase, we go
through the recorded videos and produce the semi-structured
transcript, presented below (“he” refers to the participant):

• 06:35-08:08 he asks Q“How is the background created
for the parent menu?”

06:39-06:44 he goes to method createParentMenu:

background: observing the implementation where he
sees another method Q“What does the method look
like?” which creates background

06:44-07:05 then he asks Q“Why does it not do
the same things [parent menu label and background
color] at the same time?”

We verbalized each action as a concrete question anno-
tated by Q symbol, e.g., Q“How is the background created
for the parent menu?” Some questions were explicit, e.g.,
while P3 was observing a particular method, he asked “Why
does it not do the same things at the same time?”. Other
questions were figured out from the actions, e.g., P1 jumped
from the code where TRMouseClick class was used and ob-
served its class definition and its method names. This ac-
tion is phrased into the question “What are the parts of TR-
MouseClick?”
Generalization of concrete questions. After identifying spe-
cific questions, we then synthesized generic questions that
abstract the specifics of a given task. We include generic
questions in the transcript annotated by GQ symbol, e.g.,
GQ“(23) How is this feature or concern (object ownership,
UI control, etc.) implemented?” The transcript below is the
final version of the above transcript:



Session Participant Experience Smalltalker Position Task Knowledge Tools
[years] [years]

S1 P1 5.5 3 Ph.D. Student Enhancement Unfamiliar code Pharo
S2 P2 15 11 Professor Enhancement Unfamiliar code Pharo
S3 P3 5 1.5 Professional Enhancement Partial knowledge Pharo
S4 P4 20 13 Profesional Enhancement Own code Moose
S5 P5 7 0.5 Profesional Enhancement Own code Moose
S6 P6 22 16 Profesor Enhancement Own code Moose

Table 1. Participant information for each session: session number, participant number, programming experience as developer
in any language, programming experience in Smalltalk language, current position, task, codebase knowledge, and tools used.

• 06:35-08:08 he asks Q“How is the background created
for the parent menu?” GQ“(23) How is this feature
or concern (object ownership, UI control, etc.) imple-
mented?”

06:39-06:44 he goes to method createParentMenu:

background: observing the implementation where he
sees another method Q“What does the method look
like?” GQ“(17) What does the declaration or defi-
nition of this look like?” which creates background

06:44-07:05 then he asks Q“Why does it not do
the same things [parent menu label and background
color] at the same time?” GQ“(25) What is the
behavior that these types provide together and how
is it distributed over the types?”

During this process we used the list of questions identified
by Sillito [9]. For instance, during our study a participant
raised the question “How is the background created for the
parent menu?”, and we map it to the question “(23) How is
this feature or concern (object ownership, UI control, etc.)
implemented?” proposed by Sillito.

Some concrete questions are not conveniently translat-
able to the list of questions presented by Sillito, e.g., Q“Why
does the test case fail?” In such cases questions presented
by Ko et al. [5] are used, e.g., “(r1) What does the failure
look like?”

If none of the questions proposed by Sillito and Ko are
related to a question of our study, we abstract the question;
for example we map the question “Is the R3CubeShapeclass

tested?” to the generic question “(e6) Is this entity tested?”
Each new question is added to one of question categories
identified by Sillito.
Results. Table 2 gives the frequency of each question during
the sessions. The first column lists general questions per
category in the same way as illustrated by Sillito. Questions
from Sillito begin with a number, e.g., “6. What are the parts
of this type?” Our new questions begin with e followed by
a number in brackets, e.g., “(e3) Which abstract methods
should be implemented to this type?” The question “(r1)
What does the failure look like?” is taken from the study by
Ko et al. We use only this question from Ko et al. because

their questions are more generally formulated and we are
able to find corresponding questions in the work by Sillito.
Even question (r1) could be mapped to one of the Sillito’s
questions, but in particular cases we are not able to formulate
participant needs more precisely.

The columns are grouped to the sessions on the unfa-
miliar codebase and to the sessions on the familiar code-
base. Columns S1-S6 are particular sessions of this study.
Columns #1 and #2 are the sum of particular sessions, and
SM1 and SM2 correspond to Sillito’s results.

4. Results
This section is structured as following: (i) Section 4.1 com-
pares results on the unfamiliar and familiar codebase. Sec-
tion 4.2 debates aspects of dynamically type language on
answering questions. Section 4.3 discusses aggregated ques-
tions.

4.1 Session Comparison
4.1.1 Results on Unfamiliar Codebase
The first graph in Figure 2 gives the distribution of the
question occurrences per category and session. Each bar
represents the percentage of the number of questions in
a particular session. The bar #1 is the number of question
occurrences in the sessions on the unfamiliar codebase. The
bar SM1 corresponds to the results from the study number
one by Sillito.
Finding focus points. Deviations in this category between
each conducted session may be partially explained by dif-
ferent knowledge about the Roassal 2 framework. P2 never
used the API. P1 used a similar project before (Roassal in
version 1) and was never interested in the internal implemen-
tation. Previously, P3 worked on some portion of another
part of the framework. It helped him become more oriented
to the framework.
Expanding focus points. Deviations in this category be-
tween each conducted session may be partially explained by
different strategies and amount of code each participant ob-
served. Participant P1 was highly interested in understand-
ing a particular behavior and was navigating repeatedly over
several method calls made on several objects. P2 navigated



Sessions on Unfamiliar Code Sessions on Familiar Code
Question Types per Category S1 S2 S3 #1 SM1 S4 S5 S6 #2 SM2
Finding Focus Points
1. Which type represents this domain concept or this UI element or action? 1 1 8 2 4 6
2. Where in the code is the text in this error message or UI element? 4
3. Where is there any code involved in the implementation of this behavior? 3 11 2 16 10 2
4. Is there a precedent or exemplar for this? 1 1 1 3 4 2 2 4
5. Is there an entity named something like this in that unit (project, package, or class, say)? 4 1 5 11 1 1 2 1
Total in the category 8 12 5 25 37 5 5 10 7
Expanding Focus Points
Types and Static Structure
6. What are the parts of this type? 9 2 1 12 11 1 4 5 1
7. Which types is this type a part of? 1 1 2 1 1
8. Where does this type fit in the type hierarchy? 1 1 10
9. Does this type have any siblings in the type hierarchy? 2 1 1
10. Where is this field declared in the type hierarchy? 1 1 2 2 2
11. Who implements this interface or these abstract methods? 2 2 4 8 5
Extra Questions on Types and Static Structure
(e1) Where is the method defined in the type hierarchy? 1 1
(e2) What are the correct argument names of this method? 4 4
(e3) Which abstract methods should be implemented to this type? 2 2
Incoming Connections
12. Where is this method called or type referenced? 7 4 1 12 33 1 1 6 8 2
13. When during the execution is this method called? 4 1
14. Where are instances of this class created? 8
15. Where is this variable or data structure being accessed? 3 2 3 8 8 3
16. What data can we access from this object? 1 1
Outgoing Connections
17. What does the declaration or definition of this look like? 5 12 15 32 13 21 1 19 41 5
18. What are the arguments to this function? 3 1 4 10
19. What are the values of these arguments at runtime? 6 6 4 1
20. What data is being modified in this code? 2 2 2 1 1
Extra Questions on Outgoing Connections
(e4) What method implementation corresponds to my question? 1 1
(e5) What is the variable’s type or what is the method’s return type? 1 4 2 7 4 1 2 7
Total in the category 33 27 36 96 115 34 8 30 72 14
Understanding a Subgraph
Behavior
21. How are instances of these types created and assembled? 2 1 2 5 9
22. How are these types or objects related? (whole-part) 1 1 2 3 1 1
23. How is this feature or concern (object ownership, UI control, etc.) implemented? 6 7 13 12 2 1 3 3
24. What in this structure distinguishes these cases? 2 1
25. What is the behavior that these types provide together and how is it distributed over the types? 5 1 7 13 7 1 1 1
26. What is the “correct” way to use or access this data structure? 3 4 4 3
27. How does this data structure look at runtime? 2 3 4 9 3 9 9 3
Data and Control Flow
28. How can data be passed to (or accessed at) this point in the code? 5 5 4 1
29. How is control getting (from here to) here? 2
30. Why is control not reaching this point in the code? 1 1 6 1 1 2
31. Which execution path is being taken in this case? 1 1 7 2
32. Under what circumstances is this method called or an exception thrown? 2 2 8
33. What parts of this data structure are accessed in this code? 3
Extra Questions on Data and Control Flow
(r1) What does the failure look like? 1 4 5 14 3 1 18
Total in the category 16 12 28 56 69 14 19 4 37 16
Questions over Groups of Subgraphs
Comparing or Contrasting Groups
34. How does the system behavior vary over these types or cases? 2 1 2 5 2 2 2 4 1
35. What are the differences between these files or types? 1 2 1 1 4 8
36. What is the difference between these similar parts of the code (e.g., between sets of methods)? 1 1 3 1 1 4
37. What is the mapping between these UI types and these model types? 4
Change Impact
38. Where should this branch be inserted or how should this case be handled? 8 8 5 4 1 5 2
39. Where in the UI should this functionality be added? 4 2
40. To move this feature into this code, what else needs to be moved? 2
41. How can we know that this object has been created and initialized correctly? 1 1 2
42. What will be (or has been) the direct impact of this change? 6 4 10 7 3 2 1 6 15
43. What will the total impact of this change be? 1 1 9
44. Will this completely solve the problem or provide the enhancement? 4 7 11 3 4 4 2
Extra Questions on Change Impact
(e6) Is this entity or feature tested? 1 1
(e7) Do the test cases pass? 18 18
Total in the category 2 11 24 37 31 26 14 3 43 45
Total 59 62 93 214 252 74 46 42 162 82

Table 2. The number of question occurrences of each type that were asked in each session. Questions from Sillito begin with
number, e.g., “6. . . . ”, our new questions begin with e, e.g., “(e3) . . . ”, question (r1) comes from the study by Ko et al.
Columns S1-S6 are question occurrences for each session. #1 is the sum of occurrences on the unfamiliar codebase. #2 is the
sum of occurrences on the familiar codebase. SM1 and SM2 are results from the study by Sillito.

within a significantly smaller set of entities. P3 was not nav-
igating much and made a lot of assumptions about the code-
base. The majority of the assumptions were right.

Understanding a subgraph. Deviations in this category be-
tween each conducted session may be partially explained by
different amounts of code each participant observed and dif-
ficulties in understanding it. P1 spent a significant amount of



Figure 2. Questions asked on the unfamiliar and familiar code per category and session. Each bar represents the percentage
of the number of questions in a particular session (S1-S6). The bars #1 and #2 are the numbers of question occurrences in the
sessions on the unfamiliar and familiar codebase. The bars SM1 and SM2 correspond to the results from the study by Sillito.

time on fully understanding subgraphs which did not lead to
the solution. P2 understood relatively small and isolated sub-
graph of the framework. P3 did not understand a portion of
codebase that extensively uses the language reflection API;
even observation at runtime was not helpful because the val-
ues of interested variables were symbols (specialized string
values). He tried different strategies to understand the sub-
graph.
Questions over groups of subgraphs. Deviations in this
category between each conducted session may be partially
explained by different achievements and strategies. P1 did
not finish the task and made a relatively small amount of
changes. It implies that he did not spend much time by con-
trasting the change impact or by contrasting different behav-
iors. P2 regularly made changes to the codebase and manu-
ally tested the impact or compared actual and original ver-
sion of the codebase. P3 made incremental changes which
he tested and considered how to handle failures in particular
cases.
Overall question occurrences. Distribution of total number
of question occurrences in groups (#1) is similar to the study
by Sillito (SM1). A notable difference is in the fourth cate-
gory caused mainly by session S3. In this session, P3 made
the most significant progress in comparison with session S1
and S2.

4.1.2 Results on Familiar Codebase
The second graph in Figure 2 gives distribution of the num-
ber of question occurrences per each category and session.
Each bar represents the percentage of the number of ques-
tions in a particular session. The bar #2 illustrates the num-
ber of question occurrences in the sessions on the familiar
codebase. The bar SM2 depicts corresponding results from
the study number two by Sillito.

All the sessions were made on the codebase that the par-
ticipants own and regularly work on it. Prior to the session,
each participant was asked to select a task. All the partici-
pants worked on codebase enhancement.
Finding focus points. Deviations in this category between
each conducted session may be partially explained by com-
plexity of session tasks. P4 knew exactly where to start, what
to change, and how to change it. Participants P5 and P6 spent
some time in locating some entities in their codebase or in
other APIs they use. For example P5 wanted to use a tree
structure and was interested if there is any support in Pharo.
Expanding focus points. Deviations in this category be-
tween each conducted session may be partially explained
by different tasks and development strategies. The code-
base used in the session S4 is driven by test cases. When
P4 reached the expected changes, he regularly executed test
cases, fixing one after another and expanding focus points
from a method in a debugger tool to various parts of code-
base for which he needed to understand. The codebase used
in session S5 has extensive class hierarchies and P5 occa-
sionally clarified the definition of used classes. P6 regularly
used two code browsers; one for navigating, one for edit-
ing. This could be the reason why he repeatedly navigated
the same part of codebase. The part of the codebase he was
changing is not covered by test cases. It could also be the rea-
son for his caution. He preferred to double check his work if
there were any discrepancies.
Understanding a subgraph. Deviations in this category be-
tween each conducted session may be partially explained
by different tasks and development strategies. P4 used test
driven development and when he reached the enhancement,
he spent half of the session fixing dependent codebase by
iterating between running test cases and fixing code. P5 reg-



ularly observed complex XML structures at runtime. P6 al-
tered a relatively small subgraph of his codebase and the be-
havior was clear to him.
Questions over groups of subgraphs. Deviations in this
category between each conducted session may be partially
explained by the use of different tasks and development
strategies. Participants in the sessions S4 and S5 regularly
executed test cases contrasting the change impact. P5 got
stuck thinking about how to handle a particular case. P6
worked on relatively isolated enhancement which he joined
to the rest of the codebase and conducted manual testing
without significant problems.
Overall question occurrences. Deviations between total
number of question occurrences in groups (#2) and the study
number two by Sillito (SM2) are significant in the second
group (Expanding Focus Point) and fourth group (Questions
over Groups of Subgraphs): 71% versus 44%, and 27% ver-
sus 55%. These differences are partially explained by the
use of different tasks or development strategies. Develop-
ment strategies of sessions S4 and S6 differ significantly.
The test driven development is used for all changes made in
session S4. On the contrary no test case was used in session
S6. In session S5 it was important to understand data struc-
ture at runtime while participants P4 and P6 did not need to
understand the data structures in such detail.

4.2 Pharo-Specific Aspects on Answering Questions
Whereas the Pharo language is a dynamically typed lan-
guage, our participants used a variety of techniques for nav-
igation in a codebase and for obtaining static information.
This section discusses the aspects of dynamically typed lan-
guage when navigating in a codebase and getting static in-
formation.
Indirect navigation. Participant P1 wished to explore the
following piece of code:

1 box := RTBox new color: Color blue; size: 30.
2 element := box element.
3 element when: TRMouseClick do: [:event | ... ].

On the first line, a RTBox object is created. This object
serves as a factory for another object called element in line
two. Then in line three, element receives when:do: method.

He was interested in how the method when:do: is im-
plemented. It is question 17 “What does the declaration
or definition of this look like?” To answer this question,
he asked for all implementations and subsequently tracked
down which implementations (classes) are of interest for the
case. Participant P1 expected a class containing “element”
in its name. As the method when:do: is implemented in a su-
perclass, he did not succeed in finding the definition of the
method. Subsequently he examined the value of an element

variable by inserting a breakpoint and running the code.
The class of the value was RTElement — the kind of name
he was expecting when searching in the list of all implemen-

tations of when:do: method. Thereafter he browsed the class
and successively searched for its superclasses for the method
implementation. P1 spent almost 2 minutes to get the correct
method definition.

In the case that a method name is commonly used in
a codebase, it may be inconvenient asking question 17
“What does the declaration or definition of this look like?”
Participant P2 hesitated to query the implementation of all
methods called items, as he expected to get an exhaustive list
of methods. Moreover, he was not sure what class he should
expect.

This may partially explain why participants P1, P3, and
P6 commonly answered question 17 by navigating into
a class definition, then into a method definition. As the list
of implemented methods of the same name could be exten-
sive when the class name was known, they could prefer to
navigate to the class and then to a method implementation.

The opposite behavior was monitored with participant P4
who commonly used the ImplementorsOf tool for a quick
navigation between classes and methods. As he used the
ImplementorsOf tool only for navigation, he had to regularly
close the unused windows.
Object creation. Participant P1 asked where instances of the
TRMouseClick class are created. This is question 21, “How
are instances of these types created and assembled?”. Pharo
does not have a constructor (like in Java) and therefore
this question does not have direct support in Pharo. Instead
of question 21, participant P1 asked question 12 “Where
is this method called or type referenced?” using UsersOf
tool. The tool listed all methods, referencing the class and
the participant manually checked every method to find the
answer to the original question. In the case of participant P1,
he got a list of 41 references, and only one method was an
answer to question 21. He spent almost 2 minutes answering
it.
Type identification. When the participants were interested
in a variable type or a method return type, they used vari-
ous strategies. Participant P3 regularly expected a type of an
object based on the context he was observing, even in situa-
tions where variable names were not self-describing, e.g., l,
lbl. He made changes to the codebase according to his as-
sumptions and if a test scenario worked, he went further with
a particular task. In the possible case of a failure, he exam-
ined the code in more detail, e.g., variable types and method
return values.

Participants P2 and P3 also made estimations on method
names that a particular class should understand. In the pos-
sible case of a failure they wondered whether the behav-
ior could be implemented elsewhere (e.g., under a different
method name), or was the behavior a missing feature.

4.3 Aggregated Questions
This section discusses questions which are not present in
Sillito’s study and are recognized in our study.



4.3.1 Aggregated Questions Related to Dynamically
Typed Aspects of Pharo

In this section we discuss the following questions:

• (e1) Where is the method defined in the type hierarchy?
• (e2) What are the correct argument names of this method?
• (e3) Which abstract methods should be implemented to

this type?
• (e4) What method implementation corresponds to my

question?
• (e5) What is the variable’s type or what is the method’s

return type?

In certain cases, answering question 17 “What does the
declaration or definition of this look like?” needed to be di-
vided into a particular sub-questions. Participant P2, first had
to determine to whom the message is sent by asking question
(e5) “What is the variable’s type or what is the method’s re-
turn type?” Question (e6) was typically answered by putting
a breakpoint into a specific method and subsequently ob-
served in a debugger. A static observation of a particular
codebase was also a common practice. Participant P1 es-
timated the original question (17) by asking (e4) “What
method implementation corresponds to my question?” sup-
posing that it should be a class corresponding to the same
package that he manipulated. The ImplementorOf tool was
used. Participant P1 expected a method definition on a par-
ticular class. Since he did not find the expected class using
ImplementorsOf tool, he opened the class definition in the
Browser tool asking (e1) “Where is the method defined in
the type hierarchy?” and he searched the method in the fol-
lowing superclasses.

In the statically typed languages, e.g., Java, question (17)
is commonly answered by direct navigation from a calling
method to a particular definition. In Pharo, it was necessary
to perform extra steps (question e1, e6, e7) to achieve the
desired information.

The Pharo language has no special symbol distinguish-
ing abstract class or method declaration. Instead, a dedicated
method call is used in the definition of a particular “abstract”
method. If a developer forgets to override the method, an ex-
ception is raised. Therefore, at the time of defining a new
class, participant P6 has checked the methods in the super-
class, asking question (e3) “Which abstract methods should
be implemented to this type?”

Participant P4 was in the opposite situation. He formed
a method that is a part of the abstract programming interface
(API). Since argument name is an important API guideline
in dynamically typed Pharo language, he was interested in
what the argument names are in other methods: question (e2)
“What are the correct argument names of this method?”
In this case, the name was aValueOrASymbolOrAOneArgBlock

indicating that values can be the basic ones, e.g., a number or

a string, a symbol (a specialized string), or a lambda function
with one argument.

4.3.2 Aggregated Questions Related to Test Driven
Development

In this section we discuss following questions:

• (e6) Is this entity or feature tested?
• (e7) Do the test cases pass?
• (r1) What does the failure look like?

Participant P4 began his work writing test cases. First, he
wondered whether a particular scenario is tested, i.e., ques-
tion (e6) “Is this entity or feature tested?” He generalized
the question asking (12) “Where is this method called or
type referenced?” In that particular case he found it diffi-
cult to answer the question and noted that “this is not worth
wasting time over ... writing a test should be easy” and he
wrote a new one. Later in the session, when he was fixing
the test cases affected by his changes, he found tests similar
to those he wrote at the beginning.

Questions (e7) “Do the test cases pass?” and (r1) “What
does the failure look like?” are recognized by Sillito. Ques-
tion (e7) could be mapped to (41) “How can we know that
this object has been created and initialized correctly?” or
(42) “Will this completely solve the problem or provide
the enhancement?” Question (r1) could be mapped to (29)
“How is control getting (from here to) here?”, (30) “Why is
control not reaching this point in the code?”, or (32) “Un-
der what circumstances is this method called or an exception
thrown?” Since it was difficult to identify specific questions,
we used a more general form.

5. Threats to Validity
Our systematic observation of developers working with real-
world codebases is performed on a relatively small number
of the sessions. Given this setting, there are factors which
limit the generalization of our results.

Since all the participants know one another and are con-
centrated in one metropolitan area — Santiago, they can
share similar development techniques. To minimize the
threat to validity we choose a different task for each session,
and in the case of the familiar code, a different codebase.

In addition, the sessions limitation to a 40 minute time
frame does not ensure that we recorded all the commonly
asked questions of Pharo developers. However, our results
indicate a similarity with Sillito’s studies and we believe that
the asked questions could be generalized to the other change
tasks in Pharo. What could change is the distribution of the
number of question occurrences.

The identification of specific questions based on a user
behavior is non-deterministic. In some cases it was unclear
what a user was looking for. The subsequent synthesis of
general questions also suffer from uncertainty. We minimize



the threat to validity by double checking that the sequence
of identified questions make sense.

6. Summary
We replicate Sillito’s work and identify similar results, com-
paring sessions on the unfamiliar codebase. The studies on
the familiar codebase indicate deviation likely caused by dif-
ferent tasks and development strategies. Both missing type
information and test driven development affected participant
behavior and prudence on codebase understanding. Some
participants have made changes based on assumptions and
if a test scenario worked, they went ahead with a particular
job. In the case of failure, they began to examine the code in
more detail, e.g., variable types and method return values.

We provide aspects and strategies on answering particular
questions (Section 4.2) and a set of questions that are useful
for characterizing activity related to the use of a dynamically
typed language and test-driven development, questions not
explicitly considered in previous research (Section 4.3).
Research question. In this study we focus on the asked
questions and their occurrences, comparing them to Sillito’s
study. We indicate that the asked questions on the unfamiliar
codebase are similar to the questions asked by Sillito. In
the case of unfamiliar codebase, we observe great deviation
between each session, though more work is needed.
Related work. To our knowledge there is no similar study
performed on Pharo or any another dynamically typed lan-
guage. Ko et al., Duala-Ekoko et al., and LaToza et al. con-
ducted their studies on statically typed languages, e.g., Java,
C, C++, or C# [1, 5, 6].
Future work. In the future we expect to extend this study in
three aspects: (i) to grasp a wider range of developer prac-
tices on answering questions, (ii) to analyze the difficulties
the developers have when answering questions, (iii) to pro-
cess data collected by the DFlow framework [7], and (iv) to
provide discussion on the setting differences compared with
the study by Sillito presented in Section 2.1. We could satisfy
the first aspect by involving more participants. With regard
to the second aspect, we will analyze existing transcription,
comparing the time they spend on answering the questions
and reporting the tool support.

7. Open Questions
The preliminary work presented in this paper makes a num-
ber of assumptions that we hope to verify during the work-
shop. Below are a number of questions we would like to raise
during the PLATEAU workshop.
Making transcripts. To conduct the experiment described
in this paper, we analyzed a number of programming ses-
sions. The analysis was carried out by manually recording
the screen and then playing it back to capture all the rel-
evant parameters. Although efficient in measuring the pro-
gramming activity, this is a costly analysis technique. On

average, it takes us a day and a half to produce the transcript
and its associated questions (general and specific) from a 40
minute-long screencast. This is hardly scaleable analyzation
technique. The first question we would like to ask the au-
dience (who has experience in this profiling programming
activity) is whether there is a better approach for carrying
out our analysis. What are the procedures used to analyze
programming sessions?
Deduction of questions. Comparing it to the study by Sillito
we identify more questions per session. Sillito recognizes
334 questions by analyzing 27 programming sessions. By
analyzing 6 sessions, we identify 376 questions. Such a dif-
ference may be explained by the fine grain we adopted in
our analysis. However, we are not sure whether this is the
main reason. What should we be careful of when defining
the questions? How should we consider the differences in
the results?
Comparison of results. As we have significantly more oc-
currences of questions and use the percentage of the question
occurrences across the four groups; see Figure 2. It allows us
to compare the question distributions. But we do not know
if it is the right decision. How do we properly compare our
results with previous studies? What is the recommended pro-
cedure when comparing results on exploratory studies?

ACKNOWLEDGMENT Juraj Kubelka is supported by a Ph.D.
scholarship from CONICYT, Chile. CONICYT-PCHA/Doctorado
Nacional/2013-63130188. This work has been partially funded by
FONDECYT project 1120094.

References
[1] E. Duala-Ekoko and M. Robillard. Asking and answering ques-

tions about unfamiliar apis: An exploratory study. In Software
Engineering (ICSE), 2012 34th International Conference on,
pages 266–276, June 2012. . URL http://dx.doi.org/10.

1109/ICSE.2012.6227187.

[2] A. Goldberg and D. Robson. Smalltalk 80: the Language
and its Implementation. Addison Wesley, Reading, Mass.,
May 1983. ISBN 0-201-13688-0. URL http://stephane.

ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf.

[3] N. Juristo and S. Vegas. The role of non-exact replications
in software engineering experiments. Empirical Software En-
gineering, 16(3):295–324, 2011. ISSN 1382-3256. . URL
http://dx.doi.org/10.1007/s10664-010-9141-9.

[4] S. Kleinschmager, S. Hanenberg, R. Robbes, E. Tanter, and
A. Stefik. Do static type systems improve the maintainability
of software systems? an empirical study. In Program Compre-
hension (ICPC), 2012 IEEE 20th International Conference on,
pages 153–162, June 2012. . URL http://dx.doi.org/10.

1109/ICPC.2012.6240483.

[5] A. Ko, R. DeLine, and G. Venolia. Information needs in col-
located software development teams. In Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on, pages
344–353, May 2007. . URL http://dx.doi.org/10.1109/

ICSE.2007.45.

http://dx.doi.org/10.1109/ICSE.2012.6227187
http://dx.doi.org/10.1109/ICSE.2012.6227187
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://dx.doi.org/10.1007/s10664-010-9141-9
http://dx.doi.org/10.1109/ICPC.2012.6240483
http://dx.doi.org/10.1109/ICPC.2012.6240483
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45


[6] T. D. LaToza and B. A. Myers. Developers ask reachabil-
ity questions. In Proceedings of the 32Nd ACM/IEEE In-
ternational Conference on Software Engineering - Volume 1,
ICSE ’10, pages 185–194, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-719-6. . URL http://doi.acm.org/10.

1145/1806799.1806829.

[7] R. Minelli and M. Lanza. Visualizing the workflow of de-
velopers. In Software Visualization (VISSOFT), 2013 First
IEEE Working Conference on, pages 1–4, Sept 2013. . URL
http://dx.doi.org/10.1109/VISSOFT.2013.6650531.

[8] A. Oram and G. Wilson, editors. Making Software. What
Really Works, and Why We Believe It. ”O’Reilly Media, Inc.”,
Oct. 2010. ISBN 978-0-596-80832-7. URL http://shop.

oreilly.com/product/9780596808303.do.

[9] J. Sillito, G. Murphy, and K. De Volder. Asking and answering
questions during a programming change task. Software En-
gineering, IEEE Transactions on, 34(4):434–451, July 2008.
ISSN 0098-5589. . URL http://dx.doi.org/10.1109/

TSE.2008.26.

http://doi.acm.org/10.1145/1806799.1806829
http://doi.acm.org/10.1145/1806799.1806829
http://dx.doi.org/10.1109/VISSOFT.2013.6650531
http://shop.oreilly.com/product/9780596808303.do
http://shop.oreilly.com/product/9780596808303.do
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26

	Introduction
	Programming Study
	Initial Considerations for Experimental Design
	Data Collection
	Participants
	Tasks
	Familiar Codebase
	Partially Familiar and Unfamiliar Codebase

	Study Setting

	Data Analysis
	Results
	Session Comparison
	Results on Unfamiliar Codebase
	Results on Familiar Codebase

	Pharo-Specific Aspects on Answering Questions
	Aggregated Questions
	Aggregated Questions Related to Dynamically Typed Aspects of Pharo
	Aggregated Questions Related to Test Driven Development


	Threats to Validity
	Summary
	Open Questions

